

1 000

GTS Traffic Systems

Pilot's Guide

PANT

© 2017 Garmin Ltd. or its subsidiaries. All rights reserved.

Garmin International, Inc., 1200 East 151st Street, Olathe, KS 66062, U.S.A.

Garmin AT, Inc., 2345 Turner Road SE, Salem, OR 97302, U.S.A.

Garmin (Europe) Ltd., Liberty House, Hounsdown Business Park, Southampton, Hampshire SO40 9LR, U.K.

Garmin Corporation, No. 68, Jangshu 2nd Road, Xizhi District, New Taipei City, Taiwan

At Garmin, we value your opinion. For comments about this guide, please e-mail: Techpubs.Salem@Garmin.com

This part shall comply with Garmin Banned and Restricted Substances document, 001-00211-00.

www.garmin.com

https://fly.garmin.com/fly-garmin

Except as expressly provided herein, no part of this manual may be reproduced, copied, transmitted, disseminated, downloaded or stored in any storage medium, for any purpose without the express written permission of Garmin. Garmin hereby grants permission to download a single copy of this manual and of any revision to this manual onto a hard drive or other electronic storage medium to be viewed for personal use, provided that such electronic or printed copy of this manual or revision must contain the complete text of this copyright notice and provided further that any unauthorized commercial distribution of this manual or any revision hereto is strictly prohibited.

Record of Revisions			
Revision	Date	Description	
А	12/02/09	Production release.	
В	3/21/14	Added new GTS models and reorganized/edited content.	
С	08/30/16	Updated ADS-B info	
D	11/08/17	Updated per latest SW	

GARMIN. AVIATION LIMITED WARRANTY

All Garmin avionics products are warranted to be free from defects in materials or workmanship for the earlier of: 2 years or 800 flight hours from the date of purchase for new TSO remote-mount and TSO panel-mount products; 1 year or 400 flight hours from the date of purchase for new Non-TSO remote-mount* and Non-TSO panel-mount*, portable products and any purchased newly-overhauled products; 6 months or 200 flight hours for factory repaired or newly-overhauled products exchanged through a Garmin Authorized Service Center. Within the applicable period, Garmin will, at its sole option, repair or replace any components that fail in normal use. Such repairs or replacement will be made at no charge to the customer for parts or labor, provided that the customer shall be responsible for any transportation cost. This Limited Warranty does not apply to: (i) cosmetic damage, such as scratches, nicks and dents; (ii) consumable parts, such as batteries, unless product damage has occurred due to a defect in materials or workmanship; (iii) damage caused by service performed by anyone who is not an authorized service provider of Garmin; or (v) damage to a product that has been modified or altered without the written permission of Garmin. In addition, Garmin reserves the right to refuse warranty claims against products or services that are obtained and/or used in contravention of the laws of any country.

This Limited Warranty also does not apply to, and Garmin is not responsible for, any degradation in the performance of any Garmin navigation product resulting from its use in proximity to any handset or other device that utilizes a terrestrial broadband network operating on frequencies that are close to the frequencies used by any Global Navigation Satellite System (GNSS) such as the Global Positioning Service (GPS). Use of such devices may impair reception of GNSS signals.

THE WARRANTIES AND REMEDIES CONTAINED HEREIN ARE EXCLUSIVE AND IN LIEU OF ALL OTHER WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING ANY LIABILITY ARISING UNDER ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, STATUTORY OR OTHERWISE. THIS WARRANTY GIVES YOU SPECIFIC LEGAL RIGHTS, WHICH MAY VARY FROM STATE TO STATE.

IN NO EVENT SHALL GARMIN BE LIABLE FOR ANY INCIDENTAL, SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES, WHETHER RESULTING FROM THE USE, MISUSE OR INABILITY TO USE THE PRODUCT OR FROM DEFECTS IN THE PRODUCT. SOME STATES DO NOT ALLOW THE EXCLUSION OF INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO THE ABOVE LIMITATIONS MAY NOT APPLY TO YOU.

Garmin retains the exclusive right to repair or replace (with a new or newly-overhauled replacement product) the product or software or offer a full refund of the purchase price at its sole discretion. SUCH REMEDY SHALL BE YOUR SOLE AND EXCLUSIVE REMEDY FOR ANY BREACH OF WARRANTY.

Online Auction Purchases: Products purchased through online auctions are not eligible for warranty coverage. Online auction confirmations are not accepted for warranty verification. To obtain warranty service, an original or copy of the sales receipt from the original retailer is required. Garmin will not replace missing components from any package purchased through an online auction.

International Purchases: A separate warranty may be provided by international distributors for devices purchased outside the U.S. depending on the country. If applicable, this warranty is provided by the local in-country distributor and this distributor provides local service for your device. Distributor warranties are only valid in the area of intended distribution. Devices purchased in the U.S. or Canada must be returned to the Garmin service center in the U.K., the U.S., Canada, or Taiwan for service.

*All new G3X units, including Non-TSO remote-mount or Non-TSO panel-mount, are warranted to be free from defects in materials or workmanship for the earlier of: 2 years or 800 flight hours from the date of purchase.

WARNINGS AND CAUTIONS

WARNING: The GTS TAS and TCAS I systems are intended for advisory use only to aid the pilot in visually acquiring traffic. No avoidance maneuvers should be based solely upon traffic information. It is the responsibility of the pilot in command to see and maneuver to avoid traffic.

CAUTION: Pilots should be aware of TAS/TCAS I system limitations. TAS/TCAS I systems require intruder transponders to respond to system interrogations. If an intruder transponder does not respond to interrogations due to antenna shading or marginal transponder performance, it will not be displayed, or display may be intermittent. Pilots should remain vigilant for traffic at all times when using TAS/TCAS I systems for non-transponder equipped airplanes or unresponsive airplanes.

GARMIN

SOFTWARE LICENSE AGREEMENT FOR GARMIN AVIATION PRODUCTS

The software embedded in your Garmin product (the "Licensed Software") is owned by Garmin International, Inc. ("Garmin" or "us"). The Licensed Software is protected under copyright laws and international copyright treaties. The Licensed Software is provided under this Software License Agreement (hereinafter the "Agreement") and is subject to the following terms and conditions which are agreed to by End User ("Licensee", "you" or "your"), on the one hand, and Garmin and its licensors and affiliated companies of Garmin and its licensors, on the other hand. The Licensed Software is licensed, not sold, to you. Garmin and Licensee may be referred to individually as a "Party" or jointly as the "Parties."

IMPORTANT: CAREFULLY READ THIS ENTIRE AGREEMENT BEFORE USING THIS PRODUCT. INSTALLING, COPYING, OR OTHERWISE USING THIS PRODUCT INDICATES YOUR ACKNOWLEDGMENT THAT YOU HAVE READ THIS AGREEMENT AND AGREE TO ITS TERMS AND CONDITIONS. IF YOU DO NOT AGREE TO THESE TERMS AND CONDITIONS, YOU MAY NOT USE THIS PRODUCT.

- 1. <u>Definitions</u>. The following capitalized terms shall have the meanings set forth below:
 - 1.1 "<u>Device</u>" means any Garmin device that is delivered by or on behalf of Garmin to Licensee onto which the Licensed Software is installed.
 - 1.2 "<u>Documentation</u>" means Garmin's then-current instructional, technical or functional documentation relating to the Devices or Licensed Software which is delivered or made available by Garmin in connection with this Agreement.
 - 1.3 "Licensed Software" means the software in binary executable form that is embedded in the Devices and/or made available for use on the Devices via a software loader card.
 - 1.4 "<u>Permitted Purpose</u>" means operating and using the Device on which the Licensed Software is installed for the Device's intended use.

2. <u>License</u>.

- 2.1 License Grant. Subject to the terms and conditions of this Agreement and Licensee's compliance with the terms and conditions of this Agreement, Garmin hereby grants to Licensee a limited, royalty-free, non-exclusive, non-sublicenseable, non-transferable and revocable right and license to use and perform the Licensed Software as installed on the Devices and the Documentation solely for the Permitted Purpose and only during the term of this Agreement, provided that the Licensed Software may only be used by Licensee on Devices on which the Licensed Software has been installed or otherwise made available by Garmin.
- 2.2 <u>Reservation of Rights</u>. Garmin retains exclusive ownership of all right, title and interest in and to the Licensed Software and Documentation. All of Garmin's rights in and to the Licensed Software and Documentation not expressly licensed to Licensee under Section 2.1 are expressly reserved for Garmin. Nothing contained in this Agreement

shall be construed as conferring by implication, acquiescence, or estoppel any license or other right upon Licensee. Without limiting the foregoing, the Parties acknowledge and agree that this Agreement grants Licensee a license of the Licensed Software under the terms of Section 2.1, and shall not in any manner be construed as a sale of the Licensed Software or any rights in the Licensed Software.

3. <u>Restrictions; Protection and Third Party Devices</u>.

- 3.1 Prohibited Uses. Licensee shall not, shall not attempt to and shall not permit any third party to: (a) sublicense, lease, loan, sell, resell, market, transfer, rent, disclose, demonstrate, or distribute the Licensed Software or Documentation to any third party; (b) uninstall the Licensed Software from the Device on which it was originally installed; (c) make any use of or perform any acts with respect to the Licensed Software or Documentation other than as expressly permitted in accordance with the terms of this Agreement; (d) use the Licensed Software or Documentation in any manner that violates any applicable law; (e) reproduce or copy the Licensed Software; (f) modify, adapt, alter, translate, port, create derivative works of, reverse engineer, decompile or disassemble the Licensed Software or Documentation or otherwise derive the source code or other proprietary information or trade secrets from the Licensed Software; (g) remove, alter, or obscure any proprietary notices from the Licensed Software or Documentation; (h) use the Licensed Software or Documentation to provide services to third parties (such as business process outsourcing, service bureau applications or third party training); (i) use the Licensed Software on any equipment, hardware or device other than a Device; or (j) export, re-export or otherwise distribute, directly or indirectly, the Licensed Software or Documentation to a jurisdiction or country to which the export, re-export or distribution of such Licensed Software or Documentation is prohibited by applicable law.
- 3.2 <u>Protection of Software and Documentation</u>. Licensee shall use its best efforts to protect the Licensed Software and Documentation from unauthorized access, distribution, modification, display, reproduction, disclosure or use with at least the same degree of care as Licensee normally uses in protecting its own software and documentation of a similar nature from unauthorized access, distribution, modification, display, reproduction, disclosure or use. Licensee shall limit access to the Licensed Software and Documentation for the Permitted Purpose and who have been made aware of the restrictions set forth in this Agreement. Licensee shall take prompt and appropriate action to prevent unauthorized use or disclosure of the Licensed Software and Documentation.

4. Term and Termination.

- 4.1 <u>Term</u>. The term of this Agreement shall commence on the Effective Date, and shall continue in perpetuity thereafter, unless terminated earlier as provided in this Section 4.
- 4.2 <u>Termination by Garmin</u>. Garmin may immediately terminate this Agreement upon written notice to Licensee if Licensee commits a material breach of this Agreement or breaches a material term of this Agreement.
- 4.3 <u>Effect of Termination</u>. Upon any termination of this Agreement for any Party : (a) Licensee shall immediately cease all use of the Licensed Software and Documentation;
 (b) all rights and licenses granted to Licensee to the Licensed Software and Documentation and Garmin's related obligations shall immediately terminate; and (c) Sections 4.3, 5 and 6 shall survive.

5. Disclaimer; Limitations of Liability; Indemnity.

5.1 DISCLAIMER. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, THE LICENSED SOFTWARE AND DOCUMENTATION (INCLUDING ANY RESULTS TO BE OBTAINED FROM ANY USE OF THE LICENSED SOFTWARE AND DOCUMENTATION) ARE PROVIDED "AS IS" AND "AS AVAILABLE" WITH NO WARRANTIES, GUARANTEES OR REPRESENTATIONS AND NEITHER GARMIN NOR ITS AFFILIATES MAKE ANY REPRESENTATION, WARRANTY OR GUARANTEE, STATUTORY OR OTHERWISE, UNDER LAW OR FROM THE COURSE OF DEALING OR USAGE OF TRADE, EXPRESS OR IMPLIED, INCLUDING ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-INTERFERENCE, NON-INFRINGEMENT, TITLE, OR SIMILAR, UNDER THE LAWS OF ANY JURISDICTION. GARMIN DOES NOT WARRANT THAT THE LICENSED SOFTWARE OR DOCUMENTATION WILL MEET LICENSEE'S REQUIREMENTS OR THAT OPERATION OF THE SOFTWARE WILL BE UNINTERRUPTED OR ERROR FREE. LICENSEE ASSUMES THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE LICENSED SOFTWARE AND DOCUMENTATION. THE LICENSED SOFTWARE IS NOT INTENDED FOR USE IN ANY NUCLEAR, MEDICAL, OR OTHER INHERENTLY DANGEROUS APPLICATIONS, AND GARMIN DISCLAIMS ALL LIABILITY FOR ANY DAMAGE OR LOSS CAUSED BY SUCH USE OF THE LICENSED SOFTWARE.

- 5.2 EXCLUSION OF DAMAGES; LIMITATION OF LIABILITY. NOTWITHSTANDING ANYTHING TO THE CONTRARY HEREIN, TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, UNDER NO CIRCUMSTANCES AND REGARDLESS OF THE NATURE OF ANY CLAIM SHALL GARMIN BE LIABLE TO LICENSEE FOR AN AMOUNT IN EXCESS OF \$100, OR BE LIABLE IN ANY AMOUNT FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR INDIRECT DAMAGES, LOSS OF GOODWILL OR PROFITS, LIQUIDATED DAMAGES, DATA LOSS, COMPUTER FAILURE OR MALFUNCTION, ATTORNEYS' FEES, COURT COSTS, INTEREST OR EXEMPLARY OR PUNITIVE DAMAGES, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OR NON-PERFORMANCE OF THE LICENSED SOFTWARE OR DOCUMENTATION, EVEN IF GARMIN HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH LOSS OR DAMAGES.
- 5.3 <u>Indemnity</u>. Licensee shall indemnify, defend and hold Garmin and its affiliates harmless against any and all losses, claims, actions, causes of action, liabilities, demands, fines, judgments, damages and expenses suffered or incurred by Garmin or its affiliated companies in connection with: (a) any use or misuse of the Licensed Software or Documentation by Licensee or any third party in Licensee's reasonable control; or (b) Licensee's breach of this Agreement.

6. <u>General</u>.

- 6.1 <u>No Devices or Services</u>. Licensee acknowledges and agrees that nothing in this Agreement shall be construed as requiring Garmin to: (a) provide or supply the Devices or any other devices or hardware to Licensee; (b) grant any licenses to any software other than the Licensed Software; or (c) provide any services, such as support, maintenance, installation or professional services for the Licensed Software.
- 6.2 <u>Non-Exclusive</u>. Each Party's rights and obligations under this Agreement are nonexclusive. Garmin is not precluded from marketing, licensing, providing, selling or distributing the Licensed Software or Documentation, or any other products, software, documentation or services, either directly or through any third party.
- 6.3 <u>Assignment.</u> Licensee may not assign this Agreement or any of its rights, interests or obligations hereunder without the prior written consent of Garmin. Any purported assignment in violation of this Section 6.3 shall be null and void. Subject to the foregoing, this Agreement shall be binding upon and shall inure to the benefit of the Parties and their respective successors and permitted assigns and transferees.
- 6.4 <u>Feedback and Data</u>. Licensee may from time to time provide feedback, comments, suggestions, questions, ideas, or other information to Garmin concerning the Licensed Software or Documentation or Garmin's products, services, technology, techniques, processes or materials ("<u>Feedback</u>"). Garmin may in connection with any of its products or services freely use, copy, disclose, license, distribute and otherwise exploit such Feedback in any manner without any obligation, payment, royalty or restriction whether based on intellectual property rights or otherwise.

- 6.5 <u>Governing Law</u>. The validity, interpretation and enforcement of this Agreement will be governed by the substantive laws, but not the choice of law rules, of the state of Kansas. This Agreement shall not be governed by the 1980 UN Convention on Contracts for the International Sale of Goods.
- 6.6 <u>Legal Compliance</u>. You represent and warrant that (i) you are not located in a country that is subject to a U.S. Government embargo, or has been designated by the U.S. Government as a "terrorist supporting" country, and (ii) you are not listed on any U.S. Government list of prohibited or restricted parties.
- 6.7 <u>Injunctive Relief</u>. The Parties acknowledge and agree that irreparable damage would occur if any provision of this Agreement was not performed in accordance with its specific terms or was otherwise breached and as such, the Parties will be entitled to an injunction or injunctions to prevent breaches of this Agreement and to enforce specifically the performance of the terms and provisions of this Agreement without proof of actual damages, this being in addition to any other remedy to which any Party is entitled at law or in equity.
- 6.8 <u>Amendments and Waivers</u>. This Agreement may be amended and any provision of this Agreement may be waived, provided that any such amendment or waiver will become and remain binding upon a Party only if such amendment or waiver is set forth in a writing by such Party. No course of dealing between or among any persons having any interest in this Agreement will be deemed effective to modify, amend or discharge any part of this Agreement or any rights or obligations of any Party under or by reason of this Agreement. No delay or failure in exercising any right, power or remedy hereunder will affect or operate as a waiver thereof; nor will any single or partial exercise thereof or any abandonment or discontinuance of steps to enforce such a right, power or remedy preclude any further exercise thereof or of any other right, power or remedy. The rights and remedies hereunder are cumulative and not exclusive of any rights or remedies that any Party would otherwise have.
- 6.9 <u>Severability</u>. The provisions of this Agreement will be severable in the event that for any reason whatsoever any of the provisions hereof are invalid, void or otherwise unenforceable, any such invalid, void or otherwise unenforceable provisions will be replaced by other provisions which are as similar as possible in terms to such invalid, void or otherwise unenforceable provisions but are valid and enforceable and the remaining provisions will remain valid and enforceable to the fullest extent permitted by applicable law, in each case so as to best preserve the intention of the Parties with respect to the benefits and obligations of this Agreement.
- 6.10 <u>No Third-Party Beneficiaries</u>. This Agreement is solely for the benefit of the Parties and does not confer on third parties any remedy, claim, reimbursement, claim of action or other right in addition to those existing without reference to this Agreement.

- 6.11 <u>Entire Agreement</u>. This Agreement shall constitute the entire agreement between Garmin and you with respect to the subject matter hereof and will supersede all prior negotiations, agreements and understandings of Garmin and you of any nature, whether oral or written, with respect to such subject matter.
- 6.12 <u>Interpretation</u>. In this Agreement: (a) headings are for convenience only and do not affect the interpretation of this Agreement; (b) the singular includes the plural and vice versa; (c) the words 'such as', 'including', 'particularly' and similar expressions are not used as, nor are intended to be, interpreted as words of limitation; (d) a reference to a person includes a natural person, partnership, joint venture, government agency, association, corporation or other body corporate; a thing includes a part of that thing; and a party includes its successors and permitted assigns; and (e) no rule of construction applies to the disadvantage of a Party because that Party was responsible for the preparation of this Agreement. Any translation of this Agreement from English is provided as a convenience only. If this Agreement is translated into a language other than English and there is a conflict of terms between the English version and the other language version, the English version will control.

Contents

Sec	tion 1	System Description	3
Sec	tion 2	General Theory of Operation	3
2.1	Active	Surveillance	3
2.2	ADS-B	IN	4
Sec	tion 3	System Specifications	7
Sec	tion 4	System Components	8
4.1	System	Processor	8
	4.1.1	GTS 800/820/850 System Processors	8
	4.1.2	GTS 825/855 System Processor	8
4.2	Antenr	nas	9
	4.2.1	Directional Antennas 1	0
	4.2.2	Omni-Directional Antenna 1	1
4.3	Externa	al Amplifier 1	1
	4.3.1	GPA 65 Amplifier Module (GTS 820 & 850 only) 1	1
Sec	tion 5	System Interfaces1	2
5.1	Altitud	e Source 1	2
5.2	Transp	onder Interface 1	2
5.3	Traffic	Display 1	2
5.4	Audio	System 1	2
5.5	Landin	g Gear Position 1	3
5.6	Radar	Altimeter 1	3
5.7	GPS	1	3
5.8	Magne	etic Heading1	3
5.9	Air/Gro	ound Switch 1	3
5.10) Conti	ol Switches 1	3
Sec	tion 6	System Operation1	4
6.1	Operat	ing Modes 1	4
	6.1.1	Control of Modes 1	4
6.2	Traffic	Information 1	4
	6.2.1	No-Bearing TAs 1	5
6.3	ADS-B	In Applications - SURF, AIRB 1	7
6.4	Traffic	Alerting 1	8
	6.4.1	TAS/TCAS I Alerting 1	8

6.4.2 ADS-B In Alerting	. 21
6.4.3 TA Aural Alerts	. 24
6.5 Ownship Air/Ground Detection	. 25
6.5.1 Automatic Mode Switching	. 25
6.6 Calculated Height Above Ground	. 25
6.7 Ground Traffic Filtering	. 26
6.7.1 Mode S Targets	. 27
6.7.2 Radar Altimeter	. 27
6.7.3 Calculated Height Above Ground	. 27
6.8 Self-Test	. 28
Section 7 Q and A	29
7.1 What are the benefits of ADS-B?	. 29
7.2 When is ADS-B In available?	. 29
7.3 How are active and ADS-B In targets displayed?	. 29
7.4 What capabilities does GPS data provide?	. 29
7.5 What kind of transponder is required for use with the GTS Traffic System?	29
7.6 Is ADS-B Out required with the GTS Traffic System?	. 30
Section 8 Glossary	31

GARMIN. SECTION 1 SYSTEM DESCRIPTION

Garmin GTS Traffic Systems are a family of Traffic Advisory Systems (TAS) and Traffic Alert and Collision Avoidance Systems (TCAS). The systems feature both active interrogation of aircraft transponders and reception of 1090 MHz Extended Squitter ADS-B broadcasts (ADS-B IN).

GTS Traffic Systems include the following products:

- GTS 800 TAS
- GTS 820 TAS and GTS 850 TCAS I
- GTS 825 TAS and GTS 825 TCAS I
- GTS 8000 TCAS II

Terms used in this Pilot's Guide:

- TAS: Refers to any TAS system (GTS 800/820/825)
- TCAS I: Refers to any TCAS I system (GTS 850/855)
- TAS / TCAS I: Refers to any TAS or TCAS I system (GTS 800/820/825/850/855)
- TCAS II: Refers to the GTS 8000

NOTE: Details on the GTS 8000 TCAS II operation are not included in this guide. For information on a GTS 8000 TCAS II system, refer to the aircraft-specific installation documentation.

SECTION 2 GENERAL THEORY OF OPERATION

2.1 Active Surveillance

GTS Traffic Systems actively interrogate the transponders of other nearby aircraft to determine their bearing, distance, altitude and vertical trend relative to your aircraft. Aircraft with operating transponders are detected, and aircraft with altitude reporting transponders will also include altitude and vertical trend information (level, climbing, or descending). This information is then shown on a compatible traffic display.

GTS Traffic Systems also provide visual and aural alerts to assist in visually acquiring traffic. Aural and visual alerts are provided as a Traffic Advisory (TA) for conflicting traffic.

2.2 ADS-B IN

 λ

The GTS ADS-B In capability allows it to receive traffic data through a built in 1090 MHz Extended Squitter (1090 ES) receiver. ADS-B IN is a core technology in the FAA NextGen air traffic control system and is comprised of three segments: ADS-B (Broadcast), ADS-R (Rebroadcast), and TIS-B. The ADS-B In function must be enabled at the time of system installation. If the ADS-B In function is disabled, only active surveillance is used.

NOTE: Full ADS-B In functionality is only available in GTS 800, GTS 820, and GTS 850 systems with system software version 4.00 and later; and in GTS 825 and GTS 855 systems with system software version 3.00 and later. Earlier software versions provide limited ADS-B IN functionality: Position data from the 1090 ES ADS-B is used to derive bearing for a correlated intruder tracked with active surveillance.

Automatic Dependent Surveillance - Broadcast (ADS-B) is the automatic broadcast of position reports by aircraft, surface vehicles, and transmitters on fixed objects. These broadcasts contain much more data than just a simple position report, they include: identity (Flight ID/Tail Number, ICAO registration number, etc), ground track, ground speed, pressure altitude, indications of equipment capabilities, and emergency status.

Figure 1 ADS-B Operation - FAA Illustration

GARMIN.

Automatic Dependent Surveillance - Rebroadcast (ADS-R) is the rebroadcast of ADS-B data. ADS-B may transmitted on either 1090 MHz or 978 MHz. ADS-B In capable aircraft may only be able to receive data on one link. Therefore, a means to get data from one data link to the other is required. ADS-R is the rebroadcast of ADS-B data by FAA ground stations and provides this service by taking data from one link and rebroadcasting it on the other. For example, two aircraft are in the service volume for a ground station, and one transmitting on 1090 MHz and the other 978 MHz, the ground station will retransmit the data from each aircraft on the other link to ensure the two aircraft can "see" each other. The GTS is capable of receiving ADS-B directly on the 1090 MHz data link only. ADS-R allows the GTS to "see" the aircraft that transmits ADS-B on the 978 MHz data link.

Figure 2 ADS-R Operation - FAA Illustration

Traffic Information Service - Broadcast (TIS-B) provides a bridge between the radar based ATC system and the ADS-B based system. When an ADS-B In capable aircraft is within the service volume of an FAA ADS-B ground station, the ground station will begin to broadcast a portion of the ATC radar picture to the aircraft. This aircraft is then included in the list of aircraft that is being provided TIS-B service and is then considered a "TIS-B participant."

TIS-B coverage is available when the aircraft is within ground station coverage, in Secondary Surveillance Radar coverage, and the other aircraft is in secondary surveillance radar coverage and transmitting altitude.

ATC radar tracks for other aircraft within $\pm 3,500$ feet and 15 NM of the participant is provided by the ground station, to include altitude, position, ground speed, and ground track. TIS-B data is broadcast once every three to thirteen seconds depending on the characteristics of the FAA radar ground station.

The GTS is capable of active surveillance and will directly track most targets provided via TIS-B. If the GTS is not able to track a target using active surveillance (e.g. it is at a range too far to track reliably), it can still be displayed if provided via TIS-B.

Figure 3 TIS-B Operation - FAA Illustration

NOTE: Even if the display is showing TIS-B traffic, unless the TIS-B participant indication is present (see Table 1) TIS-B services are not being provided specific to your aircraft.

Garmin display units have the capability to show the status of the ground station services being received. An example for the GTN is shown below. See the display device Pilot Guide for the symbology used on that display.

Unit	Symbol	Description
GTN	$^{\circ}\!\mathbf{A}^{\circ}$	Within coverage of a TIS-B ground station.
GTN	\mathbb{X}	Not within coverage of a TIS-B ground station.

Table 1 Map TIS-B Availability Symbols for the GDL 88

SECTION 3 SYSTEM SPECIFICATIONS

The specifications for each member of the GTS Traffic Systems family are contained in Table 2.

Product	GTS 800	GTS 820	GTS 825	GTS 850	GTS 855
Туре	TAS TSO-C147 (Class A)	TAS TSO-C147 (Class A)	TAS TSO-C147 (Class A)	TCAS I TSO-C118	TCAS I TSO-C118
ADS-B Capability	TSO-C166b TSO-C195b [Note 1, 2]	TSO-C166b TSO-C195b [Note 1, 2]	TSO-C166b TSO-C195a [Note 2]	TSO-C166b TSO-C195b [Note 1, 2]	TSO-C166b TSO-C195a [Note 2]
Transmit Power	40 Watts	250 Watts	400 Watts	250 Watts	400 Watts
Maximum Range	22 NM	40 NM	40 NM	40 NM	80 NM
# Targets Tracked	45	75	75	75	75

Table 2 GTS Traffic Systems Specifications

- Note 1: GTS 800/820/850 require system software version 3.00 or later for TSO-C166b compliance.
- Note 2: For TSO-C195b compliance, GTS 800/820/850 require system software version 4.00 or later. For TSO-C195a compliance, GTS 825/855 require system software version 3.00 or later.

SECTION 4 SYSTEM COMPONENTS

4.1 System Processor

Each GTS Traffic System includes a system processor. The system processor connects to all of the required and optional antennas, displays, controls, and aircraft interfaces.

Figure 4 GTS System Processor

4.1.1 GTS 800/820/850 System Processors

The GTS 800/820/850 systems use a unique system processor. The GTS 800 system processor is different from a GTS 820 or GTS 850 system processor.

4.1.2 GTS 825/855 System Processor

The GTS 825/855 systems share a common system processor known as the "GTS Processor." The GTS Processor can be configured during installation to be either a GTS 825 TAS or a GTS 855 TCAS I.

GARMIN. 4.2 Antennas

The GTS Traffic Systems use one or two dedicated externally-mounted antennas to transmit transponder interrogations to other aircraft. The same antenna or antennas are used to receive transponder replies and ADS-B broadcasts from other aircraft.

A directional antenna on top of the aircraft is always required and is used to determine the bearing to the intruder aircraft. Interrogations transmitted from the top antenna are directional, which reduces the number of transponders that reply to the interrogation and reduces congestion on the 1090 MHz frequency.

An optional second antenna may be installed on the bottom of the aircraft to improve performance. A bottom mounted antenna adds additional visibility for targets that could be shaded from the top antenna (for example, targets that are underneath the aircraft). The bottom antenna may be a directional antenna or an omni-directional antenna. If a directional antenna is installed on the bottom, it may be used to determine the bearing to the intruder aircraft (omni-directional antenna on a fixed gear airplane may be less than that of the top antenna, due to the presence of the landing gear. Bearing from the bottom antenna on a retractable gear airplane is not used when the landing gear is extended. Interrogations transmitted from the bottom antenna are always omni-directional, regardless of the antenna type.

4.2.1 Directional Antennas

4.2.1.1 GA 58 Directional Antenna

The GA 58 is a directional four-element antenna that may be installed on the top and/or bottom of the aircraft.

Figure 5 GA 58 Directional Antenna

4.2.1.2 Sensor Systems Low-Profile Antenna

Sensor Systems antennas are low-profile directional antennas that may be installed on the top and/or bottom of the aircraft.

Figure 6 Sensor Systems Low-Profile Directional Antenna

Numerous omni-directional (monopole) antennas are suitable for installation on the bottom of the aircraft. Omni-directional antennas cannot determine the bearing to an intruder aircraft.

Figure 7 Bottom-Mounted Omni-Directional (Monopole) Antenna

4.3 External Amplifier

4.3.1 GPA 65 Amplifier Module (GTS 820 & 850 only)

The GPA 65 is a combined Power Amplifier and Low Noise Amplifier that is required for use with the GTS 820 and GTS 850 systems only.

Figure 8 GPA 65 PA/LNA Module

SECTION 5 SYSTEM INTERFACES

The GTS Traffic System includes interfaces to various required and optional aircraft systems.

5.1 Altitude Source

At least one pressure altitude source is required for system operation. The pressure altitude source is compared to the pressure altitude replies from other aircraft to calculate their relative altitudes. Pressure altitude interfaces are available from a serial altitude encoder or digital air data computer.

5.2 Transponder Interface

All GTS Traffic Systems except the GTS 800 require an interface to a compatible Mode S transponder. The transponder interface allows the high-power GTS systems to determine how many TCAS-equipped aircraft are in the area. To reduce frequency congestion, transmit power is adjusted based on the number of other TCAS-equipped aircraft in the area. The GTS 800 systems transmit at a lower power level and do not require a transponder interface.

5.3 Traffic Display

At least one traffic display is required, and multiple traffic displays are supported. The traffic display shows a two-dimensional (top-down) view of traffic that is detected by the GTS system. Bearing, distance, relative altitude, and vertical trend can be depicted on the traffic display. When the ADS-B In function is installed and active, additional data provided by ADS-B (e.g. directionality) is shown on compatible displays. Some traffic displays include integrated controls for selecting the system operating mode and altitude filter. For details on the capabilities of a compatible traffic display, refer to the documentation for that display.

Contact your Garmin dealer to learn which displays are compatible with the GTS systems. Some displays may require the purchase and installation of additional modules and/or software.

5.4 Audio System

The GTS must be interfaced to an audio system so that traffic advisory aural alerts and self-test messages can be heard by the crew.

GARMIN. 5.5 Landing Gear Position

Landing gear position for retractable gear aircraft is interfaced to the GTS system. Landing gear position may be used to mute traffic advisory audio, adjust the sensitivity of traffic alerts, or compensate a bottom directional antenna.

5.6 Radar Altimeter

A radar altimeter may be optionally interfaced to the GTS system. Radar altimeter height may be used to mute traffic advisory audio, adjust the sensitivity of traffic alerts, or filter out traffic targets that are on/near the ground.

5.7 GPS

GPS is an optional interface to the GTS system that can provide position, groundspeed, and altitude (GPS-calculated). GPS input may be used to enable several functions, including ADS-B In, automatic air/ground determination, or calculated height above ground.

5.8 Magnetic Heading

Magnetic heading is an optional interface to the GTS system. Magnetic heading may be used to correct the bearing of traffic targets during turns, and it also aids the ADS-B In function. Magnetic heading interfaces are available from analog gyro systems or digital AHRS.

5.9 Air/Ground Switch

An air/ground switch (e.g. squat or airspeed switch) is an optional interface to the GTS system which may be used for automatic air/ground determination.

5.10 Control Switches

The GTS system supports external switches for selecting the operating mode (operate/standby), initiating a self-test, or canceling/muting traffic advisories. Use of external switches is required with certain traffic displays that do not include integrated controls. External switches, when installed, are a momentary pushbutton type.

SECTION 6 SYSTEM OPERATION

6.1 Operating Modes

The system typically powers up in Standby mode. In Standby mode, the system is powered on, but no traffic surveillance functions are performed.

Operate mode is the normal mode for operations. All active and ADS-B In traffic surveillance functions are performed in Operate mode.

Self-test mode is a manually-selected mode that briefly performs a test of the system. Refer to the self-test section of this guide for additional information.

If the system detects a fault that will prevent normal operation, the system will enter and remain in Fail mode.

6.1.1 Control of Modes

Standby, Operate, and Self-test modes may be manually selected via system controls. When the ADS-B In function is installed and the unit is in Operate mode, the ADS-B in feature can be turned on and off. The controls are either integrated with the traffic display(s) or installed as external control switches.

For display(s) that integrate control of ADS-B In and GTS Modes, configuration can be set to allow ADS-B In feature to be turned on or off while GTS is in Standby. This feature requires display(s) support.

6.2 Traffic Information

The function of the GTS Traffic System is to provide information regarding nearby traffic to the crew. For each traffic target that is tracked by the GTS, the system computes the bearing, range, relative altitude, and vertical trend for the target. Relative altitude and vertical trend are available for targets with altitude reporting capability. When ADS-B data is received for a traffic target, additional information is available such as directionality, ground track, and other identifying information (ICAO address, flight ID, tail number). Traffic information may be available from several sources such as active surveillance, ADS-B, ADS-R, and TIS-B. The GTS correlates data from multiple sources to create a single, fused traffic picture for the flight crew. This traffic information is displayed to the crew on an interfaced display. See the display device Pilot Guide for the display capabilities and symbology (Table 3) used on that display. Figure 9 shows an example traffic display showing range, bearing, relative altitude, and vertical trend. Figure 10 shows an example traffic display capable of showing additional data received via ADS-B.

Intruder Altitude and Vertical Trend

Figure 9 Example Traffic Display

6.2.1 No-Bearing TAs

If the bearing of a TA target cannot be determined, a No-Bearing TA will be issued (Figure 9). No-Bearing TAs are typically displayed as a yellow text banner on the traffic display. The text typically includes "TA" followed by the distance, relative altitude, and vertical trend arrow. Relative altitude and vertical trend arrow are not available for targets that do not report altitude.

* Indicates Multiple Targets. Touch the target to show all targets. Then touch Next to get info on each of the targets.

Figure 10 Example Traffic Display

NOTE: Always refer to the traffic display documentation for details on how traffic information is depicted on each display.

Symbol	Description
\mathbf{A}	Traffic Advisory with directional information. Points in the direction of the intruder aircraft track.
	Traffic Advisory without directional information. Traffic Advisory (TA) targets are typically displayed as a yellow circle and are generated when the GTS predicts that a target may pose a collision threat. Traffic Advisory sensitivity, criteria, and types are described in the following sections.
	Traffic Advisory out of the selected display range. Displayed at outer range ring at proper bearing. If a TA is beyond the currently-selected traffic display range, it is typically shown with a half-circle icon at the edge of the display range. Refer to the traffic display documentation for details regarding off- scale TA depictions.
٨	Proximity Advisory with directional information. Points in the direction of the aircraft track.
	Proximity Advisory (PA) without directional information. PA targets are typically displayed as a solid diamond. PAs are defined as traffic within 6 NM horizontally and 1200 feet vertically that are not a Traffic Advisory.
\land	Non-threat traffic with directional information. Points in the direction of the intruder aircraft track.
\diamond	Non-threat traffic without directional information. Other Traffic (OT) targets are typically displayed as a hollow diamond and do not meet the criteria for any other traffic type.
	Traffic located on the ground with directional information. Points in the direction of the aircraft track. Ground traffic is only displayed when ADS-B is in Surface (SURF) Mode or own aircraft is on the ground.
	Ground traffic without directional information. Ground traffic is only displayed when ADS-B is in Surface (SURF) Mode or own aircraft is on the ground.

Symbol	Description
	Non-aircraft ground traffic. Ground traffic is only displayed when ADS-B is in Surface (SURF) Mode or own aircraft is on the ground.

Table 3 GTS Traffic Symbology

6.3 ADS-B In Applications - SURF, AIRB

When the ADS-B In function is installed and the GTS is interfaced to a certified compatible display unit, ADS-B display is available for the flight crew's situational awareness and to enhance the visual acquisition of surrounding traffic. The GTS is capable of supporting two display "modes:" Airborne Situational Awareness (AIRB) and Surface Situational Awareness (SURF).

AIRB is in operation in the en route environment, outside of five NM from or more than 1,500 feet above the nearest airport. AIRB supports the flight crew's situational awareness and visual acquisition of surrounding airborne traffic (see Figure 10).

SURF is in operation within the terminal environment (within five NM and less than 1,500 feet above field elevation). When SURF is active, and the zoom scale on the traffic display is less than two NM, the airport environment (including taxiways and runways) is displayed in addition to traffic. This is to aid in situational awareness of runway occupancy/availability, etc (see Figure 11).

Figure 11 Example Traffic Display

6.4 Traffic Alerting

GTS provides visual and aural alerts to assist in visually acquiring traffic. Aural and visual alerts are provided as a Traffic Advisory (TA) for conflicting traffic. A TA is generated based on range and altitude closure rate (time until collision) or if the intruder aircraft encroaches within a minimum distance.

When an intruder aircraft is tracked with active surveillance, TAS/TCAS I alerting is used for that aircraft. If an intruder cannot be tracked with active surveillance but is tracked by ADS-B In, then ADS-B alerting is used for that aircraft. Intruder aircraft can only be tracked by ADS-B In when ADS-B In is installed and operating.

NOTE: The GTS Traffic System does not provide the ADS-B Traffic Awareness System (ATAS) application defined by TSO-C195b.

6.4.1 TAS/TCAS I Alerting

6.4.1.1 Sensitivity Level

To prevent nuisance TAs in the airport environment, there are two sensitivity levels available: Sensitivity Level A (SL A) and Sensitivity Level B (SL B). The Sensitivity Level determines what criteria will be used for TAs. SL A is less sensitive and traffic must be closer before it will generate an alert. SL B is more sensitive and traffic may be farther away to generate an alert. The logic for choosing the sensitivity level is based on available system inputs. If none of the inputs described below are available, the system will always remain in the most sensitive level, SL B.

6.4.1.1.1 Height Above ground

If the aircraft is equipped with a radar altimeter, it will be used as the source of height above ground. If the aircraft is not equipped with a radar altimeter, calculated height above ground (see below) will be used. SL A will be used when the height above ground is less than 2,000 feet. SL B will be used when the height above ground is greater than 2,000 feet.

NOTE: Calculated Height Above Ground is used for sensitivity level selection in GTS 800, GTS 820, and GTS 850 systems with software version 4.00 and later; and in GTS 825 and GTS 855 systems with system software version 3.00 and later. In earlier software versions, only radar altimeter is used for sensitivity level selection.

6.4.1.1.2 Landing Gear Position

If the aircraft has retractable landing gear, SL A will be used when the landing gear is extended. SL B will be used when the landing gear is retracted. Landing gear position does not affect sensitivity level if height above ground is available.

6.4.1.1.3 Groundspeed

GPS groundspeed may be used to select the sensitivity level only if height above ground and landing gear position is not available. SL A will be used when the groundspeed is less than 120 knots. SL B will be used when the groundspeed is greater than 120 knots.

6.4.1.1.4 No Available Inputs

If none of the above inputs are available (radar altimeter, calculated height above ground, landing gear position, or groundspeed), the system will always remain in the most sensitive level, SL B.

6.4.1.2 TA Criteria

Targets may become a TA based on closure rate (time until collision) or if they encroach within a minimum distance. The criteria used depend on the current sensitivity level and whether the target has altitude reporting capability. Once a TA is generated, it will remain a TA for at least 8 seconds, even if the target no longer satisfies the criteria for a TA. Table 4 summarizes the criteria used for TAs.

Sensitivity Level	Intruder Altitude Available	TA Alerting Conditions
A	Yes	Intruder closing rate provides less than 20 seconds of vertical and horizontal separation. Or: Intruder closing rate provides less than 20 seconds of horizontal separation and vertical separation is within 600 feet. Or: Intruder range is within 0.2 NM and vertical separation is within 600 feet.
A	No	Intruder closing rate provides less than 15 seconds of separation or intruder range is within 0.2 NM.
В	Yes	Intruder closing rate provides less than 30 seconds of vertical and horizontal separation. Or: Intruder closing rate provides less than 30 seconds of horizontal separation and vertical separation is within 800 feet. Or: Intruder range is within 0.55 NM and vertical separation is within 800 feet.
В	No	Intruder closing rate provides less than 20 seconds of separation or intruder range is within 0.55 NM.

Table 4 TA Alerting Criteria

GARMIN. 6.4.2 ADS-B In Alerting

To be tracked with active surveillance, an intruder aircraft must receive interrogations and transmit replies. If the intruder aircraft does not detect interrogations (e.g. it is too far to receive interrogations), it cannot be tracked by GTS active surveillance. When ADS-B In is installed and active, GTS may receive ADS-B, ADS-R, or TIS-B for an intruder aircraft that can't be tracked with active surveillance. Such targets are tracked with ADS-B In only, and are included in the display of traffic. GTS will also generate alerts for targets tracked with ADS-B In only.

6.4.2.1 Sensitivity Level

As with TAS/TCAS I TA implementations, height above ground is used to adjust the sensitivity of the ADS-B In alerting algorithm. Radar Altitude (if available), Calculated Height Above Ground, and ownship altitude are used to adjust the sensitivity of the ADS-B In alerting algorithm in accordance with Table 5:

Sensitivity Level	Height Above Airport (HAA) (feet)	Radar Altitude (feet)	Height Above Terrain (HAT) (if available)*	Ownship Altitude (feet)
4	≤ 1,500 and w/in 5 NM of airport reference point	Any	Any	Any
4	Unavailable	≤ 1,500	Any	Any
4	Unavailable	Unavailable	≤ 1,500	Any
5	Unavailable or > 1,500	Unavailable or > 1,500	Unavailable or > 1,500	≤ 5,000
6	Unavailable or > 1,500	Unavailable or > 1,500	Unavailable or > 1,500	> 5,000 and $\leq 10,000$
7	Unavailable or > 1,500	Unavailable or > 1,500	Unavailable or > 1,500	> 10,000 and \leq 20,000
8	Unavailable or > 1,500	Unavailable or > 1,500	Unavailable or > 1,500	> 20,000

Table 5 Alerting Thresholds for ADS-B Traffic

GARMIN.

6.4.2.2 TA Criteria

Targets may become a TA based on closure rate (time until collision) or if they encroach within a minimum distance. The criteria used depends on the current sensitivity level. Once a TA is generated, it will remain a TA for at least 5 seconds, even if the target no longer satisfies the criteria for a TA. Table 6 summarizes the criteria used for TAs.

Sensitivity Level	TA Alerting Conditions
4	Within the next 30 seconds, intruder range and relative altitude are predicted to be within 0.20 NM and 400 ft.
5	Within the next 35 seconds, intruder range and relative altitude are predicted to be within 0.35 NM and 700 ft.
6	Within the next 40 seconds, intruder range and relative altitude are predicted to be within 0.55 NM and 700 ft.
7	Within the next 45 seconds, intruder range and relative altitude are predicted to be within 0.80 NM and 700 ft.
8	Within the next 48 seconds, intruder range and relative altitude are predicted to be within 1.10 NM and 700 ft.

Table 6 TA Alerting Conditions

6.4.3 TA Aural Alerts

When a target becomes a TA, an aural alert message is played to advise the crew. The aural alert may include an ATC-description of the target's bearing, altitude, and distance. For example, "Traffic! One o'clock, High, Two miles."

The aural alert format is shown in Table 7:

Bearing	Relative Altitude	Distance
"One o'clock" through "Twelve o'clock" or "No Bearing"	"High", "Low", "Same Altitude" (if within 200 feet of own altitude), or "Altitude not available"	"Less than one mile", "One Mile" through "Ten Miles", or "More than ten miles"

Table 7 Aural Alerts

Optionally, TA aural alerts may be shortened under some circumstances. A TA aural alert may be shortened to "Traffic, Traffic!" in the following cases:

- Another TA is already present, or
- The range to the TA target is less than 0.25 NM

NOTE: Shortened TA aural alerts are currently only available in GTS 800, GTS 820, and GTS 850 systems with system software version 4.00 or later, and GTS 825 and GTS 855 systems with system software version 2.20 or later.

6.4.3.1 TA Aural Muting

TA aural alerts may be muted or canceled under some circumstances. Muting or canceling of the TA aural alert does not affect the visual display of the TA.

6.4.3.1.1 Height Above Ground

If the aircraft is equipped with a radar altimeter, all TA aural alerts will be muted when the height above ground is less than 400 feet.

6.4.3.1.2 Landing Gear Position

If the aircraft has retractable landing gear, all TA aural alerts will be muted when the landing gear is extended. Landing gear position does not mute TA aural alerts if height above ground is available.

6.4.3.1.3 TAWS/Windshear Alerts

TA aural alerts may be temporarily muted by higher-priority aural alerts, such as TAWS or windshear. The TA aural alert will resume when the higher-priority aural alert is no longer active.

6.4.3.1.4 External Switch

A TA aural alert may be canceled with an optional momentary pushbutton switch. Pressing this switch during a TA aural alert will cancel/mute that aural alert. Subsequent TA aural alerts will be played, and the switch must be pressed each time that it is desired to cancel/mute a TA aural alert.

6.5 Ownship Air/Ground Detection

Optional external interfaces can be used to determine whether the ownship is on the ground or in the air. Interfaces that may be used for determining the air/ground state include:

- An air/ground switch (e.g. squat or airspeed switch).
- GPS groundspeed. Greater than 35 knots indicates in air, and less than 30 knots indicates on ground.
- Air/ground message from a Garmin avionics system.

Ownship air/ground detection is used for the automatic mode switching and calculated height above ground features.

6.5.1 Automatic Mode Switching

The system can automatically switch between Operate and Standby modes based on whether the ownship is in the air or on the ground. The system will automatically select Operate mode 8 seconds after becoming airborne. Standby mode will automatically be selected 24 seconds after landing.

For GTS 800, GTS 820, and GTS 850 systems using SW v4.10 or later or GTS 825 and GTS 855 systems using SW v3.10 or later, when a Pressure Altitude fault clears, the GTS unit will go into Operate mode if it was operating prior to the fault.

6.6 Calculated Height Above Ground

For aircraft that are not equipped with a radar altimeter, the system can calculate the height above ground using information from various optional interfaces. This calculation can enable additional functionality (such as ground traffic filtering), without requiring a radar altimeter interface.

NOTE: The Calculated Height Above Ground feature is only available in GTS 800, GTS 820, and GTS 850 systems with system software version 4.00 or later; and only available in GTS 825 and GTS 855 systems with system software version 2.20 or later.

Height above ground can be calculated using data provided by a connected display. If provided by the display, the GTS can use Height Above Terrain provided by a display's TAWS function, or it can calculate height above ground using altitude data provided for nearby airports.

NOTE: Height above ground data from a connected display can only be used by GTS 800, GTS 825, and GTS 855 systems with system software version 4.00 and later; or by GTS 825 and GTS 855 systems with system software version 3.00 and later.

Height above ground can be calculated using an internal airport database and optional 3-D GPS interface. The system's internal airport database contains locations and elevations for airports throughout the world. By comparing the 3-D GPS position and altitude to the airport database, the ownship's height above ground can be calculated. If GPS altitude is not available, 2-D GPS input (position only) can be used along with baro-corrected altitude from an air data computer to perform the calculation.

Additionally, if the system has detected that it is on the ground, the onground position and pressure altitude will be used as a known ground reference point. If GPS position is not available, the on-ground altitude will still be used as a reference point as long as the ownship is on the ground and for up to 60 seconds after takeoff.

GARMIN. 6.7 Ground Traffic Filtering

To reduce nuisance alerts and reduce traffic display clutter, traffic that is on or near the ground may not be shown on the traffic display or generate traffic alerts. When ADS-B In is installed and the SURF application is active, on-ground traffic may be displayed. On-ground traffic will be shown on compatible displays using distinct symbols if the traffic is tracked using ADS-B In. See the display device Pilot Guide for the capabilities and symbology used on that display. On-ground traffic will not generate alerts. There are several methods used for filtering out ground traffic.

6.7.1 Mode S Targets

Mode S transponders include in their replies an indication of whether the aircraft is on the ground or in the air. Mode S traffic that indicates the traffic is on the ground will not be displayed unless SURF is active and the target is tracked with ADS-B In. This is the only method used to determine whether Mode S traffic is on the ground.

NOTE: The system does not indicate to the crew which traffic targets are Mode S equipped.

6.7.2 Radar Altimeter

Radar altitude, if available, may be used to determine which traffic targets are on the ground. For example, if the current radar altitude is 1000 feet, then traffic with a relative altitude of -1000 feet would be considered to be on the ground and would not be displayed unless SURF is active and the target is tracked with ADS-B In. Ground traffic is only filtered when the radar altitude is less than 1,700 feet.

6.7.3 Calculated Height Above Ground

If radar altitude is not available, calculated height above ground may be used to filter out ground traffic. Calculated height above ground is used similarly to how radar altitude is used. Ground traffic is only filtered when the calculated height above ground is less than 1,700 feet.

6.8 Self-Test

NOTE: Traffic surveillance is not available during the self-test.

The self-test mode is used to verify that the system is functioning normally. Self-test must be manually initiated from the Standby mode and takes approximately ten seconds to complete. During the self-test, a pattern of traffic symbols is shown on the traffic display. The test pattern consists of the following traffic:

- A Traffic Advisory at 9 o'clock, 2 miles, 200 feet below and climbing. There is no Traffic Advisory aural alert for this test traffic.
- A Proximity Advisory at approximately 1 o'clock, 3.6 miles, 1000 feet below and descending.
- Other Traffic at approximately 11 o'clock, 3.6 miles, 1000 feet above and level.

Figure 12 Self-Test Mode

If the self-test is successful, the aural announcement "[TAS / TCAS I] System Test Passed" (depending on the system type) will be played. If the self-test is unsuccessful, the aural announcement "[TAS / TCAS I] System Test Failed" will be played.

The system may be installed so that the self-test cannot be initiated while airborne.

7.1 What are the benefits of ADS-B?

ADS-B data contains additional information about a target aircraft including flight ID, latitude, longitude, barometric and geometric altitude, velocity, and direction. The additional data provided by ADS-B can be shown on a compatible display to enhance flight crew situational awareness of traffic.

7.2 When is ADS-B In available?

ADS-B In functionality is available when the feature is enabled via configuration settings during equipment installation. When installed, the feature can be enabled or disabled by the flight crew when the GTS system is in Operate mode. A compatible display is required to allow pilot control of ADS-B In and display of additional ADS-B In data for intruder aircraft.

7.3 How are active and ADS-B In targets displayed?

Refer to the traffic display documentation to determine the capabilities of each display.

7.4 What capabilities does GPS data provide?

GPS data is required for the ADS-B In feature. GPS data is also used in some installations for air/ground detection, automatic mode switching, and calculated height above ground.

GPS data is optional and the system can provide active traffic surveillance with or without GPS data.

7.5 What kind of transponder is required for use with the GTS Traffic System?

All installations except the GTS 800 require the use of a compatible Mode S transponder. The transponder provides an indication of how many other TCAS-equipped aircraft are nearby, so that the GTS traffic system can adjust its transmit power and reduce frequency congestion.

The GTS 800 does not require a transponder interface (regulatory requirements for transponder usage still apply).

7.6 Is ADS-B Out required with the GTS Traffic System?

No. The ADS-B In feature uses ADS-B, ADS-R, and TIS-B, but the ownship is not required to be equipped with ADS-B Out.

GARMIN. SECTION 8 GLOSSARY

Active Surveillance:	Tracking of traffic targets using aircraft transponders
ADS-B:	Automatic Dependent Surveillance – Broadcast
ADS-B IN:	Traffic Surveillance using position and state data received from ADS-B, ADS-R, and TIS-B messages.
ADS-R:	Automatic Dependent Surveillance - Rebroadcast
ASA:	Aircraft Surveillance Applications
ATCRBS:	Air Traffic Control Radio Beacon Service - A surveillance system that uses active interrogations and Mode A/C replies from transponders
GPS:	Global Positioning System
MHz:	MegaHertz - A unit of measure for radio frequency
Mode A:	A type of ATCRBS transmission which requests (via Mode A interrogations) or reports (via Mode A replies) aircraft identity information
Mode C:	A type of ATCRBS transmission which requests (via Mode C interrogations) or reports (via Mode C replies) aircraft altitude information
Mode S:	A type of secondary surveillance radar transmission which contains a unique 24-bit discrete address, thus allowing interrogations to be addressed to individual aircraft. Mode S transmissions can be short (56 bits) or long (112 bits), with long transmissions containing a 56-bit "message" field.
NM:	Nautical Mile
OT:	Other Traffic (other than TA or PA traffic)
PA:	Proximity Advisory
TA:	Traffic Advisory
TAS:	Traffic Advisory System
TCAS:	Traffic Alert and Collision Avoidance System
TIS-B:	Traffic Information Service - Broadcast

This page intentionally left blank

© 2017 GARMIN Corporation

GARMIN International, Inc. 1200 East 151st Street, Olathe, Kansas 66062, U.S.A.

Garmin AT, Inc. 2345 Turner Rd., S.E., Salem, Oregon 97302, U.S.A.

Garmin (Europe) Ltd. Liberty House, Hounsdown Business Park, Southampton, Hampshire SO40 9LR, U.K.

GARMIN Corporation No. 68, Jangshu 2nd Road, Xizhi District, New Taipei City, Taiwan

www.garmin.com

Part Number 190-00587-02 Rev. D