

G1000 System Maintenance Manual

Diamond DA 40

© Copyright 2007 Garmin Ltd. or its subsidiaries All Rights Reserved

Except as expressly provided herein, no part of this manual may be reproduced, copied, transmitted, disseminated, downloaded or stored in any storage medium, for any purpose without the express prior written consent of Garmin. Garmin hereby grants permission to download a single copy of this manual and of any revision to this manual onto a hard drive or other electronic storage medium to be viewed and to print one copy of this manual or of any revision hereto, provided that such electronic or printed copy of this manual or revision must contain the complete text of this copyright notice and provided further that any unauthorized commercial distribution of this manual or any revision hereto is strictly prohibited.

Garmin International, Inc. 1200 E. 151st Street Olathe, KS 66062 USA Telephone: 913-397-8200 <u>www.garmin.com</u>

Garmin (Europe) Ltd. Unit 5, The Quadrangle Abbey Park Industrial Estate Romsey, SO51 9DL U.K. Telephone: 44/1794.519944

RECORD OF REVISIONS

Revision	Revision Date	Description	ECO #
1	06/04/04	Experimental Release	
2	6/17/04	Update for STC	26291
3	6/21/04	Update AW Limitations, Add Document Pagination Table.	26344
4	8/24/04	Update for new GTX 33 SW	27110
5	9/3/04	Update for optional KAP 140 AFCS	27244
6	1/25/07	Update GDC Testing Process	42752

DOCUMENT PAGINATION

Section	Pagination
Table of Contents	i – vi
Section 1	1-1 — 1-4
Section 2	2-1 – 2-26
Section 3	3-1 – 3-12
Section 4	4-1 – 4-12
Section 5	5-1 – 5-24
Section 6	6-1 – 6-8
Section 7	7-1 – 7-34
Section 8	8-1 – 8-4
Appendix A	A-1 – A-6
Appendix B	B-1 – B-16

INFORMATION SUBJECT TO EXPORT CONTROL LAWS

This document may contain information which is subject to the Export Administration Regulations ("EAR") issued by the United States Department of Commerce (15 CFR, Chapter VII, Subchapter C) and which may not be exported, released, or disclosed to foreign nationals inside or outside of the United States without first obtaining an export license. A violation of the EAR may be subject to a penalty of up to 10 years imprisonment and a fine of up to \$1,000,000 under Section 2410 of the Export Administration Act of 1979. Include this notice with any reproduced portion of this document.

WARNING

This product, its packaging, and its components contain chemicals known to the State of California to cause cancer, birth defects, or reproductive harm. This Notice is being provided in accordance with California's Proposition 65. If you have any questions or would like additional information, please refer to our web site at <u>www.garmin.com/prop65</u>.

CAUTION

The GDU 1040s use a lens coated with a special anti-reflective coating that is very sensitive to skin oils, waxes and abrasive cleaners. CLEANERS CONTAINING AMMONIA WILL HARM THE ANTI-REFLECTIVE COATING. It is very important to clean the lens using a clean, lint-free cloth and an eyeglass lens cleaner that is specified as safe for anti-reflective coatings.

CAUTION

All G1000 screen shots used in this document are current at the time of publication. Screen shots are intended to provide visual reference only. All information depicted in screen shots, including software file names, versions and part numbers, is subject to change and may not be up to date.

This page intentionally left blank.

TABLE OF CONTENTS

PARAGRAPH

1	INTRODUCTION	
1.1	CONTENT, SCOPE, PURPOSE	
1.2	ORGANIZATION	
1.3	DEFINITIONS/ABBREVIATIONS	
1.4	REFERENCE PUBLICATIONS	
1.5	DISTRIBUTION	
2	SYSTEM DESCRIPTION	
2.1	EOUIPMENT DESCRIPTIONS	
2.2	EOUIPMENT LOCATIONS	
2.3	REMOTE A VIONICS ENCLOSURE	2-9
2.4	ELECTRICAL POWER DISTRIBUTION	2-11
2.5	LIGHTNING STRIKE PROTECTION	2-12
2.6	SPIDER GROUNDS	2-16
27	SENSOR INSTALLATIONS	2-17
2.8	G1000 System Communications	
3	G1000 CONTROL & OPERATION	
31	USER INTERFACE	3_2
3.1	G1000 NORMAL MODE	3_3
33	REVERSIONARY MODE	3-4
3.5	CONFICURATION MODE OVERVIEW	3_5
3.5	CONFIGURATION MODE OVERVIEW	3-11
1		
4	GI000 CONTINUED AIRWORTHINESS	4.1
4.1	AIRWORTHINESS LIMITATIONS	
4.2	SERVICING INFORMATION	
4.3	ON CONDITION SERVICING	
4.4	MAINTENANCE REQUIREMENTS	
4.5	1000 HOUR INSPECTION	
4.6	ELECTRICAL BONDING TEST.	
4.7	FUEL TANK PROBE RE-CALIBRATION	
4.8	GRS // EARTH MAGNETIC FIELD UPDATES	
5	TROUBLESHOOTING	
5.1	G1000 ALERTING SYSTEM	
5.2	SYSTEM ANNUNCIATIONS	5-4
5.3	DA 40-SPECIFIC ALERTS	
5.4	GDU 1040 TROUBLESHOOTING	
5.5	GDU 1040 ALERTS	
5.6	GMA ALERTS	
5.7	GIA 63 TROUBLESHOOTING	
5.8	GIA ALERT MESSAGES	
5.9	GEA TROUBLESHOOTING	
5.10	GIX TROUBLESHOOTING	
5.11	GRS ///GMU 44 TROUBLESHOOTING	
5.12	GDU /4A I ROUBLESHOOTING	
6	G1000 EQUIPMENT REMOVAL & REPLACEMENT	
6.1	GDU 1040 MFD & PFD	
6.2	GMA 1347 AUDIO PANEL	
6.3	GIA 63 INTEGRATED AVIONICS UNITS	
G10	00/DA40 System Maintenance Manual	Page iii

6.4	GEA 71 ENGINE/AIRFRAME UNIT	
6.5	GTX 33 TRANSPONDER	
6.6	GDC 74A AIR DATA COMPUTER	
6.7	GTP 59 OAT PROBE	
6.8	GRS 77 AHRS	
6.9	GMU 44 MAGNETOMETER	
6.10	CONFIGURATION MODULE REMOVAL & REPLACEMENT	
6.11	GEA 71 BACKSHELL THERMOCOUPLE REMOVAL & REPLACEMENT	
7	G1000 EQUIPMENT CONFIGURATION & TESTING	
7.1	GDU 1040 MFD & PFD	
7.2	GMA 1347 AUDIO PANEL	
7.3	GIA 63 INTEGRATED AVIONICS UNIT	
7.4	GEA 71 Engine/Airframe Unit	
7.5	GTX 33 TRANSPONDER	
7.6	GDC 74A AIR DATA COMPUTER	
7.7	GRS 77 AHRS / GMU 44 MAGNETOMETER	
7.8	SOFTWARE/CONFIGURATION TROUBLESHOOTING	
8	SYSTEM RETURN TO SERVICE PROCEDURE	
8.1	GPS FAILURE TEST	
8.2	GIA FAILURE TEST	
8.3	Display Failure Test	
8.4	AHRS/ADC BACKUP PATH TEST	
8.5	Flight Test	
8.6	MAINTENANCE RECORDS	
APPI	ENDIX A INSTALLATION DATA	
A.1	G1000 Equipment List	A-1
A.2	Additional Equipment Required	
A.3	Optional Equipment	
A.4	PARTS LIST	
A.5	WEIGHT & BALANCE	A-5
APPI	ENDIX B G1000 SOFTWARE/CONFIGURATION PROCEDURE	
B.1	System Power Up	B-2
B.2	MFD & PFD SOFTWARE LOAD	B-3
B.3	Initial G1000 Configuration	B-4
B.4	GIA SOFTWARE LOAD	B-5
B.5	GIA CONFIGURATION	B-7
B.6	FINAL LRU SOFTWARE LOAD	
B.7	FINAL LRU CONFIGURATION	B-14
B.8	SOFTWARE LOAD CONFIRMATION	B-15
B.9	AVIATION DATABASE LOADING	B-16
B.10	FINAL SYSTEM TESTING	B-16

LIST OF ILLUSTRATIONS

FIGURE	PAGE
Figure 2-1. G1000 / DA 40 Panel Installation	2-2
Figure 2-2. DA40 Panel (Rear View)	2-4
Figure 2-3. GTP 59 OAT Probe	2-5
Figure 2-4. GRS 77 Mount	2-6
Figure 2-5. GMU 44 Installation.	2-7
Figure 2-6. G1000 in DA 40 Equipment Locations	2-8
Figure 2-7. Remote Avionics Enclosure	2-9
Figure 2-8. G1000/DA40 Electrical Distribution	2-11
Figure 2-9. TVS & Fuse Installation	2-12
Figure 2-10. Lightning Protection Components	2-13
Figure 2-11. Component Plate Dimensions	2-13
Figure 2-12. Component Wiring Diagram	2-14
Figure 2-13. SPIDER Ground Installation	2-16
Figure 2-14. MAP Sensor	2-17
Figure 2-15. Oil Pressure Sensor	2-17
Figure 2-16. Oil Temperature Sensor	2-18
Figure 2-17. Fuel Pressure Sensor	2-18
Figure 2-18. Tachometer Sensor	2-19
Figure 2-19. Fuel Flow Sensor & Fire Sleeve	2-19
Figure 2-20. Fuel Flow Assembled	2-20
Figure 2-21. Fuel Flow Bracket	2-20
Figure 2-22. CHT Probe	2-21
Figure 2-23. EGT Probe	2-21
Figure 2-24. Alternator Current Sensor Installation	2-22
Figure 2-25. Flight Instrumentation Interface	2-23
Figure 2-26. G1000 Engine/Airframe Interface	2-24
Figure 2-27. G1000 Navigation/Communications	2-25
Figure 3-1. GDU 1040 Control Interface	3-1
Figure 3-2. GMA 1347 Controls	3-1
Figure 3-3. G1000 Softkeys	3-2
Figure 3-4. Normal Mode	3-3
Figure 3-5. MFD Failure Mode	3-4
Figure 3-6. PFD Failure Mode	3-4
Figure 3-7. G1000 LRU Configuration File Storage	3-7
Figure 3-8. GRS/GDC Configuration Settings Storage	3-8
Figure 3-9. SET>ACTV Diagram	
Figure 3-10. Loss of Communication	
Figure 3-11. Configuration Status.	
Figure 3-12. Data Transmission Indicators	
Figure 3-13. Configuration Page Navigator.	
Figure 5-1. System Status Page (AUX Group Normal Mode)	
Figure 5-2. Alerts & Annunciations.	
Figure 5-3. WARNING Softkey Annunciation	
Figure 5-4. CAUTION Softkey Annunciation	
Figure 5-5. ADVISORY Softkey Annunciation	
Figure 5-6. System Annunciations.	
Figure 5-7. GMA 1347 Data Paths	
Figure 5-8. GEA /I Data Paths	
Figure 5-9. GTX 33 Data Paths	
Figure 5-10. GRS 77 Data Paths	5-22

Figure 5-11. GDC 74A Data Paths	
Figure 6-1. System Status Page (Configuration Mode)	6-1
Figure 6-2. Configuration Module Installation	6-6
Figure 6-3. GEA Backshell Thermocouple	6-7
Figure 7-1. G1000 Normal Mode Check	7-4
Figure 7-2. G1000 Reversionary Mode Check	7-4
Figure 7-3. Marker Beacon Symbology	7-7
Figure 7-4. GPS Signal Status	7-11
Figure 7-5. G1000 Engine/Airframe Indicators	7-16

LIST OF TABLES

TABLE	I	PAGE
Table 1-1.	Required Documents	1-3
Table 1-2.	Reference Documents	1-3
Table 4-1.	Required Maintenance	4-3
Table 4-2.	1000 Hour Inspection Procedure	4-5
Table 6-1.	Thermocouple Kit (011-00981-00)	6-7

1 INTRODUCTION

1.1 Content, Scope, Purpose

This document provides Instructions for Continued Airworthiness (ICA) for the Garmin G1000 Integrated Cockpit avionics suite as installed in the Diamond Model DA 40 in accordance with the STC issued under FAA STC SA01254WI. This document satisfies the requirements for continued airworthiness as defined by 14 CFR Part 23.1529 and Appendix G. Information in this document is required to maintain the continued airworthiness of the G1000 integrated cockpit system, as installed in the Diamond DA 40.

1.1.1 Applicability

This document applies to all Diamond Aircraft Industries, Inc., Model DA 40 aircraft equipped with the G1000 cockpit installed in accordance with the STC issued under FAA STC SA01254 "original issue" configuration. G1000 System Maintenance Manual – Diamond DA40 190-00545-00 applies to later configurations.

1.2 Organization

The following outline briefly describes the organization of this manual:

Section 2: System Description

Provides a complete description of the type design change associated with installing the G1000 integrated cockpit system in the Diamond DA 40. An overview of the G1000 system interface is also provided.

Section 3: G1000 Control & Operation

Presents basic control and operation information specifically tailored to maintenance practices. Basic G1000 Configuration Mode operation is also described.

Section 4: G1000 Continued Airworthiness

Provides maintenance instructions for continued airworthiness of the G1000 system.

Section 5: Troubleshooting

Provides troubleshooting information to aid in diagnosing and resolving potential problems with the G1000 system.

<u>Section 6: G1000 Equipment Removal & Replacement</u> Gives instructions for the removal and replacement of G1000 equipment.

Section 7: G1000 Equipment Configuration & Testing

Gives instructions for loading software, configuring, and testing of G1000 equipment.

Section 8: System Return to Service Procedure

Specifies return-to-service procedures to be performed upon completion of maintenance of the G1000 system.

Appendix A: Installation Data

Gives a complete equipment/parts list and weight/balance data for the G1000 installation in the Diamond DA 40.

Appendix B: G1000 Software/Configuration Procedure

Provides a complete software/configuration loading procedure in cases where the G1000 system as a whole requires complete software/configuration update or reload. This is given in addition to individual LRU configuration instructions presented in Section 7.

1.3 Definitions/Abbreviations

- ADI: Attitude Display Indicator
- AHRS: Attitude Heading Reference System
- AMM: Airplane Maintenance Manual
- CDU: Control Display Unit
- CFR: Code of Federal Regulations
- EAU: Engine/Airframe Unit
- EIS: Engine Instrumentation Systems
- HIRF: High Intensity Radiated Fields
- HSDB: High-Speed Data Bus (Ethernet)
- IAU: Integrated Avionics Unit
- ICS: Inter-Com System
- LRU: Line Replaceable Unit
- MFD: Multi-Function Flight Display
- OAT: Outside Air Temperature
- PFD: Primary Flight Display
- STC: Supplemental Type Certificate
- S/W: Software
- TC: Type Certificate
- TSO: Technical Standard Order
- TVS: Transient Voltage Suppressor
- VHF: Very High Frequency

1.3.1 Units of Measure

Unless otherwise stated, all units of measure are English units.

1.4 Reference Publications

The following documents are required by this maintenance manual to perform maintenance:

Document	Garmin Part Number
G1000 Cockpit Reference Guide for DA40	190-00324-00
G1000/DA 40 Airplane Flight Manual Supplement	190-00303-02
Diamond DA 40 Wiring Diagram	Diamond P/N:
	DA4-9231-60-1
Diamond DA 40 Airplane Maintenance Manual	Diamond P/N
	6.02.01 (Rev. 4 or later)

Table 1-1. Required Documents

The following documents provide additional information above and beyond the scope of this document:

Table 1-2.	Reference	Documents
------------	-----------	-----------

Document	Garmin Part Number
G1000/DA 40 Master Drawing List	005-C0004-00
G1000/DA 40 Required Equipment List	005-00149-28
G1000/DA 40 Install Drawing	005-00149-01
G1000/DA 40 Post Installation Checkout Procedure	190-00303-06
G1000 Configuration Manual	190-00303-04
Aircraft Fastener Assembly Torque	005-00249-00
Aircraft Contact and Terminal Crimping	005-00249-01
Heat Shrink Tubing Application	005-00249-02
Aircraft Soldering	005-00249-03

1.5 Distribution

This document is to be a permanent aircraft record and is distributed with a new G1000-equipped Diamond DA 40. Revisions to this document will be made by Garmin and will be distributed by Garmin per standard documentation revision procedures.

This page intentionally left blank.

2 SYSTEM DESCRIPTION

G1000 system installation can be accomplished only after the following Diamond aircraft modifications have been installed:

- OAM 40-061 Autopilot (optional)
- OAM 40-68 Essential Bus
- OAM 40-073/b Slick Start System
- OAM 40-082/b IFR Lightning Protection
- OAM 40-146 Remote Avionics Provisions
 - OAM 40-161/e G1000 Provisions Provisions with KAP 140 AFCS
 - Or OAM 40-196 G1000 Provisions without KAP 140 AFCS
- STC SA1850CH Hartzell Propeller

The G1000 integrated cockpit is installed in the DA 40 using the equipment listed in this section as well as parts listed in Appendix A.

2.1 Equipment Descriptions

2.1.1 GDU 1040 MFD & PFD

Two Garmin GDU 1040 CDUs are installed in the Diamond instrument panel. One is configured as a PFD and the other as a MFD (Configuration is determined by wiring harness). Both displays provide control and display of nearly all functions of the G1000 integrated cockpit system. The displays are located side-by-side with the GMA 1347 Audio Panel located in the middle (See Figure 2-1).

Electrical power to the PFD is from the 'Essential' power bus, whereas the MFD receives power from the 'Main' bus. Therefore, both displays power-up immediately when the aircraft master switch is turned on. To provide proper electrical bonding, beryllium copper 'finger' strips are installed on the lower lip of the display. This provides sufficient contact area to which the displays can be grounded to the airframe.

Both displays are installed in the Diamond panel using built-in ¹/₄-turn fasteners. Each display uses an existing connector per OAM 40-161. The 'GDL 69' and 'WX500' circuit breakers, if installed, are pulled, banded with collars, and associated wires are disconnected and dressed with shrink tube.

Two CDU cooling fans are also installed behind the panel as shown in Figure 2-2.

Figure 2-1. G1000 / DA 40 Panel Installation

2.1.2 GMA 1347 Audio Panel

The Garmin GMA 1347 Audio Panel is a digital audio panel with integrated marker beacon receiver. The GMA 1347 provides control of all cockpit intercom/mic systems as well as NAV/COM/ILS audio. The unit also provides display reversion mode control through a large red button. Power is received from the 'Avionics' bus. The unit only powers up when the avionics master switch is turned on. The GMA 1347 interfaces with the existing marker beacon antenna as well as existing mic and phone jacks.

2.1.3 GIA 63 Integrated Avionics Unit (2)

Two Garmin GIA 63 IAUs provide VHF COM, VHF NAV, GPS NAV and other various navigation functions. GIAs provide communication interface to all other G1000 LRUs in the system. Both GIAs are located remotely beneath the baggage compartment in a sheetmetal enclosure, as shown in Figure 2-6 and Figure 2-7. The #1 GIA is powered through the 'Essential' power bus and immediately powers up when the aircraft master switch is turned on. The #2 GIA receives power through the 'Avionics' bus and powers up when the avionics master switch is turned on. Both GIA 63s interface to the following equipment:

-Existing KAP 140 Flight Control System (GIA 2)
-Existing VOR/LOC/Glideslope Antenna System
- Existing VHF COM 1 & 2 Antennas
- •.....Existing GPS 1 & 2 Antennas

2.1.4 GEA 71 Engine/Airframe Unit

The Garmin GEA 71 Engine/Airframe Unit provides engine/airframe data to the G1000 system. Data received from transducers/sensors is processed, then sent to GIA 63, and subsequently to the GDU 1040 MFD. In display reversionary mode, engine instrumentation is displayed on the PFD as well. The GEA is located behind the instrument panel and is mounted in a vertical orientation as depicted in Figure 2-2 and Figure 2-6. Power is received from the 'Essential' power bus. The GEA interfaces to the following:

- •.....Manifold Pressure Sensor (MAP)
- •.....Oil Pressure Sensor
- •.....Fuel Pressure Sensor
- •.....Tachometer Sensor
- •.....Oil Temperature Sensor
-Fuel Flow Sensor
-4 Cylinder Head Temperature (CHT) Sensors
-4 Exhaust Gas Temperature (EGT) Sensors
- •.....Alternator Current Sensor
- Existing Fuel Probes
-Existing Pitot Heat System
- Existing Open Door Detection Switches
-Existing Starter Engage System

2.1.5 GTX 33 Mode S Transponder

The Garmin GTX 33 provides Mode A, C, and S altitude and position reporting information to the G1000 system. The unit is mounted in the remote avionics enclosure below the baggage compartment (See Figure 2-6 and Figure 2-7). Power is received from the 'Essential' bus. The GTX 33 interfaces with the existing transponder antenna.

Figure 2-2. DA40 Panel (Rear View)

2.1.6 GDC 74A Digital Air Data Computer

The Garmin GDC 74A provides digital air data computations to the G1000 system. The unit is mounted horizontally behind the instrument panel and is fastened to a sheetmetal rack. Power is received from the 'Essential' bus. The GDC 74A connects to existing pitot/static ports as shown in Figure 2-2 and Figure 2-6.

2.1.7 OAT Probe

The Garmin GTP 59 OAT Probe provides the GDC 74A with air temperature data. The OAT probe is mounted to the bottom starboard side of the DA 40 fuselage as shown in Figure 2-3.

2.1.8 GRS 77 Attitude & Heading Reference System

The Garmin GRS 77 AHRS provides attitude and heading information to the G1000 system. The unit is mounted remotely in the baggage compartment, to the starboard side of the remote avionics enclosure (see Figure 2-4 and Figure 2-6). Power is received from the 'Essential' bus. The GRS 77 interfaces with and provides power to the GMU 44 Magnetometer. The GRS 77 supplies attitude and heading information directly to the PFD, MFD, and to both GIAs.

2.1.9 GMU 44 Magnetometer

The GMU 44 provides horizontal and vertical magnetic field information to the GRS 77 AHRS. This allows heading to be calculated and provides assistance during AHRS alignment. The GMU 44 is mounted beneath the starboard wing as shown in Figure 2-5 and Figure 2-6.

Figure 2-5. GMU 44 Installation

Figure 2-6. G1000 in DA 40 Equipment Locations

2.3 Remote Avionics Enclosure

A remote avionics enclosure allows LRUs to be inserted vertically, from above. The enclosure is also cooled with an avionics fan and duct assembly as shown in Figure 2-6 and Figure 2-7. The enclosure is installed as shown in Figure 2-7. The assembly is grounded to an existing grounding station using a field-fabricated aluminum ground strap. Two braided grounding straps are also attached to the GRS 77 rack from the enclosure. A Comant diplexer is installed on the enclosure as shown. A field-fabricated component bracket with resistors, voltage suppressors and attached wiring is fastened to the forward portion of the enclosure (see Section 2.5).

Figure 2-7. Remote Avionics Enclosure

2.4 Electrical Power Distribution

Distribution of power to the G1000 occurs on three buses:

Essential Bus: The 'Essential' bus is tied directly to the aircraft battery via the master switch. When the master switch is turned on, power is immediately supplied the 'Essential' bus. The 'Essential' bus is tied via a relay switch to the 'Main' aircraft bus. There are two circuit breakers on either side of the relay, combined with a single diode, allowing the battery to be charged by the alternator. Only equipment deemed essential for safe flight is connected to this bus.

<u>Main Aircraft Bus</u>: The 'Main' bus receives power from the aircraft battery when tied to the 'Essential' bus. After the aircraft engine is started, the alternator supplies power to the aircraft 'Main' bus, and to the rest of the system. In the event of an alternator or other power failure, the 'Essential' bus can be isolated with the 'Essential Bus' switch. This causes the 'Essential' bus to revert to battery power. Only the MFD receives power from the 'Main' bus.

<u>Main Avionics Bus:</u> A 'Main Avionics' bus is tied to the 'Main' aircraft bus via the 'Avionics Master' switch and switch relay. Only the #2 GIA 63 and the GMA 1347 are connected to this bus.

Figure 2-8. G1000/DA40 Electrical Distribution

2.5 Lightning Strike Protection

The following modifications to the aircraft provide additional protection of G1000 equipment from the effects of lightning strike.

2.5.1 Alternator / Battery Voltage Suppressors & Fuses

Two Transient Voltage Suppressors (TVS) are installed behind the instrument panel near the circuit breakers. Voltage suppressors help protect the avionics/electrical equipment against the effects of lighting strike. One voltage suppressor is connected to the load side of the aircraft battery circuit breaker, and the other is connected to the line side of the alternator circuit breaker. One 3.2 Amp slow-blow fuse is wired in line with each voltage suppressor, as shown in Figure 2-9. Fuses are easily removed by twisting the fuse holder cap counter-clockwise and removing the fuse.

Figure 2-9. TVS & Fuse Installation

2.5.2 GIA / AHRS Lightning Protection

The GRS 77 and both GIA 63s are uniquely protected from the effects of lightning. A 0.499Ω resistor, a transient voltage suppressor, and a 3.2 Amp slow-blow fuse are used for each GIA and the AHRS. These components are installed on a field-fabricated aluminum block, which is mounted to the front of the remote avionics enclosure (see Figure 2-7 and Figure 2-10). The dimensions for the mounting block are provided in Figure 2-11. Power leads for the AHRS and both GIAs are routed from the aircraft harness to a 9-pin connector (P900), whose mating connector is mounted to the fabricated block (J900). Figure 2-12 shows the wiring setup on the block for one set of components. Power is returned to the LRU after passing through the resistor and voltage suppressor.

Figure 2-10. Lightning Protection Components

Figure 2-12. Component Wiring Diagram

2.5.3 Lightning Strike Maintenance

Proper electrical bonding of all metallic components is critical for the protection against the effects of lighting. Severe corrosion may inhibit a component's ability to bond to the aircraft's electrical ground plane. The following summarizes maintenance practices which are implemented to maintain adequate lightning protection for the aircraft. See Section 4, Table 4-1 for exact maintenance requirements and associated intervals:

- A 1000-hour visual inspection of all G1000 equipment, including voltage suppressors, resistors, fuses, etc.
- An electrical bonding check of G1000 equipment every 1000 hours or anytime a lightning strike occurs or is suspected.
- Regular replacement (every 2 years) of all five 3.2 Amp slow-blow fuses ensures they are in fresh condition.
- Replacement of voltage suppressors, resistors, and fuses anytime a lightning strike occurs or is suspected.

2.6 SPIDER Grounds

Most G1000 connectors employ a SPIDER grounding system to provide necessary ground reference to shielding and/or transducers. A single 16-gauge wire is connected locally to the airframe. Additional 'spider' wires, 24-gauge, are used to connect shield grounds. The assembly is fastened directly to the backshell housing with two screws. Figure 2-13 shows an example SPIDER installation.

Figure 2-13. SPIDER Ground Installation

2.7 Sensor Installations

2.7.1 Manifold Air Pressure

A Kulite MAP sensor measures manifold air pressure. The sensor, manifold hose, and adapter fittings are installed as shown in Figure 2-14.

Figure 2-14. MAP Sensor

2.7.2 Oil Pressure

A Kulite pressure sensor measures oil pressure. The sensor, oil pressure hose, and fittings are installed as shown in Figure 2-15.

Figure 2-15. Oil Pressure Sensor

2.7.3 Oil Temperature

A Norwich Aero Products oil temperature sensor is used to measure oil temperature. The sensor is installed as shown in Figure 2-16.

2.7.4 Fuel Pressure

A Kulite pressure sensor is used to measure fuel pressure. The sensor, fuel hose, O-rings, and associated fittings are installed as shown in Figure 2-17.

Figure 2-17. Fuel Pressure Sensor

2.7.5 Tachometer

A tachometer provides engine RPM measurements to the G1000 system. The tachometer is installed as shown in Figure 2-18.

Figure 2-16. Tachometer S

2.7.6 Fuel Flow

A Shadin fuel flow sensor is used to measure fuel flow. The fuel flow sensor/fuel hose assembly is surrounded by a fire-resistant sleeve, as detailed in Figure 2-19 and Figure 2-20. The fuel flow/fire sleeve assembly is mounted to a field-fabricated bracket as shown in Figure 2-21.

Figure 2-21. Fuel Flow Bracket

2.7.7 Cylinder Head Temperature Thermocouples

Four thermocouples are used to measure cylinder head temperatures. A sensor is installed in each cylinder head. An example is shown in Figure 2-22.

Figure 2-22. CHT Probe

2.7.8 Exhaust Gas Temperature Thermocouples

Four thermocouples are used to measure exhaust gas temperatures. A sensor in installed in each exhaust header primary pipe. An example installation is shown in Figure 2-23.

Figure 2-23. EGT Probe

2.7.9 Alternator Current Sensor

A current sensor is used to measure alternator current output. The sensor is installed behind the circuit breaker panel as shown in Figure 2-24.

Figure 2-24. Alternator Current Sensor Installation

2.8 G1000 System Communications

2.8.1 Flight Instrumentation

The GRS 77 AHRS, GDC 74A Air Data Computer, and GMU 44 Magnetometer are responsible for providing the G1000 system with flight instrumentation. Data consists of aircraft attitude, heading, altitude, airspeed, vertical speed, and outside air temperature information, all displayed on the PFD (data is displayed on the MFD in reversionary mode only).

Primary data outputs from the GRS and GDC are sent directly to the PFD via ARINC 429. Secondary data paths connect the GRS and GDC to the MFD. Additional communications paths connect the GRS and GDC to both GIA 63 units, providing quadruple redundant interface.

The GRS 77 receives GPS data from both GIAs, airspeed data from the GDC, and magnetic heading from the GMU. Using these three external sources, combined with internal sensor data, the GRS accurately calculated aircraft attitude and heading.

Figure 2-25. Flight Instrumentation Interface

2.8.2 Engine Indicator System

The GEA 71 provides engine/airframe data to the G1000 system. The unit interfaces to transducers shown in Figure 2-25 (see Section 2.1.4). Analog data is received from the transducers and is converted to digital signal by the GEA 71. Digital information is then sent through the primary RS-485 serial path to the #1 GIA 63. From the GIA, data is sent through the HSDB connection to the PFD, then on to the MFD for display. A backup data path from the GEA to the #2 GIA 63, then on to the MFD, exists in the event the primary path fails.

Figure 2-26. G1000 Engine/Airframe Interface
2.8.3 Communications/Navigation Systems

The GIA 63 IAUs contain VHF COM, VHF NAV, and GPS receivers. COM and NAV audio is sent via digital audio to the GMA 1347 Audio Panel.

GPS information is sent to the GRS 77 AHRS and both displays for processing assistance.

The GTX 33 Mode S Transponder communicates with both GIAs. Transponder data is sent from the GIAs to the PFD where control and operation occurs.

The #2 GIA outputs analog HSI signals to the Honeywell KC 140.

The GMA 1347 Audio Panel controls the display reversionary mode.

Figure 2-27. G1000 Navigation/Communications

This page intentionally left blank.

3 G1000 Control & Operation

All control and operation of G1000 equipment as normally used in flight occurs through the PFD, MFD and GMA 1347 audio panel. Figure 3-1 identifies various GDU 1040 buttons. Figure 3-2 identifies various GMA 1347 buttons.

Figure 3-2. GMA 1347 Controls

3.1 User Interface

3.1.1 FMS Knob

The FMS knob is the primary control for the G1000 system. Operation is similar to the Garmin 400/500 Series units.

• To cycle through different configuration screens:

To change page groups: Rotate the large FMS knob.

<u>To change pages in a group:</u> Rotate the small FMS knob.

- To activate the cursor for a page, press the small FMS knob directly in, as one would push a regular button.
- To cycle the cursor through different data fields, rotate the large FMS knob.
- To change the contents of a highlighted data field, rotate the small FMS knob. This action either brings up an options menu for the particular field, or in some cases allows the operator to enter data for the field.
- To confirm a selection, press the ENT key.
- To cancel a selection, press the small FMS knob in again, deactivating the cursor. The CLR key may also be used to cancel a selection or deactivate the cursor.

3.1.2 Softkeys

Some pages have commands or selections that are activated by the GDU 1040 softkeys. If a softkey is associated with a command, that command will be displayed directly above the key. A grayed-out softkey shows a command that is unavailable. A softkey that is highlighted shows the current active selection.

ANLG/CRNT ANLG IN	ICRNT MNTRENG TE	MP BKSHELL ANNUN	IC DIGITAL DISCRETE	COPY VE	RIFY	

Figure 3-3. G1000 Softkeys

3.2 G1000 Normal Mode

To start the G1000 system in Normal Mode:

- 1. Turn on the master switch. The following G1000 equipment is powered on:
 - GDU 1040 PFD & MFD (MFD receives power only if 'Essential Bus' switch is OFF)
 - GRS 77 AHRS
 - GDC 74A Air Data Computer
 - No. 1 GIA 63 Integrated Avionics Unit
 - GEA 71 Engine/Airframe Unit
 - GTX 33 Mode S Transponder
- 2. Turn on the DA 40 avionics switch. The following G1000 equipment is powered on:
 - No. 2 GIA 63 Integrated Avionics Unit
 - GMA 1347 Digital Audio Panel

The G1000 system is now powered in the normal mode. The PFD and MFD will function as specified in the G1000/DA 40 Cockpit Reference Guide, when the system has been correctly installed and configured.

Figure 3-4. Normal Mode

3.3 Reversionary Mode

Should a display communication or hardware failure occur, the G1000 system automatically enters the reversionary mode. The system reversionary mode forces the remaining display into showing all information related to safe flight.

A manual reversionary mode also allows the operator to force the system into reversionary mode in situations where the system does not automatically enter reversionary mode. A large red button on the GMA 1347 audio panel activates the manual reversionary mode.

Figure 3-5. MFD Failure Mode

Should the PFD display fail, the MFD automatically enters reversionary mode. In this mode, flightcritical information from the AHRS/Air Data system is displayed on the MFD along with essential engine instrumentation.

Figure 3-6. PFD Failure Mode

3.4 Configuration Mode Overview

The Configuration Mode exists to provide the technician with a means of configuring, checking, and calibrating various G1000 sub-systems. Troubleshooting and diagnostics information can also be viewed in this mode.

To start the system in Configuration Mode:

- 1. Start the system in normal mode as described in Section 3.2.
- 2. Remove power to the PFD and MFD by pulling the circuit breakers labeled PFD and MFD.
- 3. Press and hold the ENT key on the PFD while applying power using the PFD circuit breaker.
- 4. Release the ENT key after 'INITIALIZING SYSTEM' appears in the upper left corner of the PFD.
- 5. Power on the MFD in the same manner. It is best to have both displays in Configuration Mode whenever performing post-installation practices.

CAUTION

The Configuration Mode contains certain pages and settings that are critical to aircraft operation and safety. Such pages are protected and cannot be modified, unless the technician is properly authorized and equipped. However, most protected pages are viewable to allow system awareness for troubleshooting.

NOTE

For a complete description and breakdown of each Configuration Mode page, refer to the G1000 Configuration Manual, Garmin part number 190-00303-04.

3.4.1 Loader Card Interface

The G1000/DA 40 SW Loader Card interface exists to provide a means of loading software and configuration files to the system and LRUs. The G1000/DA 40 SW Loader Card uses a 128 MB Secure Digital (SD) data card that contains:

- All G1000 LRU Software Files
- All G1000 Configuration Files

All software and configuration files were pre-determined by Garmin and/or Diamond during design of the system. During removal and replacement of LRUs, software and configuration files may need to be reloaded (See Sections 6 & 7). To satisfy TC/STC requirements for the DA 40, it is critical that the technician uses the correct G1000/DA 40 SW Loader Card part number when servicing the G1000 system.

The G1000/DA 40 SW Loader Card part number defines all files specific to the G1000 system as installed in the DA 40. Refer to Appendix A for approved card part numbers. Approved Loader Card part numbers for the DA 40 can also be found in the Required Equipment List, Garmin P/N 005-00149-28.

CAUTION

Always use caution when using SW Loader Cards during maintenance. The G1000 system is designed to immediately initialize the card upon power-up. On-screen prompts must be given careful attention in order to avoid potential loss of data. Always read through procedures given in Sections 5, 6, 7, and/or Appendix B *before* attempting to use the SW Loader Cards.

3.4.2 Configuration Files

A G1000/DA 40 SW Loader Card typically contains the following configuration files:

- AIRFRAME: This file contains data such as airspeed parameters, engine/airframe sensor limitations, fuel tank parameters and alerting system settings that tailor a G1000 PFD or MFD to the DA 40.
- SYSTEM: This file configures the G1000 Ethernet to expect a PFD, MFD, and two GIAs.
- MANIFEST: This file loads a manifest of all software part numbers and versions associated with an approved system configuration.
- MFD1: This file configures MFD serial/discrete communication and alert system settings.
- PFD1: This file configures PFD serial/discrete communication and alert system settings.
- GIA1/GIA2: These files configure GIA1/GIA2 serial/discrete communication settings.
- GMA1: This file configues GMA 1347 audio and serial communication settings.
- GTX1: This file configures GTX 33 transponder and serial communications settings.
- GEA1: This file configures GEA 71 engine/airframe parameters.
- GDC1: This file configures GDC 74A air data values for the DA 40.

The above files are loaded during the configuration processes listed in Section 7 and Appendix B. Each file is sent directly to the applicable LRU. The same file is also stored in PFD internal configuration memory. The PFD also sends a copy of all configuration files to it's connector configuration module. If the PFD is replaced, the configuration module retains all configuration files in the aircraft.

NOTE

The GRS 77 AHRS and GMU 44 Magnetometer do not utilize a configuration file. However, these LRUs do require several calibrations during installation checkout to tailor sensor characteristics to a specific DA 40 airframe. While performing maintenance on these units, re-calibration may be required. See Section 7.7.3 for more information on re-calibration criteria.

3.4.3 Configuration File Storage

The G1000 system is designed to store all configuration settings in various places so that the configuration is retained in the aircraft during maintenance of units. Figure 3-7 and Figure 3-8 illustrate where the various configuration files are stored.

Figure 3-7. G1000 LRU Configuration File Storage

The GRS 77 and GDC 74A configuration modules function differently than the rest of the system. The GDC 74A's configuration file is loaded directly to GDC internal memory. A copy of the file is stored in the GDC configuration module.

The GRS 77 configuration module does not store any configuration settings. Rather, it stores calibration data recorded during installation calibration procedures.

Figure 3-8. GRS/GDC Configuration Settings Storage

3.4.4 SET>ACTV Interface

Throughout various Configuration Mode pages, there are SET and ACTIVE columns for input/output settings and other parameters.

- <u>SET:</u> Refers to a setting or group of settings that reside in PFD Internal Memory and/or the Master Configuration Module.
- <u>ACTIVE:</u> Refers to an 'active' setting or parameter currently being used by the LRU. LRUs store the 'active' settings within internal memory.

Data can be manually copied from one column to the other by using the following two softkeys, when available:

- SET>ACTV (read 'Set to Active') softkey: Allows the installer to send the information in the SET column (data stored in the master config module) to the ACTV column (data used by LRU).
- ACTV>SET (read 'Active to Set') softkey: Causes the LRUs current settings to be copied to the master configuration module as SET items.

WARNING

THE ACTV>SET SOFTKEY MUST BE USED WITH CAUTION! IF AN IMPROPERLY CONFIGURED UNIT IS INSTALLED, THIS SOFTKEY CAUSES THE WRONG CONFIGURATION TO REPLACE THE CORRECT AIRCRAFT CONFIGURATION!

In the first example shown in Figure 3-9, the SET columns do not match the ACTIVE columns. The inequality between SET and ACTIVE indicates a configuration mismatch. By pressing the SET>ACTV softkey, this copies the SET column to the LRU unit's configuration memory. The settings then become the ACTIVE settings for the LRU being configured.

Figure 3-9. SET>ACTV Diagram

When troubleshooting the system, technicians can look for inequalities between SET and ACTIVE columns. Certain problems can be resolved simply by pressing the SET>ACTV softkey, which reloads settings to the specific LRU from the PFD. (Note that this can also be accomplished by reloading the configuration files for the LRU, using the G1000 SW Loader Card. Section 7 describes this method for each LRU).

A blank active column, as shown in Figure 3-10, represents loss of communication between the display and the particular unit. See Section 5 for more details on troubleshooting.

RS-232				
CHANNEL	INPUT		ОИТРИТ	
	SET	ACTIVE	SET	ACTIVE
CHNL 1	GDC74 #1		GDC74 #1	
CHNL 2	GIA DEBUG		GIA DEBUG	
CHNL 3	0FF		OFF	
CHNL 4	0FF		OFF	
CHNL 5	GTX 33 #1 w/ TIS		GTX 33 #1 w/ TIS	
CHNL 6	GRS77 #1		GRS77 #1	
CHNL 7	GMA1347 #1		GMA1347 #1	
CHNL 8	OFF		OFF	

Figure 3-10. Loss of Communication

3.4.5 Configuration Prompts

When configuration settings are changed, the technician receives on-screen prompts and/or confirmations such as those shown in Figure 3-11. Section 7 and Appendix B show other prompts encountered during the configuration process.

Figure 3-11. Configuration Status

3.4.6 Data Transmission Indicators

Several configuration screens utilize an indicator light system to show discrete (ON/OFF) data and/or hardware component status. Unless otherwise noted, the following applies to all such status indicators:

- Green Light: Expected data is successfully received and is ON. A green light could also indicate that the parameter/component is working correctly.
- Red Light: Expected data is not received. A red light could also indicate that a parameter/component is invalid.
- No Light (Black): Expected data is successfully received and is OFF, or no data is expected. A black light could also indicate that the parameter/component is not responding.

STATUS			
BOOT BLOCK	RAM	XILINX	
BASE MAP	CONFIG	DATA	
ETHERNET 1	ETHERNET 2	ETHERNET 3	
RS-232 1	RS-232 2	IRDA	

Figure 3-12. Data Transmission Indicators

3.5 Configuration Mode Navigation

Using the FMS knob as described in Section 3.1.1 a user can navigate through different pages and page groups in the Configuration Mode. For complete description and breakdown of each page, refer to the G1000 Configuration manual, Garmin part number 190-00303-04.

The following diagram shows the layout and organization of Configuration Mode page groups and pages.

Figure 3-13. Configuration Page Navigator

This page intentionally left blank.

4 G1000 Continued Airworthiness

4.1 Airworthiness Limitations

The G1000 integrated cockpit is airworthy when installed and configured in accordance the STC issued under FAA Project #ST3636WI-A. The Airworthiness Limitations section is FAA-approved and specifies maintenance required under §§ 43.16 and 91.403 of Title 14 of the Code of Federal Regulations, unless an alternative program has been FAA-approved.

The G1000 system possesses the following maintenance airworthiness limitations:

Every 2 years, replace all lightning protection 3.2 Amp slow-blow fuses. There are five total fuses in the following locations:

- Two fuses mounted behind the instrument panel, near the circuit breaker panel. Each fuse in wired inline with a voltage suppressor.
- Three fuses mounted on the field-fabricated lightning protection component block, which is attached to the forward portion of the remote avionics enclosure. Each fuse is mounted to the side of the block, and each is labeled.

Replacement consists of twisting each fuse holder cap counter-clockwise, removing each fuse and replacing with a new fuse. For detailed drawings, see Section 2.5.

There are no other maintenance airworthiness limitations associated with this type design change. The G1000/DA 40 Airplane Flight Manual Supplement defines all other airworthiness limitations.

4.2 Servicing Information

G1000 LRU maintenance is 'on condition' only. No component-level overhaul is required for this type design change.

4.3 On Condition Servicing

'On Condition' replacement and/or servicing should occur when an item exhibits conditions, symptoms, and/or abnormalities defined in Section 5 of this manual. Replacement and/or servicing should be made only after the technician troubleshoots the system to the extent determined necessary by using the guidance in this manual along with common maintenance practices.

IMPORTANT

It is impossible to provide guidance for every conceivable failure scenario within the scope of this manual. Every effort has been made to provide comprehensive guidance for possible failures. The information in this document should always be combined with common sense and a thorough knowledge of the system. Use sound avionics maintenance practices when working around or on G1000 equipment.

The remainder of this document is organized in the following fashion:

- Section 4.3 lists maintenance requirements related to the G1000 system.
- Section 6 gives instructions regarding the removal and replacement of G1000 equipment and parts.
- Section 7 gives configuration and testing instructions to be accomplished if G1000 equipment or parts are removed/replaced.
- Section 8 specifies system return-to-service procedures.

Before removing any G1000 LRU, it is required that technicians verify the LRU software version and part numbers against Appendix A. The beginning of Section 6 provides instructions to check the software part number and version of each LRU before removing a unit. Procedures in Section 7 require the same check after LRU replacement and software loading.

4.3.1 Recommended Tools

The following tools are needed to perform maintenance tasks on G1000 equipment:

- Mili-ohm Meter, OR
 - ✓ Agilent 34410A Ammeter or equivalent
 - ✓ Fluke 187 Voltmeter or equivalent
 - ✓ Power Supply capable of providing 1 amp current
- #2 Phillips Screwdriver
- 3/32nd Hex Tool
- Digital Level (Required for AHRS 'Procedure A' Calibration)
- A VHF NAV/COM/ILS ramp tester or equivalent.
- A transponder ramp tester or equivalent.
- A pitot/static ramp tester.
- Outdoor line-of-site to GPS satellite signals or GPS indoor repeater.
- Headset/Microphone.
- Ground Power Unit (Capable of supplying 28 Vdc)

4.4 Maintenance Requirements

The following table shows systems and items that must undergo tests or checks at specific intervals. If the interval is shown to be in flight time as well as calendar years, the first interval reached should be used as the limit.

Item	Description/Procedure	Interval	Initials			
G1000 LRUs						
GDU 1040 PFD & MFD	See Section 6.1 for removal & replacement.	On Condition				
GMA 1347	See Section 6.2 for removal & replacement.	On Condition				
GIA 63 IAU (Qty. 2)	See Section 6.3 for removal & replacement.	On Condition				
GEA 71 EAU	See Section 6.4 for removal & replacement.	On Condition				
CTX 22 Mode S	See Section 6.5 for removal & replacement.	On Condition				
Transponder	Test according to Title 14 CFR §§ 91.411 and 91.413 as well as Part 43 Appendix F. See Section 7.5.3.	1000 Hours or 2 Years				
	See Section 6.6 for removal & replacement.	On Condition				
	Pitot/Static Leak Test. See Section 7.6.3.	1000 Hrs or 2 Years				
GDC 74A	Altimeter Function Test. See Section 7.6.3.	2000 Hours or 4 Years				
	Airspeed Function Test. See Section 7.6.3.	2000 Hours or 4 Years				
	Vertical Speed Function Test. See Section 7.6.3.	2000 Hours or 4 Years				
	See Section 6.7 for removal & replacement	On Condition				
GRS // ANKS	Magnetic variation database update. See Section 4.7.	On Condition				
GMU 44 Magnetometer	See Section 6.7.1 for removal & replacement.	On Condition				

	D	
1 able 4-1.	Requirea	Maintenance

G1000 Accessories					
Configuration Module Replacement (Qty 4)	See Section 6.8 for removal & replacement.	On Condition			
OAT Probe	See Section 6.6.1 for removal & replacement.	On Condition			
	Refer to Section 2.1.6.1 for installation drawing.	On condition			
PFD, MFD, & GIA Cooling Fans (Qty 3)	Refer to Figure 2-2 and/or Figure 2-7 for installation drawings.	On Condition			

ltem	Description/Procedure	Interval	Initials			
G1000 Lightning Protection						
GIA / AHRS Resistors	Replace all three resistors located at the remote avionics enclosure.	Replace After Suspected / Actual				
	Refer to Section 2.5.2 for installation drawings.	Lighting Event				
	Replace all five voltage suppressor units:					
TVS Unit Replacement (Qty 5)	 Battery & Alternator Voltage Suppressors are located behind instrument panel near the circuit breakers 	Replace After Suspected / Actual				
	✓ GIA1, GIA2, and AHRS Voltage Suppresors are located at the remote avionics enclosure.	Lighting Event				
	Refer to Section 2.5 for installation drawings.					
	Replace all five 3.2 Amp slow-blow fuses:					
3.2 Amp Slow-blow	 Battery & Alternator side fuses are located behind the instrument panel near the circuit breakers. 	Every 2 Years or After				
Fuse Replacement (Qty 5)	 GIA1, GIA2, and AHRS fuses are locate at the remote avionics enclosure. 	Lighting Event				
	Refer to Section 2.5 for installation drawings.					
Visual Inspection	Perform a visual inspection following the procedure given in Section 4.5.	1000 Hours				
Electrical Bonding Test	Perform a bonding resistance check of all G1000 equipment as described in Section 4.6.	1000 Hours or After Suspected / Actual Lighting Event				

Table 4-1.	Required	Maintenance.	Cont.
	i toqan oa	manneonanoo,	001101

Engine/Airframe Sensors					
MAP Sensor	Refer to Section 2.4.1 for installation drawing.	On Condition			
Oil Pressure Sensor	Refer to Section 2.4.2 for installation drawing.	On Condition			
Oil Temperature Sensor	Refer to Section 2.4.3 for installation drawing.	On Condition			
Fuel Pressure Sensor	Refer to Section 2.4.4 for installation drawing.	On Condition			
Tach Sensor	Refer to Section 2.4.5 for installation drawing.	On Condition			
Fuel Flow Sensor	Refer to Section 2.7.6 for installation drawing.	On Condition			
CHT Probes (Qty 4)	Refer to Section 2.7.7 for installation drawing.	On Condition			
EGT Probes (Qty 4)	Refer to Section 2.7.8 for installation drawing.	On Condition			
Alternator Current Sensor	Refer to Section 2.7.9 for installation drawing.	On Condition			
Fuel Tank Quantity Sending Units	Should one or both fuel quantity transducers fail, replace according to instructions in Diamond DA 40 Aircraft Maintenance Manual. The new replacement fuel quantity probe(s) must be re-calibrated according to the procedure set forth in Section 4.7.	On Condition			

4.5 1000 Hour Inspection

Perform a visual inspection every 1000 airframe hours and check for corrosion, damage, or other defects for each of the items listed in Table 4-2. Replace any damaged parts as required. Inspection may require the temporary removal of a unit or units to gain access to connectors. Follow guidance in Section 6 for equipment removal and replacement. Refer to the Diamond DA 40 Airplane Maintenance Manual for instructions on removing any access panels.

Item	Description/Procedure	Initials
To gain access for t	he following inspections:	
1. Remov	ve the instrument panel cover as described in the DA 40 Aircraft Maintenance Manua	al.
GDC 74A Air Data	 Visually inspect the GDC 74A unit, mount, and connector for corrosion or other defects. 	
Computer	b) Ensure that pitot/static plumbing is secure and in good condition.	
GEA 71 Engine/Airframe Unit	a) Inspect the GEA 71 unit, rack, and connectors for corrosion or other defects.	
Battery & Alternator	 Inspect both voltage suppressors and associated wiring for cracks, chaffing, or other defects. 	
(2)	b) Remove each voltage suppressor fuse and inspect the fuse filament. Ensure that the fuse is in good condition.	
CDU Fans	 Inspect both CDU fans for accumulation of dirt and other damage. Remove excess dirt as required. 	
	b) Ensure that both fans are operational.	
	a) Remove the MFD and PFD as described in Section 6.	
GDU 1040 MFD & PFD	 Inspect the mounting surface, copper bonding fingers and connector for corrosion, heavy oxidation, or other damage. 	
	c) Reinstall the MFD and PFD.	
To gain access for t	he following Inspections:	
1. Remov	e rear baggage compartment floor.	
2. Remov	e baggage compartment shell.	
Refer to the DA 40	Aircraft Maintenance Manual for removal instructions.	
	a) Inspect the GRS 77 unit, rack, and connector for corrosion or other defects.	
GRS 77	 Inspect both braided ground straps to the GRS rack and ensure they are in good condition. 	
	a) Inspect the outer area around the enclosure for damage.	
	b) Inspect the antenna connection junction.	
	c) Inspect the aluminum ground strap.	
	 Inspect the GIA/AHRS voltage suppressors, resistors, and fuses mounted to the front of the enclosure (refer to Section 2.5 for drawings): 	
Remote Avionics Enclosure	i. Inspect each voltage suppressor and associated wiring for cracks, chaffing, or other defects.	
	ii. Remove each voltage suppressor fuse and inspect the fuse filament. Ensure that each fuse is in good condition.	
	iii. Inspect each lightning protection resistor and associated wiring for cracks, chaffing, or other defects.	
	e) Loosen the screws securing the top half of the avionics enclosure.	
	f) Remove the top half of the enclosure and inspect the bottom mounting tray and all connectors.	
	g) Reinstall the top avionics enclosure.	

Table 4-2.	1000	Hour	Inspection	Procedure

ltem	Description/Procedure				
GIA Avionics Fan	a) Inspect remote avionics fan for dirt accumulation and other damage. Remove excess dirt as required.				
	b) Ensure that the fan is operational.				
The GMU 44 is mounted below the starboard wing. Refer to Figure 2-5 and Figure 2-6 for the following in					
	a) Remove the three Phillips screws holding the GMU access plate to the wing.				
GMU 44	b) Carefully lower the assembly and inspect the GMU 44 and rack.				
	c) Inspect the mounting hardware and GMU 44 for corrosion or other damage.				
	d) Reinstall the GMU 44 beneath the wing.				

IMPORTANT

For all other equipment installed under this STC listed in this maintenance manual, use the inspection procedures set forth in Chapter 05 of the DA40 Airplane Maintenance Manual.

4.6 Electrical Bonding Test

The airframe bonding test is described in the DA40 AMM in Section 51-80-00 on Page 201. The following bonding test is provided for G1000-equipped DA 40 aircraft as a requirement beyond what is given in Section 51-80-00.

4.6.1 Requirements

All G1000 equipment must be installed. Remove the instrument panel cover, baggage compartment floor, and baggage compartment to gain access to required areas. Remove the co-pilot seat to gain access to the OAT probe base, following instructions in the DA 40 AMM.

4.6.2 Test Equipment

A mili-ohm meter and Kelvin probes are recommended for this test. However, a standard voltmeter, power supply, and ammeter may be substituted. The following procedure is written using the voltmeter, power supply and ammeter. All test equipment must have valid calibration records.

4.6.3 Procedure

1. Connect the positive lead of the power supply to the engine compartment grounding bracket (battery negative connection to the airframe). Connect/touch the positive lead of the voltmeter to the same point.

Ensure that the voltmeter and power supply probes do not touch, so as not to induce contact resistance.

- 2. Touch negative lead of power supply to each of the test points listed while performing Step 3. At each point, configure the power supply to produce 1 amp before measuring voltage. (Use an ammeter to ensure current is within 1 amp ± 1 mili-amp at each point)
- 3. Set the voltmeter to measure mili-volts and null the reading. Measure the voltage from the engine grounding bracket to each of the following points and record the voltage. (Perform Step 2 at each point to ensure that exactly 1 amp ±1 mili-amp is present before measuring)
 - a) Top metal case of PFD: _____ mili-volts
 - b) Top metal case of MFD: _____ mili-volts
 - c) Top metal case of GMA 1347: _____ mili-volts
 - d) GEA 71 Body: _____ mili-volts
 - e) GDC 74A Body: _____ mili-volts
 - f) OAT Probe Base Nut (inside fuselage): _____ mili-volts
 - g) GIA 1 Top: _____ mili-volts
 - h) GIA 2 Top: _____ mili-volts
 - i) GTX 33 Top: _____ mili-volts
 - j) GRS 77 metal base: _____ mili-volts
- 4. Ensure that at each point, no more than 2.5 mili-volts (2.5 m Ω) are present. In this case, voltage is equivalent to resistance (Ω), given that precisely 1 amp reference current is present.

4.7 Fuel Tank Probe Re-Calibration

The fuel tank quantity probes are calibrated at the aircraft factory to ensure their measuring accuracy. Should either fuel tank probe fail and require replacement, the new probe(s) must be calibrated by performing the following procedure.

- 1. Level the aircraft, following instructions in the DA40 Airplane Maintenance Manual.
- 2. Fill each fuel tank with 0.5 gallons fuel (unusable fuel, refer to DA 40 AFM). Use proper precautions when handling fuel. Ensure that the aircraft is grounded correctly and that there is adequate ventilation.

Each time the G1000 system is powered down, it is imperative that the system be allowed to stabilize for *AT LEAST* three minutes before proceeding with the procedure.

- 3. Start the PFD and MFD in Configuration Mode.
- 4. On the PFD, go to the GEA Page Group (this procedure must be performed using only the PFD).
- 5. Select the Fuel Calibration page (3rd page in GEA group), shown below:

FUEL CALIBRATION					
LEFT 1 SUB-TANK		FUEL FLOW		RIGHT 1 SUB-TANK	
RAW VAL	GL	ENG 1 SCALE	1.00000	RAW VAL	GL
SLOPE	1.00000e+000	ENG 2 SCALE	0.00000	SLOPE	1.00000e+000
OFFSET	0.00000e+000			OFFSET	0.00000e+000
CAL VAL	GL			CAL VAL	GL
LEFT 2 SUB-TANK	 			RIGHT 2 SUB-TANK	
RAW VAL	GL			RAW VAL	GL
SLOPE	1.00000e+000			SLOPE	1.00000e+000
OFFSET	0.00000e+000			OFFSET	0.00000e+000
CAL VAL	GL			CAL VAL	GL
				RIGHT 3 SUB-TANK	
RAW VAL	GL			RAW VAL	GL
SLOPE	1.00000e+000			SLOPE	1.00000e+000
OFFSET	0.00000e+000			OFFSET	0.00000e+000
CAL VAL	GL			CAL VAL	GL
LEFT 4 SUB-TANK		CENTER 1 SUB-TAN	<u>K</u>	RIGHT 4 SUB-TANK	
RAW VAL	GL	RAW VAL	GL	RAW VAL	GL
SLOPE	1.00000e+000	SLOPE	1.00000e+000	SLOPE	1.00000e+000
OFFSET	0.00000e+000	OFFSET	0.00000e+000	OFFSET	0.00000e+000
CAL VAL	GL	CAL VAL	GL	CAL VAL	GL
LEFT 5 SUB-TANK		CENTER 2 SUB-TAN	<u>K</u>	RIGHT 5 SUB-TANK	
RAW VAL	GL	RAW VAL	GL	RAW VAL	GL
SLOPE	1.00000e+000	SLOPE	1.00000e+000	SLOPE	1.00000e+000
OFFSET	0.00000e+000	OFFSET	0.00000e+000	OFFSET	0.00000e+000
CAL VAL	GL	CAL VAL	GL	CAL VAL	GL
					IN NEOLT

- 6. This page is protected and requires a keystroke password to perform the calibration. Press the following softkeys in sequence:
 - a) softkey 12 (Far Right softkey)
 - b) softkey 11
 - c) softkey 10
 - d) softkey 9

7. Press the L RESET softkey. Press ENTER to acknowledge the following prompt:

- 8. Ensure that the CAL VAL indication for the Left 1 Sub-Tank is stable.
- 9. Press the L EMPTY softkey.
- 10. Press the R RESET softkey. Press ENTER to acknowledge the following prompt:

WARNING!	Pressi	ng 'OK' will
cause calibi	ration f	to revert to
defa	ult set	tings.
OK	or	CANCEL

- 11. Ensure that the CAL VAL indication for the Right 1 Sub-Tank is stable.
- 12. Press the R EMPTY softkey.
- 13. Observe the CAL VAL indications for both Right 1 and Left 1 Sub-Tanks and record the readings in the following tables. The CAL VAL values should fall between -1 and 0 as shown in the following examples:

LEFT 1 SUB-TANK			۲
RAW VAL	1.62451gL	RAW VAL	
SLOPE	1.00000e+000	SLOPE	1.00000e+000
OFFSET	0.00000e+000	OFFSET	0.00000e+000
CAL VAL	-0.74234gl	CAL VAL	-0.46192gL

LEFT 1 SUB-TANK					
Actual Calibrated Value ((CAL VAL) Range	Record Actual Indicated	Is CAL VAL Within	
Fuel	Minimum Allowed Indication	Maximum Allowed Indication	Here	Yes / No	
0	-1	0			
5	4	6			

	RIGHT 1 SUB-TANK				
Actual Calibrated Value (CAL VAL)		(CAL VAL) Range	Record Actual Indicated	Is CAL VAL Within	
Fuel	Minimum Allowed Indication	Maximum Allowed Indication	Here	Yes / No	
0	-1	0			
5	4	6			

- 14. Fill each fuel tank with 5 gallons ± 0.1 gallons usable fuel.
- 15. Allow the system to stabilize before taking readings.

16. Record '5 gallon' CAL VAL indications for both Right 1 and Left 1 Sub-Tanks in the tables above. The CAL VAL values should fall between 4 and 6 gallons as shown in the following examples:

LEFT 1 SUB-TANK		RIGHT 1 SUB-1	rank
RAW VAL	8.16374gL	RAW VAL	7.82145gl
SLOPE	1.00000e+000	SLOPE	1.00000e+000
OFFSET	0.00000e+000	OFFSET	0.00000e+000
CAL VAL	5.03481gL	CAL VAL	4.85495gl

- *a)* If both CAL VAL values fall within the specified ranges, the calibration is finished.
- *b) If any CAL VAL value is outside of the specified ranges, perform the full-tank calibration procedure in Section 4.7.1.*

4.7.1 Full Tank Calibration

Perform this procedure ONLY if the preliminary calibration failed. Only the failed tank(s) need to be calibrated at full fuel level.

- 1. Fill the failed fuel tank(s) to maximum capacity.
- 2. Allow system to stabilize.
- 3. Ensure that the CAL VAL indication for the failed tank is stable before proceeding.
- 4. If the right tank failed, press the R FULL softkey. Likewise, if the left tank failed, press the L FULL softkey.
- 5. Drain the failed fuel tank(s).
- 6. Add 0.5 gallons (unusable fuel) to the failed tank(s).
- 7. Observe the CAL VAL indications for the failed tank(s) and record the readings in the following tables. The CAL VAL values should fall between -1 and 0 for the failed tank(s).

	FAILED LEFT 1 SUB-TANK					
Actual Calibrated Val		(CAL VAL) Range	Record Actual Indicated	Is CAL VAL Within		
Fuel	Minimum Allowed Indication	Maximum Allowed Indication	Here	Yes / No		
0	-1	0				
5	4	6				

	FAILED RIGHT 1 SUB-TANK				
Actual Calibrated Value (CAL VAL) Range		Record Actual Indicated	Is CAL VAL Within		
Fuel	Minimum Allowed Indication	Maximum Allowed Indication	Here	Specified Range? Yes / No	
0	-1	0			
5	4	6			

- 8. Fill the failed fuel tank(s) with 5 gallons ± 0.1 gallons usable fuel.
- 9. Allow the system to stabilize before taking readings.
- 10. Record '5 gallon' CAL VAL indications for the failed tank(s) in the tables above.
 - a) If the CAL VAL value(s) fall within the specified ranges, the calibration is finished.

b) If any CAL VAL value is outside of the specified ranges, the fuel quantity system requires service.

4.8 GRS 77 Earth Magnetic Field Updates

The GRS 77 utilizes an Earth magnetic field model which is updated once every five years. The update is expected to be available from Garmin in each of the following years: 2005, 2010, 2015, and every five years thereafter, so long as the GRS 77 remains a Garmin-supported product.

The G1000 system alerts the operator that the magnetic field database is out of date by issuing the message "AHRS SERVICE – AHRS Magnetic-field model needs update" (Ref. Section 5.11). Contact Garmin for update instructions.

This page intentionally left blank

.

5 TROUBLESHOOTING

This section provides instructions and guidance for G1000 system troubleshooting, as installed in the Diamond Model DA 40.

IMPORTANT

Sections 6, 7 and 8 provide detailed instructions on equipment removal, replacement, configuration, and return-to-service testing. Anytime a G1000 component or LRU is removed, swapped, or replaced, the technician must follow the procedures given in Sections 6, 7 and 8 to ensure proper operation of the system.

Troubleshoot the G1000 system by first identifying, then isolating the specific failure to the responsible LRU. There are several indications that the G1000 presents to the pilot or technician, showing overall system condition. A course of action should be determined based on the information presented on the display. This section shows possible scenarios likely to be encountered during normal operation and gives troubleshooting guidance to the technician to resolve problems.

NAV1 108.00 ↔ 1	17.95	gs Okt dis _,	NM ETE:	FT	136.975 ↔ 118.000 com
NAV2108.00 1	17.95	AU>	K – SYSTEM STATU	S	136.975 118.000 сома
MAN IN 31	GDC1	oj Status	VERSION 2.02		Aircraft Name
10 24.4	GEA1 GIA1	✓ ✓	1.12	BASEMAP REGION BASEMAP VERSION	WORLD 1.01
▲ 2270 3000	GIA2 GMA1	\checkmark	2.01	AVIATION DATABASE	Americas 0312
	GMU1 GRS1	\checkmark	201	AVIATION EFFECTIVE AVIATION EXPIRES	27-N0V-03 25-DEC-03
	GTX1 MFD1	~ ~	3.05	TERRAIN REGION	WORLD 1.37
OIL PRES	PFD1	×	1.17	CHECKLIST	Not Available
AMPS 0 80					
				M	AP WPT AUX NRST 0000
ENGINE		LRU DBASE			CHKLIST

Figure 5-1. System Status Page (AUX Group Normal Mode)

The 5th AUX group page on the MFD provides LRU health status by means of a green check or a red 'X'. Also, LRU software versions are shown along with other database versions and dates. If a red 'X' is shown for an LRU, see the appropriate LRU troubleshooting section of this chapter for guidance. Typically, the G1000 Alerting system provides alerts/annunciations in conjunction with the information presented at the 5th AUX page.

5.1 G1000 Alerting System

Figure 5-2. Alerts & Annunciations

The G1000 Alert System conveys alerts to the pilot using combinations of the following features:

Annunciation Window:

The Annunciation Window displays abbreviated annunciation text. The Annunciation window is located to the right of the Altitude and Vertical Speed windows on the display. All 12 DA 40-specific annunciations can be displayed simultaneously.

Alert Window:

The Alert window displays alert text messages. Up to 64 prioritized alerts can be displayed in the Alert window. Pressing the ALERTS softkey displays the Alerts window. Pressing the ALERTS softkey again removes the Alerts window from the display.

Softkey Annuncation:

When the G1000 Alerting System issues an alert, the ALERTS softkey is used as a flashing annunciation to accompany the alert. During the alert, the ALERTS softkey assumes a new label consistent with the alert level (WARNING, CAUTION, or ADVISORY). Pressing the softkey annunciation acknowledges the presence of the alert and returns the softkey to its previous ALERTS label.

System Failure Annunciations:

Typically, a large red X appears in windows when a failure is detected in the LRU providing the information to the window.

The G1000/DA 40 Alert System uses three levels:

WARNING:

This level of alert requires immediate pilot attention. A warning alert is accompanied by an annunciation in the Annunciation Window. Warning alert text appearing in the Annunciation Window is always RED. A warning alert is also accompanied by a flashing WARNING softkey annunciation, as shown in Figure 5-3, along with a continuos aural tone. Pressing the WARNING softkey acknowledges the presence of the warning alert and stops the aural tone. Pressing the ALERTS softkey displays the related alert message in the Alert Window.

WARNING

Figure 5-3. WARNING Softkey Annunciation

CAUTION:

This level of alert indicates the existence of abnormal conditions on the aircraft that may require pilot intervention. A caution alert is accompanied by an annunciation in the Annunciation Window. Caution alert text appearing in the Annunciation Window is yellow. A caution alert is also accompanied by a flashing CAUTION softkey annunciation, as shown in Figure 5-4, along with a single aural tone. Pressing the CAUTION softkey acknowledges the presence of the caution alert. Pressing the ALERTS sofkey displays the related alert message in the Alert Window.

CAUTION

Figure 5-4. CAUTION Softkey Annunciation

MESSAGE ADVISORY:

This level of alert provides general information to the pilot. A message advisory alert does not appear in the Annunciation Window. A message advisory alert is only accompanied by a flashing **ADVISORY** softkey annunciation, as shown in Figure 5-5. Pressing the **ADVISORY** softkey acknowledges the presence of the message advisory alert and displays the advisory message in the Alert Window.

ADVISORY

Figure 5-5. ADVISORY Softkey Annunciation

5.2 System Annunciations

If data fields become invalid due to an LRU failure, the PFD/MFD typically annunciates the failure with a large red X, as shown in Figure 5-6.

Figure 5-6. System Annunciations

The following table provides basic troubleshooting guidance for LRU failures:

Invalid Data Field	Associated LRU(s)	Solution
NAV1 & COM1	GIA1	 Check configuration settings for GIA1 and the PFD. Check Ethernet interconnect from GIA1 to the PFD. Switch GIA1 and GIA2, to verify location of problem: If problem follows unit, replace defective unit. If problem persists, replace defective PFD.
NAV2 & COM2	GIA2	 Check configuration settings for GIA2 and the MFD. Check Ethernet interconnect from GIA2 to the MFD. Switch GIA1 and GIA2, to verify location of problem: ✓ If problem follows unit, replace defective unit. ✓ If problem persists, replace defective MFD.
GPS INTEG & Time	GIA1 or GIA2	 Check GPS1 and GPS2 signal strength on the 3rd AUX page. Check corresponding GPS antenna and cable. Check Ethernet interconnect from PFD to GIA1 or MFD to GIA2. Switch GIA1 and GIA2, to verify location of problem: If problem follows unit, replace defective unit. If problem persists, replace defective MFD or PFD.
XPDR FAIL	GTX 33	Check GTX RS-232 configuration settings for GIA1, GIA2, and GTX 33. Replace defective GTX 33.
TAS FAIL AIRSPEED FAIL ALTITUDE FAIL VERT SPEED FAIL VERT SPEED FAIL	GDC 74A	 Inspect GDC 74A pitot/static plumbing integrity. Inspect pitot/static ports and associated equipment. For TAS failure, also check GTP 59 OAT probe as stated below. Check GDC ARINC 429 configuration settings for the PFD, MFD, GIA1, and GIA2. ✓ If PFD, MFD, and GIA configuration settings are correct, replace defective GDC configuration module according to Section 6.8. ✓ If problem persists, replace defective GDC 74A.
	GTP 59	See above guidance for GDC 74A troubleshooting. Replace GTP 59 probe: ✓ If problem persists replace GDC 74A with a known good unit.

Invalid Data Field	Associated LRU(s)	Solution
ATTITUDE FAIL	GRS 77	Check GRS ARINC 429 configuration settings for the PFD, MFD, GIA1, and GIA2. Replace defective GRS 77.
HDG FAIL	GRS 77 & GMU 44	Replace the GMU 44 with a known good unit: ✓ If problem persists, replace defective GRS 77.
AHRS ALIGN: Keep Wings Level	GRS 77 & GMU 44	If this message persists, perform AHRS calibration procedures as described in Section 7.7.3.
Engine/Airframe Sensors (All Invalid)	GEA 71	Check GEA 71 RS-485 configuration settings for GIA1 and GIA2. Reconfigure the GEA 71 per Section 7.4.2. Check GEA – GIA1 and GEA – GIA2 Wiring. Replace defective GEA 71.

The following table provides guidance for troubleshooting individual engine/airframe sensor failures. Be sure to also follow previous guidance given for the GEA 71.

The technician should troubleshoot to isolate the fault by checking sensor-to-GEA wiring, replacing the suspect sensor, and finally by replacing the GEA 71. Replace one part at a time. Refer to Section 7.4.3 to check for correct operation of the sensors and GEA 71 after any part has been replaced.

Invalid Field	Sensor	Solution
6	Tachometer	Check tachometer – GEA wiring. Replace tachometer sensor. Refer to Figure 2-18. Replace defective GEA 71.
MAN IN 31	MAP Sensor	Check MAP sensor – GEA wiring. Replace MAP sensor. Refer to Figure 2-14. Replace defective GEA 71.
FFLOW GPH	Fuel Flow	Check fuel flow sensor – GEA wiring. Replace fuel flow sensor. Refer to Figure 2-20 and Figure 2-21. Replace defective GEA 71.
1 2 3 4 CHT °F	CHT Probes (4)	Check CHT probe – GEA wiring. Replace CHT probe. Refer to Figure 2-22. <u>If all 4 CHT indicators are flagged, check the following:</u> Replace backshell thermocouple and/or configuration module in GEA connector. See Sections 6.10 & 6.11. Replace defective GEA 71.
$ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	EGT Probes (4)	 Check EGT probe – GEA wiring. Replace EGT probe. Refer to Figure 2-23. <i>If all 4 EGT indicators are flagged, try the following:</i> Replace backshell thermocouple and/or configuration module in GEA connector. See Sections 6.10 & 6.11. Replace defective GEA 71.
OIL PRES	Oil Pressure Sensor	Check oil pressure sensor – GEA wiring. Replace oil pressure sensor. Refer to Figure 2-15. Replace defective GEA 71.
OIL TEMP	Oil Temperature Sensor	Check oil temperature sensor – GEA wiring. Replace oil temperature sensor. Refer to Figure 2-16. Replace defective GEA 71.
AMPS 0 80 AMPS	Alternator Current Sensor	Check current sensor sensor – GEA wiring. Replace current sensor. Refer to Figure 2-24. Replace defective GEA 71.
FUEL QTY GAL	Fuel Quantity Sensors (2)	Check fuel quantity sensor – GEA wiring. Replace fuel quantity sensor. Refer to the DA40 AMM. Replace defective GEA 71.

5.3 DA 40-Specific Alerts

The following alerts are configured specifically for the DA 40:

WARNING Alerts:

Annunciation Window	Alert Message	Solution
		Check alternator current sensor for proper operation.
ALTERNATOR	Alternator failed. Battery is only elec. source.	If current sensor is OK, troubleshoot alternator & aircraft electrical system according to DA 40 Airplane Maintenance Manual instructions.
		Check aircraft oil level.
OIL PRES LO		Troubleshoot oil pressure sensor for proper operation.
	Oil pressure is below 25 psi.	If oil pressure sensor is OK, troubleshoot engine oiling system according to DA 40 Airplane Maintenance Manual instructions.
FUEL PRESTO:	Fuel pressure is below 14	Troubleshoot fuel pressure sensor for proper operation.
	psi.	If fuel pressure sensor is OK, troubleshoot fuel pump and
FUEL PRES HI	Fuel pressure is greater than 35 psi.	associated fuel systems per DA 40 Airplane Maintenance Manual instructions.
STARTER ENGD	Starter is engaged.	Prepare to start aircraft engine.
	Capany and/or roor door in	Close canopy and/or rear door.
DOOR OPEN	not closed and locked.	If alert does not disappear, check canopy/door discrete sensor for proper operation.
TRIM FAIL	Autopilot automatic trim has failed.	Troubleshoot autopilot per DA 40 Airplane Maintenance Manual instructions.

CAUTION Alerts

Annunciation Window	Alert Message	Solution
L FUEL LOW	Left fuel quantity is less than 3 gallons.	Check fuel level.
R FUEL LOW	Right fuel quantity is less than 3 gallons.	4.6.
	On board voltage is below	Inspect GEA 71 connector & wiring.
LOW VOLTS	24 volts.	Troubleshoot aircraft electrical system according to DA 40 Airplane Maintenance Manual instructions.
PITOT FAIL	Pitot heat is inoperative.	Check pitot heat switch position.
		Inspect GEA 71 connector & wiring.
PITOT OFF	Pitot heat is off.	Troubleshoot pitot heat system per DA 40 Airplane Maintenance Manual instructions.

MESSAGE ADVISORY Alerts

Message Advisory	Solution		
PFD FAN FAIL – The cooling fan for the PFD is inoperative.	Ensure that the CDU FAN and/or AV FAN circuit breakers are closed		
MFD FAN FAIL – The cooling fan for the MFD is inoperative.	Check cooling fan wiring.		
GIA FAN FAIL – The cooling fan for the GIAs is inoperative.	Replace cooling fan. Refer to Figure 2-2 and/or Figure 2-7 for installation drawings.		

NOTE

From this point forward, all other message advisory alerts are standard to the G1000 system and are not specific to the DA 40. Messages are grouped according to LRU.

5.4 GDU 1040 Troubleshooting

5.4.1 GDU 1040 Common Problems

Symptom	Recommended Action	
Diaplay will not track photocoll	Check display lighting settings on the Main Lighting page:	
Display will not track photoceil	✓ If problem persists, replace defective unit.	
Kovpad/bazal will pat track photocoll	Check keyboard lighting settings on the Main Lighting page:	
Reypad/bezer will not track photocell	✓ If problem persists, replace defective unit.	
	Check display lighting settings on the Main Lighting page.	
Display will not track dimmer bus	Switch MFD and PFD:	
	✓ If problem follows unit, replace defective unit.	
	Check keyboard lighting settings on the Main Lighting page.	
keypad/bezel will not track dimmer	Switch MFD and PFD:	
	✓ If problem follows unit, replace defective unit.	

5.5 GDU 1040 Alerts

5.5.1 Software/Configuration Alerts

Failure Message	Cause	Solution
SW MISMATCH – GDU software version mismatch. Xtalk is off.	The system has found the PFD and MFD software versions do not match.	
MANIFEST – PFD1 software mismatch. Communication Halted.	The system has detected an incorrect software version loaded in the PFD.	Load correct software version. See Section 7.1 for GDU 1040 Software Loading procedure.
MANIFEST – MFD software mismatch. Communication Halted.	The system has detected an incorrect software version loaded in MFD.	
MFD1 CONFIG – configuration error. Config service req'd.	A configuration mismatch has occurred between the display and the Master Configuration Module.	Reconfigure MFD and/or PFD as described in Section 7.1.2.
PFD1 CONFIG – configuration error. Config service req'd.		If unable to reconfigure, replace defective master configuration module as described in Section 6.8.

5.5.2 Database Alerts

Failure Message	Cause	Solution
MFD1 DB ERR – MFD1 aviation database error exists.	The MFD has encountered an error in the Jeppesen aviation database.	Reload Jeppesen database. Replace the MFD.

PFD1 DB ERR – PFD1 aviation	The PFD has encountered an	Reload Jeppesen database.
database error exists.	error in the Jeppesen database.	Replace the PFD.
MFD1 DB ERR – MFD1 basemap database error exists.	The MFD has encountered an error in the basemap database.	Replace the MFD.
PFD1 DB ERR – PFD1 basemap database error exists.	The PFD has encountered an error in the basemap database.	Replace the PFD.
MFD1 DB ERR – MFD1 terrain	The MFD has encountered an error in the terrain database.	Confirm terrain datacard is inserted properly.
database error exists.		Replace terrain datacard.
		Replace the MFD.
PFD1 DB ERR – PFD1 terrain	The PFD has encountered an error in the terrain database.	Confirm terrain datacard is inserted properly.
database error exists.		Replace terrain datacard.
		Replace the PFD.
DB MISMATCH – Aviation database version mismatch. Xtalk is off.	The system has found the Jeppesen aviation database cycles in the PFD and MFD do not match.	Load current database versions.

5.5.3 Cooling Alerts

Failure Message	Cause	Solution
	MFD1 has exceeded its operating	Check MFD Fan for proper operation.
MFD1 COOLING – has poor		Replace the MFD.
cooling. Reddoling power dougo.	temperature range.	If problem persists contact Garmin.
	The PFD has exceeded it's operating temperature range.	Check PFD Fan for proper operation.
PFD1 COOLING – has poor		Replace the PFD.
cooling. Accurring power accege.		If problem persists contact Garmin.

5.5.4 Key Alerts

Failure Message	Cause	Solution
MFD1 "key" KEYSTK – key is stuck.	The SYSTEM has determined a key is stuck on MFD1.	Exercise stuck key. Replace the MFD.
PFD1 "key" KEYSTK – key is stuck.	The system has determined a key is stuck on the PFD.	Exercise stuck key. Replace the PFD.
5.5.5 Miscellaneous Alerts

Failure Message	Cause	Solution
XTALK ERROR – A flight display cross talk error has occurred.	A communication error has occurred between the MFD and PFD.	 Check the System Configuration page: ✓ Ensure that MFD1 and PFD1 are green. ✓ If configuration is not correct, reconfigure the PFD and MFD per instructions in Section 7.1.2. Check Ethernet interconnect. Replace PFD with a known good unit to verify location of problem: ✓ If problem persists, replace MFD. ✓ If problem does not persist, replace PFD.
DATA LOST – Pilot stored data lost. Recheck settings.	Pilot stored data has been lost.	Cycle power to PFD: ✓ If problem persists, replace PFD.
MFD1 SERVICE – needs service. Return unit for repair.	The system has determined MFD1 needs service.	Replace MFD.
PFD1 SERVICE – needs service. Return unit for repair.	The system has determined the PFD needs service.	Replace the PFD.

5.6 GMA Alerts

Failure Message	Cause	Solution
GMA1 SERVICE – GMA1 needs service. Return unit for repair.	The system has determined that the GMA 1347 needs service.	Peplace CMA 1347
GMA1 FAIL – GMA1 in inoperative.	The system has detected a failure in the GMA 1347.	Replace GIVIA 1947.
MANIFEST – GMA1 software mismatch. Communication Halted.	The system has detected an incorrect software version loaded in GMA 1347.	See Section 7.2.1 for GMA 1347 Software Loading procedure.
GMA1 CONFIG – GMA1 configuration error. Config service req'd.	The system has detected a GMA 1347 configuration mismatch.	See Section 7.2.2 for GMA 1347 Configuration Loading procedure.

5.6.1 GMA Redundant Paths

Failure Message	Cause	Solutions
BACKUP PATH – Audio panel using backup data path.	The GMA 1347 is using a backup RS-232 data path.	Check GIA RS-232 configuration settings:
		 ✓ If configuration is not correct, reconfigure GIAs as described in Section 7.3.2.
		Check wiring.
		Replace GMA 1347 with a known good unit, to verify location of problem:
		 ✓ If problem persists, replaced GIA1.
		 ✓ If problem does not persist, replace GMA 1347.

5.7 GIA 63 Troubleshooting

5.7.1 COM

Symptom	Recommended Action	
	Check COM antenna and cabling.	
Weak COM transmit power	Switch GIA1 and GIA2, to identify whether the unit or connectors/wiring is at fault (Both GIAs must be configured when swapped, see Section 7.3.2):	
	✓ If problem follows unit, replace defective unit per Section 6.3.	
	Check COM antenna and cabling.	
Weak COM receiver	Switch GIA1 and GIA2, to identify whether the unit or connectors/wiring is at fault (Both GIAs must be configured when swapped, see Section 7.3.2):	
	✓ If problem follows unit, replace defective unit per Section 6.3.	
No COM sidetone	Switch GIA1 and GIA2, to identify whether the unit or connectors/wiring is at fault (Both GIAs must be configured when swapped, see Section 7.3.2):	
	✓ If problem follows GIA, replace defective GIA per Section 6.3.	
	✓ If problem persists, replace defective GMA per Section 6.3.	

5.7.2 NAV

Symptom	Recommended Action	
	Check NAV antenna, coupler, and cabling.	
Weak NAV receiver	Switch GIA1 and GIA2, to identify whether the unit or connectors/wiring is at fault (Both GIAs must be configured when swapped, see Section 7.3.2):	
	✓ If problem follows unit, replace defective unit per Section 6.3.	

5.7.3 G/S

Symptom	Recommended Action	
	Check G/S antenna, coupler, and cabling.	
Weak G/S receiver	Switch GIA1 and GIA2, to identify whether the unit or connectors/wiring is at fault (Both GIAs must be configured when swapped, see Section 7.3.2):	
	✓ If problem follows unit, replace defective unit per Section 6.3	

5.7.4 GPS

Symptom	Recommended Action
Will Not Acquire Satellites	Go to AUX 3 Page on MFD and confirm which GPS receiver is inoperative (GPS 1 or GPS 2).
	Check appropriate GPS Antenna and Cabling.
	Switch GIA1 and GIA2, to identify whether the unit or connectors/wiring is at fault (Both GIAs must be configured when swapped, see Section 7.3.2):
	✓ If problem follows unit, replace defective unit per Section 6.3.

5.8 GIA Alert Messages

5.8.1 COM Alerts

Failure Message	Cause	Solutions
COM1 SERVICE – COM1 needs service. Return unit for repair.	The system has determined COM1 needs service.	Replace GIA1 according to instructions in Section 6.
COM2 SERVICE – COM2 needs service. Return unit for repair.	The system has determined COM2 needs service.	Replace GIA2 according to instructions in Section 6.
		Press the push-to-talk switch(s) again to cycle its operation.
		Check push-to-talk switch(s) and wiring.
		Check GIA1/GMA 1347 interconnect.
COM1 PTT – COM1 push-to-talk key is stuck.	The COM1 external push-to-talk (PTT) switch is stuck in the enabled (or "pressed") state.	Switch GIA1 and GIA2, to identify whether the unit or connectors/wiring is at fault (Both GIAs must be configured when swapped; see Section 7.3):
		 ✓ If problem follows the unit, replace GIA1.
		 ✓ If problem persists replace defective GMA 1347.
		Press the push-to-talk switch(s) again to cycle its operation.
	The COM2 external push-to-talk (PTT) switch is stuck in the enabled (or "pressed") state.	Check push-to-talk switch(s) and wiring.
		Check GIA2/GMA 1347 interconnect.
COM2 PTT – COM2 push-to-talk key is stuck.		Switch GIA1 and GIA2, to identify whether the unit or connectors/wiring is at fault (Both GIAs must be configured when swapped, see Section 7.3.2):
		 ✓ If problem follows the unit, replace GIA2.
		 ✓ If problem persists replace defective GMA 1347.

COM Related Alerts, Continued		
Failure Message	Cause	Solutions
	The COM1 external remote transfer switch is stuck in the enabled (or "pressed") state.	Press the COM1 external remote transfer switch again to cycle its operation.
		Check COM1 external remote transfer switch and wiring.
COM1 RMT XFR – COM1 remote transfer key is stuck.		Switch GIA1 and GIA2, to identify whether the unit or connectors/wiring is at fault (Both GIAs must be configured when swapped, see Section 7.3.2)
		 ✓ If problem follows the unit, replace GIA1.
		 If problem persists, continue to troubleshoot remote transfer switch & wiring.
COM2 RMT XFR – COM2 remote transfer key is stuck.	The COM2 external remote transfer switch is stuck in the enabled (or "pressed") state.	Press the COM2 external remote transfer switch again to cycle its operation.
		Check COM2 external remote transfer switch and wiring.
		Switch GIA1 and GIA2, to identify whether the unit or connectors/wiring is at fault (Both GIAs must be configured when swapped, see Section 7.3.2):
		 ✓ If problem follows the unit, replace GIA2.
		 If problem persists, continue to troubleshoot remote transfer switch & wiring.

5.8.2 NAV Alerts

Failure Message	Cause	Solution
NAV1 SERVICE – NAV1 needs service. Return unit for repair.	The system has detected a failure in NAV1 receiver.	Replace GIA1.
NAV2 SERVICE – NAV2 needs service. Return unit for repair.	The system has detected a failure in NAV2 receiver.	Replace GIA2.
		Press the NAV1 external remote transfer switch again to cycle its operation.
		Check NAV1 remote transfer switch and wiring.
NAV1 RMT XFR – NAV1 remote transfer key is stuck.	The NAV1 external remote transfer switch is stuck in the enabled (or "pressed") state.	Switch GIA1 and GIA2, to identify whether the unit or connectors/wiring is at fault (Both GIAs must be configured when swapped, see Section 7.3):
		 ✓ If problem follows unit, replace GIA1.
		 ✓ If problem persists, continue to troubleshoot remote transfer switch & wiring.
		Press the NAV2 external remote transfer switch again to cycle its operation.
		Check NAV2 remote transfer switch and wiring.
NAV2 RMT XFR – NAV2 remote transfer key is stuck.	The NAV2 external remote transfer switch is stuck in the enabled (or "pressed") state.	Switch GIA1 and GIA2, to identify whether the unit or connectors/wiring is at fault (Both GIAs must be configured when swapped, see Section 7.3.2):
		 ✓ If problem follows unit, replace GIA1.
		 ✓ If problem persists, continue to troubleshoot remote transfer switch & wiring.

5.8.3 Glideslope Alerts

Failure Message	Cause	Solution
G/S1 SERVICE – G/S1 needs service. Return unit for repair.	The system has detected a failure in G/S1 receiver.	Replace GIA1.
G/S2 SERVICE – G/S2 needs service. Return unit for repair.	The system has detected a failure in G/S1 receiver.	Replace GIA2.
G/S1 FAIL – G/S1 is inoperative. The system has detect in G/S1 receiver.	The system has detected a failure	Check G/S1 antenna and cabling.
	in G/S1 receiver.	Replace GIA1 if problem persists.
G/S2 FAIL – G/S2 is inoperative.	The system has detected a failure in G/S2 receiver.	Check G/S2 antenna and cabling.
		Replace GIA2 if problem persists.

5.8.4 GPS Alerts

Failure Message	Cause	Solution
MANIFEST – GPS1 software mismatch. Communication Halted.	The system has detected an incorrect software version loaded in GIA1.	See Section 7.3.1 for GIA 63 Software Loading procedure.
MANIFEST – GPS2 software mismatch. Communication Halted.	The system has detected an incorrect software version loaded in GIA1.	See Section 7.3.1 for GIA 63 Software Loading procedure.
GPS1 SERVICE – GPS1 needs service. Return unit for repair.	The system has detected a failure in GPS1 receiver.	Replace GIA1.
GPS2 SERVICE – GPS2 needs service. Return unit for repair.	The system has detected a failure in GPS2 receiver.	Replace GIA2.
GPS1 FAIL – GPS1 is inoperative.	The system has detected a failure in GPS1 receiver.	Check GPS1 antenna and cabling. Replace GIA1 if problem persists.
GPS2 FAIL – GPS2 is inoperative.	The system has detected a failure in GPS2 receiver.	Check GPS2 antenna and cabling. Replace GIA2 if problem persists.

5.8.5 GIA Cooling Alerts

Failure Message	Cause	Solution
GIA1 COOLING – GIA1 temperature too low.	GIA1 operating temperature is too low.	Allow unit to warm up.
GIA2 COOLING – GIA2 temperature too low.	GIA2 operating temperature is too low.	Allow unit to warm up.
GIA1 COOLING – GIA1 over temperature.	GIA1 has exceeded its operating temperature range.	Check Avionics Fan for proper operation. Replace GIA1.
GIA2 COOLING – GIA2 over temperature.	GIA2 has exceeded its operating temperature range.	Check Avionics Fan for proper operation. Replace GIA2. If problem persists contact Garmin.

5.8.6 GIA Configuration Alerts

Failure Message	Cause	Solution	
MANIFEST – GIA1 software mismatch. Communication Halted.	The system has detected an incorrect software version loaded in GIA1.	See Section 7.3.1 for GIA 63 Software	
MANIFEST – GIA2 software mismatch. Communication Halted.	The system has detected an incorrect software version loaded in GIA2.	Loading procedure.	
GIA1 CONFIG – GIA1 configuration error. Config service req'd.	The system has detected a GIA configuration mismatch. If GIAs	See Section 7.3.2 for GIA 63	
GIA2 CONFIG – GIA2 configuration error. Config service req'd.	being swapped/replaced, this message appears.	Configuration Loading procedure.	

5.9 GEA Troubleshooting

5.9.1 GEA Alerts

Failure Message	Cause	Solution
MANIFEST – GEA1 software mismatch. Communication Halted.	The system has detected an incorrect software version loaded in GEA 71.	See Section 7 for GEA 71 Software Load Procedure.
GEA1 CONFIG – GEA1 configuration error. Config service req'd.	The system has detected a GEA 71 configuration mismatch.	See Section 7 for GEA 71 Configuration Procedure.

5.9.2 GEA Redundant Paths

Failure Message	Cause	Solutions
BACKUP PATH – EIS using backup data path.	The GEA 71 is using a backup RS-485 data path.	Check RS-485 configuration settings at the GIA page group:
		 ✓ If configuration is not correct, reconfigure GIA as described in Section 7.
		Check wiring.
		Replace GIA1 with a known good unit, to verify location of problem:
		 ✓ If problem persists, replace the GEA 71.
		 ✓ If problem does not persist, replace GIA1.

5.10 GTX Troubleshooting

5.10.1 GTX Alerts

Failure Message Cause		Solutions
MANIFEST – GTX1 software mismatch. Communication Halted.	The system has detected an incorrect software version loaded in GTX 33.	Reload software. See Section 7 for GTX 33 Software Load Procedure.
XPDR1 CONFIG – XPDR1 configuration error. Config service req'd.	The system has detected a GTX 33 configuration mismatch.	Reload configuration file. See Section 7 for GTX 33 Configuration Procedure.

5.10.2 GTX Redundant Paths

Failure Message Cause Solutions		Solutions
BACKUP PATH – Transponder using backup data path.	The GTX 33 is using a backup RS-232 data path.	Check RS-232 configuration settings at GIA and GTX page groups:
		 ✓ If configuration is not correct, reconfigure GIA or GTX as described in Section 7.
		Check wiring.
		Replace GIA1 with a known good unit, to verify location of problem:
		 ✓ If problem persists, replace the GTX 33.
		 ✓ If problem does not persist, replaced GIA1.

5.11 GRS 77/GMU 44 Troubleshooting

5.11.1 GRS Alerts

Failure Message	Cause	Solutions	
MANIFEST – GRS1 software mismatch. Communication Halted.	The system has detected an incorrect software version loaded in GRS 77.	• Reload software. See Section 7 for GRS 77 Software Load Procedure.	
AHRS SERVICE – AHRS Magnetic-field model needs update.	The AHRS magnetic field model should be updated. Appears on ground only.	See Section 4.7.	
GEO LIMITS – Too far North/South, no magnetic compass.	The aircraft is outside of its operating limits; i.e., too far North or South. Heading will be flagged invalid.	Operate the aircraft only within the limits as specified in the G1000/DA 40 AFMS.	
AHRS TAS – AHRS not receiving airspeed.	The GRS 77 is not receiving airspeed from the GDC 74A.	Check GRS/GDC interconnect.	
AHRS GPS – AHRS not receiving GPS information.	The GRS 77 is not receiving GPS data from the GPS receivers.	Ensure that both GPS1 and GPS2 can lock on to GPS signals:	
AHRS GPS – AHRS using backup GPS source.	The GRS 77 is using the backup GPS data path.	 ✓ If GPS receivers are faulty, replace GIA unit(s). 	
		If GPS receivers operate correctly, check GRS/GIA interconnects:	
		✓ If interconnects operate correctly, replace GRS 77.	

5.11.2 GMU Alerts

Failure Message	Cause	Solutions
MANIFEST – GMU1 software mismatch. Communication Halted.	The system has detected an incorrect software version loaded in GMU 44.	Reload software. See Section 7 for GMU 44 Software Load Procedure.
HDG FAULT – A magnetometer fault has occurred.	A fault has occurred in the magnetometer; heading will be flagged invalid.	Replace GMU 44.

5.11.3 GRS Redundant Paths

Failure Message	Cause	Solutions
BACKUP PATH – AHRS using backup data path.	The GRS 77 is using a backup ARINC 429 data path.	 Check ARINC 429 configuration settings at the GDU and GIA page groups:
		 ✓ If configuration is not correct, reconfigure GDU or GIA as described in Section 7.
		Check wiring.
		Replace PFD1 with a known good unit, to verify location of problem:
		 ✓ If problem persists, replace the GRS 77.
		 ✓ If problem does not persist, replace PFD1.

5.12 GDC 74A Troubleshooting

5.12.1 GDC Alerts

Failure Message	Cause	Solutions
MANIFEST – GDC1 software mismatch. Communication Halted.	The system has detected an incorrect software version loaded in GDC 74A.	 Reload software. See Section 7 for GDC 74A Software Load Procedure.
	The GDC 74A is using a backup ARINC 429 data path.	Check ARINC 429 configuration settings at GDU and GIA page groups:
		 ✓ If configuration is not correct, reconfigure GIA or GDU as described in Section 7.
BACKUP PATH – Airdata using		Check wiring.
раскир data patn.		Replace PFD1 with a known good unit, to verify location of problem:
		 ✓ If problem persists, replace the GDC 74A.
		 ✓ If problem does not persist, replace PFD1.

This page intentionally left blank.

6 G1000 Equipment Removal & Replacement

This section describes how to remove and replace G1000 equipment in the Diamond DA 40. After removal and replacement, LRUs must be configured and tested as described in Section 7.

CAUTION

When removing and/or replacing any G1000 component, always ensure that aircraft power is off. Unplug any auxiliary power supplies.

Before removing any G1000 LRU, it is required that the technician verify the LRU software part number and version against Appendix A.

To check an LRU software part number and/or version:

- 1. Start the G1000 system in configuration mode as described in Section 3.3.
- 2. The System Status page shows a list of LRUs in the LRU window. Activate the cursor and highlight the LRU window.
- 3. Use the FMS knob to scroll through the list in the window and select the desired LRU.
- 4. The software part number and version is displayed in the DATA window. Compare this to the data in Appendix A.

NOTE

If a faulty LRU is not reporting its software version and part number, check aircraft maintenance logs for last software version loaded and verify against Appendix A. The Software Manifest page may also be used to check part numbers and versions.

		SYSTEM STATUS
PFD1		
PFD2 🗆		
GIA'S ONLINE		
GIA1 📕		
GIA2 📕		
	DATA	
GEA1 - GIA1	PART NUMBER	006-B0319-04
GEA1 - GIA2	VERSION	2.01
GIA1	PRODUCT	GDU1040
GIA2	DESCRIPTION	GDU10XX System Software
GMA1 - GIA1	COPYRIGHT	(c) 2002-04 Garmin Ltd or subs
GMA1 - GIA2	SERIAL NUMBER	86400004
GMU1	MODEL NUMBER	4
GMU1 FPGA	FUNCTIONS PRESENT	0
GRS1 - GIA1	STATUS	ONLINE
GRS1 - GIA2	BB PART NUMBER	006-B0191-00
GRS1 FPGA	BB VERSION	1.05
GRS1 MV DB		
GTX1 - GIA1		
GTX1 - GIA2		
MFD1		

Figure 6-1. System Status Page (Configuration Mode)

6.1 GDU 1040 MFD & PFD

<u>Removal:</u>

- 1. Using a 3/32nd hex tool, rotate all four ¹/₄-turn fasteners counter-clockwise until they reach their stops.
- 2. Carefully remove the display from the panel.
- 3. While supporting the display, disconnect the connector.

<u>Replacement:</u>

- 1. Visually inspect the connector and pins for signs of damage. Repair any damage. While supporting the display, connect the connector to the rear of the unit.
- 2. Carefully insert the display into the panel cutout, ensuring that all 4 ¹/₄-turn fasteners align with the corresponding holes.
- 3. Seat the display in the panel cutout. Do not use excessive force while inserting the display.
- 4. Once seated, rotate all four ¹/₄-turn fasteners clockwise to lock the display to the panel.
- 5. Configure and test the MFD and/or PFD according to Section 7.1.

6.2 GMA 1347 Audio Panel

<u>Removal:</u>

- 1. Using a 3/32nd hex tool, turn the hex nut counter-clockwise until the GMA 1347 is unlocked from its location.
- 2. Carefully remove the GMA 1347 from its rack.

<u>Replacement:</u>

- 1. Visually inspect the connectors using a flashlight to ensure there are no bent or damaged pins. Repair any damage.
- 2. Gently insert the GMA 1347 into the rack until the locking tab engages the rack.
- 3. Begin to turn the hex nut clockwise. This draws the unit into the rack until seated. Do not over-tighten the nut.
- 4. Configure and test the GMA 1347 according to Section 7.2.

6.3 GIA 63 Integrated Avionics Units

<u>Removal:</u>

- 1. Remove the baggage compartment cover to gain access to the remote avionics enclosure.
- 2. Remove the remote avionics enclosure cover. Removal process is identical for GIA #1 or #2. Remove and replace only one GIA 63 at a time.
- 3. Unlock the GIA 63 handle by loosening the Phillips screw on the handle.
- 4. Pull the handle upward to unlock the GIA 63. Gently remove the unit from the rack.

<u>Replacement:</u>

- 1. Visually inspect the connectors using a flashlight to ensure there are no bent or damaged pins. Repair any damage.
- 2. Gently insert the GIA 63 into its rack. The handle should engage the dogleg track.
- 3. Press down on the GIA 63 hand to lock the unit into the rack.
- 4. Lock the handle to the GIA 63 body using the Philips screw.
- 5. Configure and test the GIA 63(s) according to Section 7.3.

6.4 GEA 71 Engine/Airframe Unit

<u>Removal:</u>

- 1. Gain access to the space behind the instrument panel by removing the panel cover.
- 2. Unlock the GEA 71 handle by unscrewing the Phillips screw.
- 3. Firmly grasp the GEA 71 handle and pull it up vertically. This unlocks the unit from the rack.
- 4. Gently remove the GEA 71 from its rack.

<u>Replacement:</u>

- 1. Visually inspect the connectors using a flashlight to ensure there are no bent or damaged pins. Repair any damage.
- 2. Gently insert the GEA 71 into the rack. The handle should engage the dogleg track.
- 3. Press down on the handle to lock the unit into place.
- 4. Lock the handle to the GEA 71 body using the Philips screw.
- 5. Configure and test the GEA 71 according to Section 7.4.

6.5 GTX 33 Transponder

<u>Removal:</u>

- 1. Remove the baggage compartment floor and compartment to gain access to the remote avionics enclosure.
- 2. Unlock the GTX 33 handle by loosening the Phillips screw on the handle.
- 3. Pull the handle upward to unlock the GTX 33. Gently remove the unit from the rack.

<u>Replacement:</u>

- 1. Visually inspect the connectors using a flashlight to ensure there are no bent or damaged pins. Repair any damage.
- 2. Gently insert the GTX 33 into its rack. The handle should engage the dogleg track.
- 3. Press down on the GTX 33 hand to lock the unit into the rack.
- 4. Lock the handle to the GTX 33 body using the Philips screw.
- 5. Configure and test the GTX 33 according to Section 7.5.

6.6 GDC 74A Air Data Computer

<u>Removal:</u>

- 1. Gain access to the space behind the instrument panel by removing the panel cover.
- 2. Disconnect the pitot/static plumbing from the rear of the unit. Disconnect the single connector.
- 3. Loosen each thumbscrew on the hold-down clamp and remove the clamp.
- 4. Carefully remove the unit from its mount.

<u>Replacement:</u>

- 1. Place the unit in the mounting tray.
- 2. Position the locking clamp and fasten using the thumbscrews.
- 3. Connect the pitot/static plumbing.
- 4. Inspect the connector and pins for damage. Repair any damage. Connect the connector to the unit.
- 5. Configure and test the GDC 74A according to Section 7.6.

6.7 GTP 59 OAT Probe

<u>Removal:</u>

- 1. Remove the co-pilot seat per the DA 40 Aircraft Maintenance Manual.
- 2. Use a deep-socket to hold the probe in place on the outside of the aircraft. Inside the cockpit, loosen the GTP 59 mounting nut and remove the GTP 59.

<u>Replacement:</u>

- 1. Replacement is the reverse of removal.
- 2. No configuration is required for the GTP 59. Test according to Section 7.6.

6.8 GRS 77 AHRS

<u>Removal:</u>

- 1. Remove baggage compartment floor, then remove the baggage compartment.
- 2. Disconnect the AHRS connector.
- 3. Remove the four Phillips thumbscrews with a screwdriver and set them aside.
- 4. Gently lift the GRS 77 from the mounting plate. (If the mounting plate is removed, the GRS 77 <u>must</u> be re-calibrated. See Section 7.7.3)

Replacement:

- 1. Place the GRS 77 on the mounting plate, ensuring the orientation is correct.
- 2. Fasten the unit to the plate using the Phillips thumbscrews.
- 3. Visually inspect the connectors to ensure there are no bent or damaged pins. Repair any damage. Connect the connector to the GRS 77.
- 4. Calibrate, and test the GRS 77 according to Section 7.7.

6.9 GMU 44 Magnetometer

<u>Removal:</u>

- 1. Remove GMU access plate below starboard wing by unscrewing the three Phillips screws.
- 2. Carefully lower the plate, which contains the GMU 44, a phenolic spacer, and the GMU rack.
- 3. Disconnect the wiring harness.

Replacement:

- 1. Visually inspect the connectors to ensure there are no bent or damaged pins. Repair any damage. Connect the wiring harness to the GMU 44.
- 2. Place the GMU in the bay and secure the plate with the 3 Phillips screws.
- 3. Calibrate and test the GMU 44 according to Section 7.7.

6.10 Configuration Module Removal & Replacement

<u>Removal:</u>

- 1. Disconnect connector from LRU.
- 2. Remove 2 screws (8) from cover (7) and remove cover.
- 3. Unplug connector from configuration module (1).
- 4. Remove configuration module.

<u>Replacement:</u>

- 1. Inspect connector for damaged pins (4).
- 2. Place configuration module (1) in position.
- 3. Insert connector into configuration module (1).
- 4. Assembly of the connector is the reverse of disassembly.

If the GRS 77 AHRS Configuration Module is replaced:

All three GRS 77/GMU 44 calibration procedures must be performed. Proceed to Section 7.7.3.

If GDC 74 Configuration Module is replaced:

Configuration settings must be reloaded to the GDC 74A. Proceed to Section 7.6.2.

If the Master Configuration Module is replaced:

- i. Start the G1000 system in configuration mode.
- ii. Go to the Configuration Upload Page on the PFD.
- iii. Press the UPDT CFG softkey.

If both the PFD and Master Configuration Module is replaced:

The G1000 system (except GRS 77/GMU 44 and GDC 74A) must be re-configured. Proceed to Section 7.1.1.

6.11 GEA 71 Backshell Thermocouple Removal & Replacement

Figure 6-3. GEA Backshell Thermocouple

Table 6-1. Thermocouple Kit (011-00981-00)

ltem #	Description	Qty. Needed	Garmin Part Number
1	3" Thermocouple, K type	1	925-L0000-00
2	Pins #22 AWG	2	336-00021-00
3	Screw	1	211-60234-08

<u>Removal</u>

- 1. Remove GEA 71 per Section 6.4.
- 2. Remove GEA connector backplate.
- 3. Remove connector J701, item 5, from the backplate.
- 4. Remove cover, item 6 from the backshell.
- 5. Unscrew thermocouple from boss on backshell. Extract the thermocouple pins from the connector.

<u>Replacement</u>

- 1. Crimp pins, item 2, onto each of the thermocouple wires, item 1. Ensure that pre-stripped wire length is 1/8" prior to crimping.
- 2. Insert newly crimped pins and wires into the appropriate connector housing location, item 4, as specified by the Diamond wiring diagram.
- 3. Place thermocouple body, item 1, onto the backshell boss, item 5. Place the thermocouple as shown in Figure 6-3 so that the wires exit towards the bottom of the backshell.
- 4. Fasten thermocouple tightly to backshell using the provided screw, item 3.
- 5. Fasten cover, item 6, to backshell using the provided screws, item 7.

This page intentionally left blank.

7 G1000 Equipment Configuration & Testing

This section provides procedures to be followed after a piece of G1000 equipment is replaced. At the beginning of each LRU section, instructions are given to guide the technician for various removal/replacement scenarios. These instructions define necessary procedures to be followed for situations where original equipment was reinstalled as well as for situations where new equipment (new serial number) is installed.

7.1 GDU 1040 MFD & PFD

Original Display Reinstalled

If the removed display(s) are re-installed in their original positions, no software or configuration loading is required. Continue to the PFD/MFD Test procedure.

Original Displays Installed in Opposite Configurations

If the PFD and MFD are installed in opposite positions, no software or configuration loading is required. Continue to the PFD/MFD Test procedure.

<u>New Display(s) Installed</u>

If a new GDU 1040 (new serial number) is installed, the correct software and configuration files must be loaded to the unit.

7.1.1 PFD/MFD Software Loading

- 1. Apply power to the G1000 system by turning the master switch on. The ground power unit may now be powered up, if desired. Pull the MFD and PFD circuit breakers.
- 2. Insert the correct G1000/DA 40 SW Loader Card into the replaced display top card slot. See Appendix A for correct Loader Card part number.
- 3. Hold the ENT key on the replaced display and restore power by closing the applicable circuit breaker (power only the replaced unit).
- 4. When the words **INITIALIZING SYSTEM** appear in the upper left corner of the display, release the ENT key.
- 5. Press the ENT key to acknowledge the following prompt:

6. The following screen is displayed.

- 7. Software is loaded to the replaced display. When complete, the display starts in configuration mode.
- 8. If both displays were replaced, repeat steps 1-7 for the opposite display.
- 9. Continue to the PFD/MFD Configuration procedure.

7.1.2 **PFD/MFD** Configuration

- 1. Insert the correct G1000/DA 40 SW Loader Card (see Appendix A) into the PFD top card slot, if it is not already in the PFD.
- 2. Start both the MFD and PFD in Configuration mode, if they are not yet in Configuration mode.
- 3. At the PFD, go to the Configuration Upload page using the FMS knob:

←ILLE LIST, → AIRFRAME SYSTEM MANIFEST MFD 1 GIA 1 GIA 2 GHA 1 GIX 1 GEA 1 GDC 1	CONFIGU	RATION UPLOAD
<u>SUMARY</u> ,		SYSTEM GOU GIA GEA GTX GRS GOC GMA 00000

- 4. Activate the cursor and highlight 'AIRFRAME' in the FILE LIST field.
- 5. Press the LOAD softkey.
- 6. Select YES and press the ENT key to acknowledge the following prompt:

7. Monitor the status of the upload. When the upload is finished, press the ENT key to acknowledge the following confirmation:

- 8. Highlight 'SYSTEM' in the FILE LIST field and repeat steps 5 through 7.
- 9. Highlight 'MANIFEST' in the FILE LIST field and repeat steps 5 through 7.
- 10. Highlight 'MFD1' in the FILE LIST field and repeat steps 5 through 7.
- 11. Highlight 'PFD1' in the FILE LIST field and repeat steps 5 through 7.
- 12. View the SUMMARY field and ensure that all items are 'COMPLETE', then de-activate the cursor:

		SYSTEM STATUS
GDU'S ONLINE		
GIA'S ONLINE		
GIA1 🔳		
GIA2 🔳		
	DATA	
GEA1 - GIA1	PART NUMBER	006-B0319-04
GEA1 - GIA2	VERSION	2.01
GIA1	PRODUCT	GDU1040
GIA2	DESCRIPTION	GDU10XX System Software
GMA1 - GIA1	COPYRIGHT	(c) 2002-04 Garmin Ltd or subs
GMA1 - GIA2	SERIAL NUMBER	86400004
GMU1	MODEL NUMBER	4
GMU1 FPGA	FUNCTIONS PRESENT	0
GRS1 - GIA1	STATUS	ONLINE
GRS1 - GIA2	BB PART NUMBER	006-80191-00
GRS1 FPGA	BB VERSION	1.05
GRS1 MV DB		
GTX1 - GIA1		
GTX1 - GIA2		
MFD1		

- 13. At the System Status page, activate the cursor and highlight 'PFD1' and 'MFD1' in the LRU window.
- 14. Verify that the part number and version of the software reported matches the data in Appendix A.
- 15. Continue to the Aviation Database Loading procedure.

7.1.3 Aviation Database Loading

- 1. Remove the G1000/DA 40 SW Loader Card from the display and remove power both displays.
- 2. Insert an aviation database update SD card into the top slot of the PFD.
- 3. Apply power to the PFD. The following prompt is displayed in the upper left corner of the PFD:

DO	YOU	WANT	TO U	PDATE	E THE	AVI	ATION	I DATA	BASE?
PRE	ESS (CLR FO	DR NO	and	ENT	FOR	YES		
YOl	j hai	JE 30	SECO	NDS E	BEFOR	e No	IS F	ETURN	ED

4. Press the ENT key to confirm the database update. The following prompt is displayed:

DO YOU WANT TO UPDATE THE AVIATION DATABASE? PRESS CLR FOR NO AND ENT FOR YES YOU HAVE 30 SECONDS BEFORE NO IS RETURNED UPDATING AVIATION DATABASE

UPDATED 1 FILES SUCCESSFULLY!

- 5. After the update completes, the PFD starts in normal mode. Remove the aviation database update SD Card from the PFD.
- 6. Remove power from the MFD.
- 7. Repeat steps 2 through 4 for the MFD. The MFD and PFD aviation databases are now updated.
- 8. Confirm that the correct update cycle and version is loaded during startup of the MFD.
- 9. Remove the aviation database update SD Card from the MFD.
- 10. Continue to the PFD/MFD Test procedure.

7.1.4 PFD/MFD Test

- 1. Allow displays to initialize for ~ 1 minute.
- 2. Check that all COM/NAV display fields are valid in the top corners of the display.
- *For PFD*: Check that attitude, heading, altitude, airspeed, vertical speed and OAT fields are valid within 2 minutes of power up.

Figure 7-1. G1000 Normal Mode Check

3. Push the red display reversion button on the GMA 1347. Verify both displays enter reversionary mode (both should have valid attitude, heading, altitude, airspeed, vertical speed, and engine instruments):

Figure 7-2. G1000 Reversionary Mode Check

- 4. De-activate reversion mode by pushing the red reversion button again.
- 5. If no other service is to be performed, perform final return-to-service test as specified in Section 8.

7.2 GMA 1347 Audio Panel

Original GMA 1347 Reinstalled

No software/configuration loading or testing is required if the removed GMA 1347 is re-installed. Continue to the final return-to-service checks in Section 8.

New GMA 1347 Installed

If a new GMA 1347 (new serial number) is installed, the correct software and configuration files must be loaded to the unit.

7.2.1 GMA 1347 Software Loading

- 1. Insert the correct G1000/DA 40 SW Loader Card (see Appendix A) into the top slot of the PFD.
- 2. Start the G1000 system in Configuration mode.
- 3. At the PFD, go to the Software Upload page using the FMS knob.
- 4. Highlight the GMA software file. Ensure that both paths to the GMA through GIA1 and GIA 2 appear in the LRU field as shown:

	S	OFTWARE UPLOAD		
FILE LIST				
GMU44 VER 2.01	006-B0224-00	→GMA1 - GIA1	2.00	
GRS77 VER 2.01	006-B0223-00	GMA1 - GIA2	2.00	
GDC74 VER 2.02	006-B0261-00			
→ GMAX347 VER 2.03	006-B0203-02			
GTX33X VER 3.05	006-B0328-00			
GEA7X VER 2.02	006-B0193-00			
GPS VER 3.01	006-B0093-00			
GIA6X VER 2.01	006-B0190-06			

- 5. Press the LRU softkey. Select the GMA1 GIA1 data path to load software. Press the LOAD softkey.
- 6. Select YES and press the ENT key to acknowledge the following prompt:

7. The software for the GMA 1347 Audio Panel begins to load. Monitor the upload status as it progresses:

8. After the file finishes loading, press ENT to acknowledge the following prompt:

- 9. Check the SUMMARY field to ensure the load is 'COMPLETE'.
- 10. Continue to the GMA 1347 Configuration procedure.

7.2.2 GMA 1347 Configuration

- 1. Insert the correct G1000/DA 40 SW Loader Card (see Appendix A) into top slot of PFD.
- 2. Start the G1000 system Configuration mode, if the system is not already in Configuration mode.
- 3. At the PFD, go to the Configuration Upload page using the FMS knob:

1			CC	NFIGURAT	ION U	PLOAD					
	FILE LIST										
	→AIRFRAME										
	SYSTEM										
	MANIFEST										
	MFD 1										
	PFD 1										
	GIA 1										
	GIA 2										
	GMA 1										
	GTX 1										
	GEA 1										
	GDC 1										
						SYSTEM GD	U GIA	I GEA GTX	GRS GDC GM	A 0000	
1	UPDT CFG	LOAD ALL	LOAD		FIL	E SUMMA	RY				

- 4. Activate the cursor and highlight 'GMA 1' in the FILE LIST field.
- 5. Press the LOAD softkey.
- 6. Select YES and press the ENT key to acknowledge the following prompt:

7. Monitor the status of the upload. When the upload is finished, press the ENT key to acknowledge the following confirmation:

- 8. View the SUMMARY field and ensure that the load is 'COMPLETE', then de-activate the cursor.
- 9. Go to the System Status page.
- 10. Activate the cursor and highlight 'GMA1 GIA1', then 'GMA1 GIA2' in the LRU window.
- 11. Verify that the reported part number and version of the software file matches the data in Appendix A.
- 12. Continue to the GMA 1347 Test procedure.

7.2.3 GMA 1347 Test

Except for marker beacon operation, an in-aircraft checkout may be performed in the aircraft with known good microphone, headset, and speaker.

Intercom System (ICS) Check:

- 1. Plug in headsets at each ICS position.
- 2. Ensure that the MAN SQ key is off (no light).
- 3. Adjust volume for each position and verify that the ICS is working properly.
- 4. Check Pilot and Copilot ICS positions for isolation and proper operation of volume and squelch controls.
- 5. Press the PA key. Verify that microphone audio is heard over the speaker when the Push-To-Talk (PTT) key is pressed.

Transceiver Operational Check:

Perform a ramp test radio check by exercising the installed transceivers, microphone, microphone key and audio over the headphones and speaker. Verify that communications are clear and PTT operation is correct for each pilot position.

- 1. Select the audio source corresponding to each installed avionics unit (i.e. NAV1, NAV2, COM1, COM2) and check for audio over the headsets.
- 2. Press the SPKR key and verify that the selected audio is heard over the speaker.

Failsafe Operation Check:

- 1. Turn the GMA 1347 off by pulling the AUDIO circuit breaker. This directs all COM 1 phone audio, MIC audio and MIC key to the pilot's position.
- 2. Check the failsafe operation by exercising the COM 1 microphone, microphone key and audio over the headphones. All volume control for the COM audio should be through the PFD/MFD volume control. Verify proper operation of COM 1 using the failsafe operation.
- 3. Close the AUDIO circuit breaker to continue testing.

Marker Beacon Test:

Figure 7-3. Marker Beacon Symbology

Using a ramp tester, simulate the outer marker, middle marker and inner marker signals by following the test equipment manufacturer's instructions. Verify that each marker audio signal is present over the headphones and speaker.

Verify that the outer, middle, and inner annunciations appear on the PFD when the corresponding signal is applied. Marker beacon annunciations appear at the upper left corner of the altitude indicator on the PFD (Figure 7-3). Operate the MKR MUTE key on the GMA 1347 and ensure that the audio signal is muted.

If no other service is to be performed, continue to the return-to-service checks in Section 8.

7.3 GIA 63 Integrated Avionics Unit

Original GIA 63(s) Reinstalled:

No software or configuration loading is required if the removed GIA is re-installed in its original position (GIA1 and GIA2 in their original racks). Continue to the return-to-service checks in Section 8.

Original GIA 63s Swapped:

No software loading is required if the originally installed GIA units are re-installed in opposite positions (GIA1 and GIA2 in opposite unit racks). However, the units must be re-configured. Continue to the GIA 63 Configuration Loading procedure.

New GIA 63(s) Installed

If a new GIA 63 (new serial number) is installed, the correct software and configuration files must be loaded to the unit. Continue to the GIA 63 Software Loading procedure.

7.3.1 GIA 63 Software Loading

- 1. Insert the correct G1000/DA 40 SW Loader Card (see Appendix A) into top slot of PFD.
- 2. Start the G1000 system in Configuration mode.
- 3. Go to the Software Upload page using the FMS knob.
- 4. Activate the cursor and select the GIA software file. Verify that GIA1 and GIA2 appear in the LRU field as shown:

	S	OFTWARE UPLOAD		
FILE LIST				
GMU44 VER 2.01	006-B0224-00	→GIA1	1.09	
GRS77 VER 2.01	006-B0223-00	GIA2	1.09	
GDC74 VER 2.02	006-B0261-00			
GMAX347 VER 2.03	006-B0203-02			
GTX33X VER 3.05	006-B0328-00			
GEA7X VER 2.02	006-B0193-00			
GPS VER 3.01	006-B0093-00			
→ GIA6X VER 2.01	006-B0190-06			

- 5. Press the LRU softkey and select the appropriate replaced GIA. Press the LOAD softkey.
- 6. Select YES and press ENT to acknowledge the following prompt:

7. The software for GIA1 begins to load. GIA2 software loads immediately after GIA1 software finishes loading. Monitor the upload status as it progresses:

8. After the files finish loading, press ENT to acknowledge the following prompt:

- 9. View the SUMMARY field and verify that both GIA1 and GIA2 software loading is complete.
- 10. Highlight the GPS software file. Ensure that GPS1 and GPS2 appear in the LRU field as shown:

		SOFTWARE UPLOAD		
FILE LIST				
GMU44 VER 2.01	006-B0224-00	→GPS1	3.01	
GRS77 VER 2.01	006-B0223-00	GPS2	3.01	
GDC74 VER 2.02	006-B0261-00			
GMAX347 VER 2.03	006-B0203-02			
GTX33X VER 3.05	006-B0328-00			
GEA7X VER 2.02	006-B0193-00			
→GPS VER 3.01	006-B0093-00			
GIA6X VER 2.01	006-B0190-06			

- 11. Press the LOAD softkey.
- 12. Select YES and press the ENT key to acknowledge the following prompt:

13. The software for GPS1 begins to load. GPS2 software loads immediately after GPS1 software finishes loading. Monitor the upload status as it progresses:

14. After the files finish loading, press ENT to acknowledge the following prompt:

- 15. Check the SUMMARY field to ensure the load is 'COMPLETE'.
- 16. De-activate the cursor.
- 17. Continue to the GIA 63 Configuration Loading procedure.

7.3.2 GIA 63 Configuration Loading

- 1. Insert the correct G1000/DA 40 SW Loader Card (see Appendix A) into top slot of PFD.
- 2. Start the G1000 system in Configuration mode, if not already in Configuration mode.
- 3. Go to the Configuration Upload page using the FMS knob:

FILE LIST, → AIRFRAME SYSTEM MANIFEST MFD 1 FFD 1 GIA 1 GIA 2 GMA 1 GTX 1 GEA 1 GDC 1	C	DNFIGURA	TION U	PLOAD			
<u>SUMARY</u>							
			FTI	E SI IMMAI	J GIA GEA GTX	GRS GDC GM	

- 4. Activate the cursor and highlight GIA1 in the FILE LIST field.
- 5. Press the LOAD softkey.
- 6. Select YES and press ENT to acknowledge the following prompt:

7. Monitor the status of the upload. When the upload is finished, press the ENT key to acknowledge the following confirmation:

- 8. Highlight GIA2 in the FILE LIST field and repeat Steps 3 through 5.
- 9. View the SUMMARY field and ensure that all items are 'COMPLETE':

SIMMARY.
Upload of GIA1 configurationCOMPLETE
Upload of GIA2 configurationCOMPLETE

10. De-activate the cursor.

- 11. Go to the System Status page.
- 12. Activate the cursor and highlight each of the following items in the LRU window:
 - -GIA1 -GIA2 -GPS1 -GPS2
- 13. Check the reported part number/version of each software file and compare to the data in Appendix A.
- 14. Continue to the GIA 63 Test procedure.

7.3.3 GIA 63 Test

GPS Signal Acquisition:

Figure 7-4. GPS Signal Status

The GIA 63 units should normally acquire a 3D GPS navigation solution within 5 to 10 minutes of startup, provided the aircraft is outside (or indoors with a GPS repeater). Select the satellite status page on the MFD (3rd page in AUX group). Two softkeys on the bottom of the display allow the user to toggle between GPS 1 and GPS 2. Verify that both receivers show 3D Navigation on the MFD.

Continue to the VHF COM Interference test.

VHF COM Interference Test:

This test must be conducted outside. Use of a GPS repeater inside a hangar may result in a failed test. This procedure assumes that the system is currently set to 25 kHz COM channel spacing. Once the signal acquisition test has been completed successfully, perform the following steps:

- 1. On the MFD, monitor GPS signal strength bars on the 3rd AUX page.
- 2. On the PFD, ensure that the CDI is set to GPS. If it is not, press the 'CDI' softkey until GPS ENR is displayed.
- 3. Verify that the GPS "INTEG" flag is out of view.
- 4. Select 121.150 MHz on the No. 1 COM transceiver.
- 5. Transmit for a period of 35 seconds while monitoring GPS 1 signal strength levels.
- 6. During the transmit period, verify that the GPS "INTEG" flag does not come into view on the PFD and verify that GPS 1 does not lose a 3-D navigation solution on the MFD.
- 7. Repeat steps 5 and 6 and re-transmit while monitoring GPS 2 signal levels on the MFD.
- 8. Repeat steps 4 through 7 for each of the following frequencies:
- 121.175 MHz
- 121.200 MHz
- 131.250 MHz
- 131.275 MHz
- 131.300 MHz
- 9. Repeat steps 4 through 8 for the No. 2 COM transceiver (GIA2).
- 10. On the MFD, select the 4^{th} AUX page.
- 11. Under the COM CONFIG field, change the COM channel spacing from 25 kHz to 8.33 kHz.
- 12. Go back to the 3^{rd} AUX page.
- 13. Select 121.185 MHz on the No. 1 COM transceiver.
- 14. Transmit for a period of 35 seconds while monitoring GPS 1 signal strength levels.
- 15. During the transmit period, verify that the GPS "INTEG" flag does not come into view on the PFD and verify that GPS 1 does not lose a 3-D navigation solution on the MFD.
- 16. Repeat steps 14 and 15 and re-transmit while monitoring GPS 2 signal levels on the MFD.
- 17. Repeat steps 14 through 16 for each of the following frequencies:
- 121.190 MHz
- 130.285 MHz
- 131.290 Mhz
- 18. Repeat steps 14 through 17 for the No. 2 COM transceiver (GIA2).
- 19. On the MFD, select the 4th AUX page and change the COM channel spacing back to 25 kHz.
- 20. Continue to the VOR/LOC/GS Test.

VOR/LOC/GS Test:

Check the VOR, ILS, and Glideslope functions with ramp test equipment. Operate the equipment according to the test equipment manufacturer's instructions. Adjust the RF signal to a level adequate to perform the test. Select the appropriate HSI source by using the CDI softkey.

NOTE

The PFD HSI does not show a course deviation bar unless a valid VHF NAV frequency is tuned.

Simulate a VOR signal on radial 000° with a course-width of 20°. Verify full-scale deflection of the CDI while applying a 10°-deviation signal. Exercise the CDI with both right and left deviations for both NAV 1 and 2. Exercise the Glideslope deviation indicator with up and down deviation indications.

If no other service is to be performed, continue to the return-to-service checks in Section 8.

7.4 GEA 71 Engine/Airframe Unit

Original GEA 71 Reinstalled

No software or configuration loading is required if the removed GEA 71 is re-installed. Continue to the return-to-service checks in Section 8.

New GEA 71 Installed

If a new GEA 71 (new serial number) is installed, the correct software and configuration files must be loaded to the unit. Continue to the GEA 71 Software Loading procedure.

7.4.1 GEA 71 Software Loading

- 1. Insert the correct G1000/DA 40 SW Loader Card (see Appendix A) into top slot of PFD.
- 2. Start the G1000 system in Configuration mode.
- 3. Go to the Software Upload page using the FMS knob.
- 4. Highlight the GEA software file. Ensure that both paths to the GEA 71 through GIA1 and GIA 2 appear in the LRU field as shown:

SOFTWARE UPLOAD								
GMU44 VER 2.01	006-B0224-00	→GEA1 - GIA1	2.01					
GRS77 VER 2.01	006-B0223-00	GEA1 - GIA2	2.01					
GDC74 VER 2.02	006-B0261-00							
GMAX347 VER 2.03	006-B0203-02							
GTX33X VER 3.05	006-B0328-00							
→GEA7X VER 2.02	006-B0193-00							
GPS VER 3.01	006-B0093-00							
GIA6X VER 2.01	006-B0190-06							

- 5. Press the LRU softkey. Select the GEA GIA1 data path to load software. Press the LOAD softkey.
- 6. Select YES and press the ENT key to acknowledge the following prompt:

7. The software for the GEA 71 Engine/Airframe Unit begins to load. Monitor the upload status as it progresses:

8. After the files finish loading, press ENT to acknowledge the following prompt:

- 9. Check the SUMMARY field to ensure the all software loads are 'COMPLETE'.
- 10. De-activate the cursor.
- 11. Continue to the GEA 71 Configuration Loading procedure.
7.4.2 GEA 71 Configuration Loading

- 1. Insert the correct G1000/DA 40 SW Loader Card (see Appendix A) into top slot of PFD.
- 2. Start the G1000 system in Configuration mode, if not already in Configuration mode.
- 3. At the PFD, go to the Configuration Upload page using the FMS knob:

	C	ONFIGURATION U	PLOAD				
FILE LIST							
→AIRFRAME							
SYSTEM							
MANIFEST							
MFD 1							
PFD 1							
GIA 1							
GIA 2							
GMA 1							
GTX 1							
GEA 1							
GDC 1							
SUMMARY							
			SYSTEM GDU GI	A GEA GTX I	GRS GDC GM4	1 0000	1000
UPDT CFG LOAD #	ALL LOAD	FIL	E SUMMARY				

- 4. Activate cursor and highlight 'GEA 1' in the FILE LIST field.
- 5. Press the LOAD softkey.
- 6. Select YES and press the ENT key to acknowledge the following prompt:

7. Monitor the status of the upload. When the upload is finished, press the ENT key to acknowledge the following confirmation:

- 8. View the SUMMARY field and ensure that all items are 'COMPLETE', then de-activate the cursor.
- 9. Go to the System Status page.
- 10. Activate the cursor and highlight 'GEA1 GIA1' and 'GEA1 GIA2' in the LRU window.
- 11. Verify that the reported part number and version of the software file matches the data in Appendix A.
- 12. Continue to the GEA 71 Test procedure.

7.4.3 GEA 71 Test

All engine/airframe transducers must be checked to ensure proper operation. Restart both displays in normal mode.

Figure 7-5. G1000 Engine/Airframe Indicators

On the MFD, check the indication for each of the sensor or monitor inputs with the aircraft engine off. Observe the 'Default' page, 'Lean' page, and 'System' pages by using the DFLT, LEAN, and SYSTEM softkeys on the MFD

At the appropriate EIS group (System, Lean, or Default), observe the following sensor indications (see Figure 7-5):

Sensor	Reading with Aircraft Engine OFF
Oil Pressure	Approximately 0 and Low Oil Pressure Annunciation. 'System' page.
Oil Temperature	Ambient. 'System' page.
• CHT	Ambient. 'Lean' page.
• EGT	Ambient. 'Lean' page.
• MAP	Atmosphere Pressure
• Tachometer	·0'
• Fuel Pressure	Low Fuel Pressure Annunciation. (Shown on the PFD)
• Fuel Flow	·0'
Alternator Amps	Approximately '0'. 'System' page.
• Volts	GPU voltage (Battery volts when GPU disconnected) 'System' page.
 Fuel Qty Gal 	'Full' on MFD with fully fuelled tanks. 'System page.

If no other service is to be performed, continue to the return-to-service checks in Section 8.

7.5 GTX 33 Transponder

Original GTX 33 is Reinstalled

No software or configuration loading is required if the removed GTX 33 is re-installed. Continue to the GTX 33 Test procedure.

New GTX 33 is Installed

If a new GTX 33 (new serial number) is installed, the correct software and configuration files must be loaded to the unit. Continue to the GTX 33 Software Loading procedure.

7.5.1 GTX 33 Software Loading

- 1. Insert the correct G1000/DA 40 SW Loader Card (see Appendix A) into top slot of PFD.
- 2. Start the G1000 system in Configuration mode.
- 3. Go to the Software Upload page using the FMS knob.
- 4. Highlight the GTX software file. Ensure that both paths to the GTX 33 through GIA1 and GIA 2 appear in the LRU field as shown:

	SOFTWARE UPLOAD						
FILE LIST							
GMU44 VER 2.01	006-B0224-00	→GTX1 - GIA1	3.01				
GRS77 VER 2.01	006-B0223-00	GTX1 - GIA2	3.01				
GDC74 VER 2.02	006-B0261-00						
GMAX347 VER 2.03	006-B0203-02						
→ GTX33X VER 3.05	006-B0172-01						
GEA7X VER 2.02	006-B0193-00						
GPS VER 3.01	006-B0093-00						
GIA6X VER 2.01	006-B0190-06						

- 5. Press the LRU softkey. Select the GTX1 GIA1 data path to load software. Press the LOAD softkey.
- 6. Select YES and press the ENT key to acknowledge the following prompt:

7. The software for the GTX 33 transponder begins to load. Monitor the upload status as it progresses:

8. After the files finish loading, press ENT to acknowledge the following prompt:

- 9. Check the SUMMARY field to ensure the load is 'COMPLETE'.
- 10. Continue to the GTX 33 Configuration procedure.

7.5.2 GTX 33 Configuration Loading

- 1. Insert the correct G1000/DA 40 SW Loader Card (see Appendix A) into top slot of PFD.
- 2. Start the G1000 system in Configuration mode, if not already in Configuration mode.
- 3. At the PFD, go to the Configuration Upload page using the FMS knob:

FILE LIST, → AIRFRAME SYSTEM MANTFEST MFD 1 GTA 1 GTA 2 GMA 1 GTX 1 GEA 1 GDC 1		C0	NFIGURA	TION UF	PLOAD		
, SUMMARY,							
				FTU	= SI IMMARY		

- 4. Activate cursor and highlight 'GTX 1' in the FILE LIST field.
- 5. Press the LOAD softkey.
- 6. Select YES and press the ENT key to acknowledge the following prompt:

7. Monitor the status of the upload. When the upload is finished, press the ENT key to acknowledge the following confirmation:

- 8. View the SUMMARY field and ensure that all items are 'complete', then de-activate the cursor.
- 9. Go to the System Status page.
- 10. Activate the cursor and highlight 'GTX1 GIA1' and 'GTX1 GIA2' in the LRU window.
- 11. Verify that the reported part number and version of the software matches the data in Appendix A.

12. Select the GTX page group, then select the Transponder Configuration page on the PFD:

SELECT TRANSPONDER	Transponder Configu	RATION
CONFIGURATION		
	SET	ACTIVE
ADDRESS TYPE	US TAIL	US TAIL
ADDRESS	N58GA	N58GA
FLIGHT ID TYPE	SAME AS TAIL	SAME AS TAIL
FLIGHT ID	N58GA	N58GA
AIRCRAFT WEIGHT	< 15,500 LBS	< 15,500 LBS
MAX AIRSPEED	<= 150 KTS	<= 150 KTS
VFR CODE	1200	1200
SET>ACTV ACTV>SET		

- 13. Ensure that the 'ADDRESS TYPE' is 'US TAIL' under the 'SET' and 'ACTIVE' columns.
- 14. Activate the cursor and highlight the 'ADDRESS' field. Use the small/large FMS knobs to enter the aircraft registration number.
- 15. Once the correct registration number is entered, press the ENTER key. The transponder is configured:

16. The transponder then alerts the technician of complete configuration:

- 17. Press the ENTER key on the PFD and deactivate the cursor
- 18. Continue to the GTX 33 Test procedure.

7.5.3 GTX 33 Test

Operation of the GTX 33 Mode-S transponder is accomplished using the G1000 PFD. Refer to Garmin part number 190-00324-00, <u>G1000 for DA40 Cockpit Reference Guide</u>, for basic operation. Perform a basic operational check on the transponder.

The integrated transponder/altitude reporting system must be verified in accordance with Title 14 of the Code of Federal Regulations (CFR) §§ 91.411 and 91.413. This test requires the use of a Mode S ramp generator. Specific instructions for operating the ramp tester are contained in the applicable operator's manual. Refer to Title 14 CFR Part 43 Appendix F for testing criteria.

If no other service is to be performed, continue to the return-to-service checks in Section 8.

7.6 GDC 74A Air Data Computer

Original GDC 74A is Reinstalled

No software or configuration loading is required if the removed GDC 74A is re-installed. Continue to the GDC 74A Test procedure.

New GDC 74A is Installed

If a new GDC 74A (new serial number) is installed, the correct software and configuration files must be loaded to the unit. Continue to the GDC 74A Software Loading procedure.

7.6.1 GDC 74A Software Loading

- 1. Insert the correct G1000/DA 40 SW Loader Card (see Appendix A) into top slot of PFD.
- 2. Start the G1000 system in Configuration mode.
- 3. Go to the Software Upload page using the FMS knob.
- 4. Highlight the GDC software file. Ensure that GDC to GIA data path appears in the LRU field as shown:

		SOFTWARE UPLOAD		
EILE LIST GMU44 VER 201 GRS77 VER 201 → GDC74 VER 202 GMAX347 VER 203 GTX33X VER 3.05 GEATX VER 2.02 GPS VER 3.01	006-B0224-00 006-B0223-00 006-B0261-00 006-B0203-02 006-B0328-00 006-B0193-00 006-B0093-00	GOCH HINE SUD LERJ →GDC1 - GIA1	2.01	
GIAGX VEF 2.01	006-B0190-06			

- 5. Press the LOAD softkey.
- 6. Select YES and press the ENT key to acknowledge the following prompt:

7. The software for the GDC 74A Air Data Computer begins to load. Monitor the upload status as it progresses:

8. After the files finish loading, press ENT to acknowledge the following prompt:

- 9. Check the SUMMARY field to ensure the load is 'COMPLETE'.
- 10. Continue to the GDC 74A Configuration Loading procedure.

7.6.2 GDC 74A Configuration Loading

- 1. Insert the correct G1000/DA 40 SW Loader Card (see Appendix A) into top slot of PFD.
- 2. Start the G1000 system in Configuration mode, if not already in Configuration mode.
- 3. At the PFD, go to the Configuration Upload page using the FMS knob:

		CONF	IGURATION L	IPLOAD				
FILE LIST								
SYSTEM								
MED 1								
PED 1								
GTA 1								
GIA 2								
GMA 1								
GTX 1								
GEA 1								
GDC 1								
				SYSTEM GDU GI	A GEA GTX	GRS GDC GM	1000	
UPDT CFG	LOAD ALL	LOAD	FI	E SUMMARY				

- 4. Activate cursor and highlight 'GDC 1' in the FILE LIST field.
- 5. Press the LOAD softkey.
- 6. Select YES and press the ENT key to acknowledge the following prompt:

7. Monitor the status of the upload. When the upload is finished, press the ENT key to acknowledge the following confirmation:

- 8. View the SUMMARY field and ensure that all items are 'complete', then de-activate the cursor.
- 9. Go to the System Status page.
- 10. Activate the cursor and highlight 'GDC1 GIA1', then highlight 'GDC1 FPGA' in the LRU window.
- 11. Verify that the reported part number and version of both software files matches the data in Appendix A.
- 12. Go to the GDC page group. The GDC CONFIGURATION page is shown by default.
- 13. Verify that 'CBBSQ7' appears to the right of the 'SELECT AIRCRAFT' field.
- 14. Verify that 'GTP 59' appears to the right of the 'SELECT OAT' field.
- 15. Continue to the GDC 74A Test procedure.

7.6.3 GDC 74A Test

Verification of the altimeter and airspeed must be performed using a pitot/static ramp tester. The static port and altimeter must be verified in accordance with Title 14 of the Code of Federal Regulations (CFR) § 91.411 and Part 43 Appendix E. The PFD must be in Configuration mode and the MFD must be in Reversionary mode for performing the tests as outlined in Part 43 Appendix E.

To prepare the G1000 System for Part 43 Appendix E testing:

- 1. Start the G1000 system in normal mode.
- 2. Remove power to the PFD by pulling the circuit breaker labeled PFD.
- 3. Turn the PFD on in Configuration mode by pressing and holding the ENT key on the PFD while applying power.
- 4. Release the ENT key after "INITIALIZING SYSTEM" appears in the upper left corner of the PFD.

CAUTION

Configuration mode contains certain pages and settings that are critical to aircraft operation and safety. These pages are protected and cannot be modified, unless the technician is properly authorized and equipped. However, most protected pages are viewable to allow system awareness for troubleshooting.

- 5. Using the outer FMS knob on the PFD turn to the GRS page group. Use the B ALT field for all CFR Part 43 Appendix E tests for G1000 altitude.
- 6. Place the MFD in Reversionary mode by pressing the red "display backup" button on the GMA 1347 Audio Panel. Baro settings can then be read from the MFD for the CFR Part 43 Appendix E tests.

After completing the tests specified by § 91.411 and Part 43 Appendix E, return the MFD to normal mode by pressing the red "display backup" button on the GMA 1347. Return the PFD to normal mode by shutting off the master switch. Upon restart the PFD will enter normal mode.

The following tests are above and beyond the requirements set forth in Appendix E.

Pitot/Static Airspeed Test

- 1. Command the pitot/static ramp tester to simulate air speeds shown in the table below.
- 2. Wait for the ramp tester to report that target values have been achieved.
- 3. Verify that computed air speeds shown on the PFD are within the tolerances specified in the table below:

Calibrated air speed, knots	Allowed tolerance, ±knots
50	5.0
80	3.5
100	2.0
120	2.0
150	2.0

Static Port Vertical Speed (Rate of Climb) Test

- 1. Command ramp tester to change the altitude at the rates shown in the table below.
- 2. Wait for ramp tester to report that target rates have been achieved.
- 3. Verify that the Rate of Climb reported by the Vertical Speed field on the PFD is within the tolerances specified in the table below:

Vertical Speed, feet/minute	Allowed tolerance, ±feet/minute
2000	100
0	45
-2000	100

OAT Probe Check

Check the outside air temperature (OAT) measurement shown on the PFD to ensure it reads ambient temperature.

If no other service is to be performed, continue to the return-to-service checks in Section 8.

7.7 GRS 77 AHRS / GMU 44 Magnetometer

Original GRS 77 is Reinstalled

If the original GRS 77 was reinstalled, then no software loading is required. Continue to the GRS/GMU Calibration section.

New GRS 77 is Installed

If the GRS 77 was replaced with a new unit (new serial number) then software must be loaded. Continue to the GRS 77 Software Loading procedure.

Original GMU 44 is Reinstalled

If the original GMU 44 was reinstalled, then no software loading is required. Continue to the GRS/GMU Calibration section.

New GMU 44 is Installed

If the GMU 44 was replaced with a new unit (new serial number) then software must be loaded. Continue to the GMU 44 Software Loading procedure.

7.7.1 GRS 77 Software Loading

- 1. Insert the correct G1000/DA 40 SW Loader Card (see Appendix A) into top slot of PFD.
- 2. Start the G1000 system in Configuration mode.
- 3. Go to the Software Upload page using the FMS knob.
- 4. Highlight the GRS software file. Ensure that the GRS to GIA data path appears in the LRU field as shown:

	SOF			
GMU44 VER 2.01	006-B0224-00	→GRS1 - GIA1	2.00	
→ GRS77 VER 2.01	006-B0223-00			
GDC74 VER 2.02	006-B0261-00			
GMAX347 VER 2.03	006-B0203-02			
GTX33X VER 3.05	006-B0328-00			
GEA7X VER 2.02	006-B0193-00			
GPS VER 3.01	006-B0093-00			
GIA6X VER 2.01	006-B0190-06			
		<u> </u>		

- 5. Press the LOAD softkey.
- 6. Select YES and press the ENT key to acknowledge the following prompt:

7. The software for the GRS 77 AHRS begins to load. Monitor the upload status as it progresses:

Uploading GRS1 - GIA1 SYSTEM CODE region
UPLOADING
25.62

8. After the files finish loading, press the ENT key to acknowledge the following prompt:

- 9. Check the SUMMARY field to ensure the load is 'COMPLETE'.
- 10. Go to the System Status page.
- 11. Activate the cursor and highlight 'GRS1 GIA1', then 'GRS1 GIA2', and finally, 'GRS1 FPGA' in the LRU window.
- 12. Verify that the reported part numbers and versions of the software files match the data in Appendix A.
- 13. Continue to the GRS/GMU Calibration section.

7.7.2 GMU 44 Software Loading:

- 1. Insert the correct G1000/DA 40 SW Loader Card (see Appendix A) into top slot of PFD.
- 2. Start the G1000 system in Configuration mode.
- 3. Go to the Software Upload page using the FMS knob.
- 4. Highlight the GMU software file. Ensure that GMU1 appears in the LRU field as shown:

		SOFTWARE UPLOAD		
FILE LIST, GNU44 VER 2.01 GRS77 VER 2.01 GDC74 VER 2.02 GMAX347 VER 2.03 GTX33X VER 3.05 GEA7X VER 2.02 GPS VER 3.01	006-80224-00 006-80223-00 006-80261-00 006-80203-02 006-80328-00 006-80193-00 006-80093-00		200	
gia6x ver 2.01	006-80190-06			

- 5. Press the LOAD softkey.
- 6. Select YES and press the ENT key to acknowledge the following prompt:

7. The software for the GMU 44 Magnetometer begins to load. Monitor the upload status as it progresses:

8. After the files finish loading, press the ENT key to acknowledge the following prompt:

- 9. Check the SUMMARY field to ensure the load is 'COMPLETE'.
- 10. Go to the System Status page.
- 11. Activate the cursor and highlight 'GMU1', then 'GMU1 FPGA' in the LRU window.
- 12. Verify that the reported part number and version of the software files match the data in Appendix A.
- 13. Continue to the GRS/GMU Calibration section.

7.7.3 GRS/GMU Calibration

GRS/GMU Recalibration Criteria

	Calibrations Required				
	Procedure A:	Procedure A: Procedure B:			
Condition	GRS 77 Pitch/Roll Offset	GRS/GMU Magnetic Calibration	Engine Run-up Vibration Test		
GMU 44 was removed and reinstalled. (no	None Required.				
change in serial number)	Contin	ection.			
GMU 44 was replaced with new unit.		×			
(New serial number)		^			
GRS 77 AHRS was removed and/or replaced. The mounting tray was NOT	None Required.				
removed and the mounting tray bolts were NOT loosened.	Continue to GRS/GMU Test section.				
GRS 77 AHRS was removed and/or					
and/or mounting tray bolts WERE loosened.	Х	Х	Х		
GRS 77 AHRS Configuration Module was replaced.	Х	Х	Х		

7.7.4 Procedure A: GRS 77 Pitch/Roll Offset Calibration

This first procedure must be carried out with the engine off.

- 1. Level the aircraft to within ±0.25° of zero pitch and zero roll using a digital level. (Follow instructions in DA 40 Aircraft Maintenance Manual for leveling)
- 2. Start the G1000 system in Configuration mode.
- 3. Go to the GRS Page Group and select the GRS/GMU Calibration page at the PFD. This page is protected and the following softkey password must be entered at the PFD to continue:
 - a) 9
 - b) 10
 - c) 11
 - d) 12 (Far Right softkey)

- 4. Ensure that the No. 1 GRS 77 is selected in the SELECT GRS UNIT window on the PFD.
 - a) Activate the cursor and highlight the SELECT PROCEDURE window and select PITCH/ROLL OFFSET.
 - b) Press the ENT key.
 - c) Use the cursor to highlight the BEFORE CALIBRATION window.
 - d) Follow the checklist items displayed on the PFD and press the ENT key as each step is completed or confirmed.
 - e) When the CALIBRATE field is blinking, press the ENT button to begin the procedure.
 - f) After several seconds, a new checklist appears in the lower half of the PFD. Press the ENT key as each step is confirmed. When the CONFIRM AIRCRAFT IS LEVEL field is blinking, press the ENT key to continue.
- 5. The result of the pitch/roll offset compensation is displayed on the PFD. If successful, the AHRS records the required pitch and roll offsets, informs the operator of a successful conclusion and returns to normal operation.
- 6. Press the ENT key on the PFD to conclude this procedure.

7.7.5 Procedure B: GRS/GMU Magnetic Calibration

CAUTION

CALIBRATION PROCEDURE B MUST BE CARRIED OUT ON A COMPASS ROSE IN ORDER TO GUARANTEE MEASUREMENTS FREE OF ENVIRONMENTAL MAGNETIC DISTURBANCES. ATTEMPTING TO CARRY OUT THIS MANEUVER ON A TYPICAL RAMP AREA MAY NOT YIELD A SUCCESSFUL CALIBRATION. THE ACCURACY OF THE AHRS CANNOT BE GUARANTEED IF THIS CALIBRATION IS NOT PERFORMED ON A MAGNETICALLY CLEAN COMPASS ROSE OR EQUIVALENT.

- 1. Start both displays in normal mode.
- 2. Start the aircraft engine following the procedures in the G1000/DA40 Airplane Flight Manual Supplement.
- 3. After aircraft engine startup, taxi the aircraft to a properly calibrated compass rose. At the compass rose, align the aircraft to a heading of magnetic north $(\pm 5^{\circ})$.
- 4. Restart the PFD and MFD in configuration mode.
- 5. On the MFD, select the GEA page group. The technician may monitor engine performance at the Engine Data page during the procedure:

DATA			ENGIN	ie data			
ALT AMPS 1	A	TACH SENSOR	1rpm	N1 ENG1	%	ITT ENG1	°C
ALT AMPS 2	A	TACH SENSOR 2	2rpm	N1 ENG2	%	ITT ENG2	°C
PRP D ICE CUR 1	A	D ICE PRESS	PSI	N2 ENG1	%	TIT ENG1	°C
PRP D ICE CUR 2	A	FUEL PRESS E	NG1PSI	N2 ENG2	%	TIT ENG2	°C
AIRCRFT PWR 1	367	FUEL PRESS E	NG2PSI	N3 ENG1	%	OT ENG1	°C
AIRCRFT PWR 2	36V	FUEL QTY LEF	TGL	N3 ENG2	%	OT ENG2	°C
BATT VOLTS 1	V	FUEL QTY RIG	HTGL	EGT ENG1 1	°C	CHT ENG1 1	°C
BATT VOLTS 2	V	FUEL FLW ENG	1GL/HR	EGT ENG1 2	°C	CHT ENG1 2	°C
		FUEL FLW ENG	2GL/HR	EGT ENG1 3	°C	CHT ENG1 3	°C
		FUEL FLW RTN	1GL/HR	EGT ENG1 4	°C	CHT ENG1 4	°C
		FUEL FLW RTN	2GL/HR	EGT ENG1 5	°C	CHT ENG1 5	°C
		MAP ENG1	IN	EGT ENG1 6	°C	CHT ENG1 6	°C
		MAP ENG2	IN	EGT ENG2 1	°C	CHT ENG2 1	°C
		VAC ENG1	IN	EGT ENG2 2	°C	CHT ENG2 2	°C
		VAC ENG2	IN	EGT ENG2 3	°C	CHT ENG2 3	°C
		OP ENG1	PSI	EGT ENG2 4	°C	CHT ENG2 4	°C
		OP ENG2	PSI	EGT ENG2 5	°C	CHT ENG2 5	°C
				EGT ENG2 6	°C	CHT ENG2 6	°C
				SYSTEM GDL	J GIA GEA GTX (GRS GDC GMA 🔲 🛛	000

- 6. Go to the GRS Page Group on the PFD.
- 7. Select the GRS/GMU Calibration page and enter the following softkey password:
 - a) 9
 - b) 10
 - c) 11
 - d) 12 (Far Right softkey)

	GRS / GMU C	ALIBRATION			
GRS77 #1	SELECT PROCEDURE	COMMUNICAT	<u>ION STATUS</u>	MAGNETOMETER	
DEFORE CALIBRATION. 1 Taxi the aircraft to a compass rose. 2 Ensure that the GPS and Magnetameter communication status lights are green (must have clear view of sky). 3 Ensure that the magnetameter vill not pass within 20 feet of any magnetic materials, such as steel grates or pipes. 4 Maneuver toward the left-hand side of the compass rose and turn to a heading of roughly magnetic North (+/- 5 deg). 5 Ensure the aircraft is stationary. 6 Ready to enter the GRST/T AIRS Ground Auto-Calibration Model					
CALIBRATE					

- 8. Activate the cursor and highlight the SELECT PROCEDURE window and select MAGNETOMETER.
- 9. Press the ENT button.
- 10. Use the cursor to highlight the BEFORE CALIBRATION window.
- 11. Follow the checklist items displayed on the PFD and press the ENT key as each one is completed or confirmed. When the CALIBRATE field is blinking, press the ENT key to begin the procedure.
- 12. The PFD display advises the operator when to turn the aircraft, when to stop, and when to turn again.
- 13. Upon instruction to turn, taxi the aircraft in a right turn. After approximately 25° to 30° of turn from the last heading, the PFD display advises the operator to stop the aircraft.

NOTE

Due to the difficulties in executing smooth, accurate turns the PFD may incorrectly interpret a station and instruct to "HOLD POSITION" prior to full completion of a 30° turn. If this scenario is encountered, it is best for the operator to ignore the "HOLD POSITION" command and instead use outside references to complete the approximate 30° turn. Instead of using the PFD instruction to turn as a real-time indication of when to turn, simply judge the 30° ($\pm 5^{\circ}$) turn increments of the aircraft by using the Compass rose radials. Dwelling at these 30° increments for the time recommended by the PFD should result in successful calibration.

14. The PFD guides the operator to dwell at multiple headings around a complete circle.

NOTE

Due to high winds or excessive airframe vibration, the operator may encounter a condition where the PFD restarts the 18-second countdown without full completion of the previous countdown. If this is encountered more than once for a given station, the operator should begin turning to the next station (approximately 30°). A minimum of 2 successful stations per quadrant is required, where a successful station is a full 18-second countdown followed by instruction to move. Ensure that at least 2 stations per quadrant are completed. Thus, it may sometimes be required to dwell at a station after a countdown restart. A maximum of 20 stations is allowed for the entire calibration procedure. If too many countdown restarts are encountered, the calibration will fail with the message, "TOO MANY STATIONS."

15. Repeat the turn-and-stop process until the PFD advises that a successful calibration is complete. The GRS 77 AHRS then enters its normal operational mode. Press the ENT button on the PFD to conclude this procedure.

7.7.6 Procedure C: Engine Run-Up Vibration Procedure

Calibration Procedures A and B are not required prior to this procedure.

- 1. Start both displays in normal mode.
- 2. Start the aircraft engine following the procedures in the G1000/DA40 Airplane Flight Manual Supplement.
- 3. After aircraft engine startup, taxi the aircraft to a suitable area for engine run-up.
- 4. Restart both displays in configuration mode.
- 5. On the MFD, select the GEA page group. At the Engine Data page, monitor engine performance during the procedure:
- 6. Go to the GRS Page Group on the PFD.
- 7. Select the GRS/GMU Calibration page and enter the following softkey password:
 - a) 9
 - b) 10
 - c) 11
 - d) 12 (Far Right softkey)

GRS / GMU	CALIBRATION					
GRS77 #1	COHHUNICATION STATUS					
BEFORE CALIBRATION						
 1 laxi the aircraft to a compass rose. 2 Ensure that the GPS and Magnetometer communication s 	status lights are green (must have clear view of sky).					
 3 Ensure that the magnetometer will not pass within 20 4 Maneuver toward the left-hand side of the compass ros 	feet of any magnetic materials, such as steel grates or pipes. se and turn to a heading of roughly magnetic North (+/- 5 deg).					
5 Ensure the aircraft is stationary.						
Bleady to enter the GRS// AHRS Ground Auto-Calibrat	tion Mode.					

- 8. Initiate the AHRS engine run-up vibration test procedure by performing the following steps:
 - a) Select the ENGINE RUN-UP TEST procedure and press the ENT key.
 - b) Follow the checklist items displayed on the PFD, and press the ENT key as each step is completed or confirmed.
 - c) When the CALIBRATE field is blinking, press the ENT key to begin the procedure.
- 9. The PFD instructs the operator to gradually increase power from idle to full throttle and back to idle over a period of 2-4 minutes.
- 10. When the operator has completed the engine run-up and the engine is back to an idle setting, press the ENT key to indicate that the process is complete. When this is done, the TEST COMPLETE field stops blinking.
- 11. The PFD informs the operator if the installation has passed or failed the vibration test. If the test fails, the specific measurements causing the failure are identified and numeric values are displayed on the PFD.
- 12. Press the ENT button on the PFD to conclude this procedure.

If failures are indicated, the engine run-up test may be repeated once or at most twice. If the test does not pass after three attempts, then the installation should not be considered reliable until the source of the vibration problem is identified and remedied. In the event of repeated failure of the engine run-up test, record the values that are reported to be out of range for future reference.

The following are potential causes for failure of the engine run-up test:

- a) Vibration motion of GRS77 and/or GMU44 caused by neighboring equipment and/or supports.
- b) Mounting screws and other hardware for GRS77 and/or GMU44 not firmly attached.
- c) GRS77 connector not firmly attached to unit.
- d) Cabling leading to GRS77 or GMU44 not firmly secured to supporting structure.
- e) An engine / propeller that is significantly out of balance.

7.7.7 GRS/GMU Test

The aircraft can now be taxied back and the engine can be shut down for final checkout.

When the PFD powers up in normal mode, the AHRS attitude and heading information displayed should become valid within 1 minute of power-up. This confirms that the GRS 77 and GMU 44 work correctly.

If no other service is to be performed, continue to the return-to-service checks in Section 8.

Droblom	Solutions
FIODIeIII	Solutions
GDU 1040 MFD or PFD displays do not power up	 Ensure that the criteria listed in 7.8.1 are fulfilled for the applicable situation.
	Ensure power is present at display connector.
	Replace display.
Software file load fails:	• Ensure that criteria listed in 7.8.1 are fulfilled for the applicable situation.
FILE UPLOAD FAIL	 Ensure that LRU is reporting data on System Status page (LRU is 'ONLINE'). Check data path wiring as needed.
OK	• Retry software file load or try using a different card.
<u>, </u>	 Ensure that the MFD is not touched during the loading process, unless specifically instructed to do so.
	 Ensure that LRU part number is compatible with software version and Loader Card. Refer to Appendix A.
	Replace LRU.
Configuration file load fails:	 Ensure that criteria listed in 7.8.1 are fulfilled for the applicable situation.
CONFIGURATION UPLOAD FAIL	 Ensure that LRU is reporting data on System Status page (LRU is 'ONLINE'). Check data path wiring as needed.
	 Retry configuration file load or try using a different card.
	 Ensure that the MFD is not touched during the loading process, unless specifically instructed to do so.
	 Ensure that LRU part number is compatible with Card Loader. Refer to Appendix A.
	Replace LRU.
GIA1 and/or GIA2 to 'LRU' data path not working	 Ensure that criteria listed in 7.8.1 are fulfilled for the applicable situation.
	Ensure GIA1 and GIA2 are configured correctly.
	Check wiring, connectors & pins as needed.
Software File Mismatch Alert appears in lower right corner of PFD when started in normal mode:	 Ensure that proper software file part number and version were loaded to LRU. Refer to Appendix A.
ALERTS MANIFEST - GDC1 software mismatch. Communication halted.	 Check and ensure that correct Card Loader was used during load process. Refer to Appendix A of this document.
·	Reload software to LRU.
	Reload 'MANIFEST' configuration file to PFD.

7.8 Software/Configuration Troubleshooting

7.8.1 System Communication Hierarchy

The following	criteria must	t be satisfied	to be able to	perform th	nese desired	operations:
0				1		1

Desired Operation	Criteria for Success
Load Software to GDU 1040 MFD or PFD Displays	 G1000/DA 40 SW Loader Card must be inserted in top slot for each display to be loaded.
	 CLR & ENT keys must be held during power up of display.
	 Power on only one display at a time during software loading.
Load AIRFRAME, SYSTEM, MFD1, PFD1, and MANIFEST configuration files to MFD and PFD	 G1000/DA 40 SW Loader Card must be inserted in top slot of PFD.
	 PFD and MFD must be powered on.
	 PFD and MFD must have correct software.
Load Software/Configuration files to GIA 63s	 G1000/DA 40 SW Loader Card must be inserted in top slot of PFD.
	 G1000 system must be powered on.
	 PFD and MFD must have correct software.
	 PFD and MFD must be successfully configured with AIRFRAME, SYSTEM, MANIFEST, MFD1, and PFD1 configuration files.
Load Software/Configuration files to: - GMA 1347	 G1000/DA 40 SW Loader Card must be inserted into PFD top slot.
- GDC 74A	G1000 must be powered on.
- GEA 71	 PFD and MFD must have correct software and configuration settings.
- GMU 44 (software only)	 GIA 63s must have correct software.
- GTX 33	 GIA 63s must be successfully configured with GIA1 and GIA2 configuration files.
	 Data path from GIA1 to each LRU must be operational.

8 System Return to Service Procedure

This final checkout tests various secondary communications paths to ensure that the paths function correctly. Perform the following steps and verify the results of each test.

8.1 GPS Failure Test

Ste	ep (Des	sired Result	
Single GPS Failure Conditions:		GPS Failure – For each of the specified GPS failure		
1.	1. Place a shroud over the GPS antenna for GIA1 to prevent signal reception. Verify loss of signal		D throughout the procedure:	
	on MFD AUX page 3.	\checkmark	Attitude and Heading from AHRS.	
2.	Check for desired results.	✓	Airspeed, Altitude, Vertical Speed, and OAT from Air	
3.	Remove shroud from the GIA1 GPS antenna.		Data Computer.	
4.	Place a shroud over the GPS antenna for GIA2 to prevent signal reception. Verify loss of signal on MFD AUX page 3.	~	GPS CDI remains valid on PFD.	
5.	Check for desired results.			
6.	Remove shroud from the GIA2 GPS antenna.			
Du	al GPS Failure Conditions:	Dua	al GPS Failure – For a dual GPS failure, the	
1.	Cover both GPS antennas. Verify loss of signal	follo	owing shall occur:	
	on MFD AUX page 3.	✓	GPS CDI flags INTEG on PFD.	
2.	Check for desired results.	✓	Attitude and Heading remain valid from AHRS.	
3.	Remove shrouds from GPS antennas.	\checkmark	Airspeed, Altitude, Vertical Speed, and OAT remain	
4.	Allow both receivers to re-acquire satellite signals before continuing.		valid from Air Data Computer.	

8.2 GIA Failure Test

Ste	ep	Desired Result		
Single GIA Failure Conditions:		GIA1 Failure – For a GIA1 failure, only the following shall		
1.	Remove power from GIA1 by pulling NAV/GPS1 and COM1 breakers.	✓ COM1/NAV1 field (PFD & MFD).		
2.	Check for desired results.	✓ NAV1 CDI loses deviation bar (PFD only).		
3.	Restore power to GIA1. Allow GPS1 to re- acquire satellites.	GIA2 Power Failure – For a GIA2 failure, only the following shall flag invalid:		
4	Remove power from GIA2 by pulling	✓ COM2/NAV 2 field (PFD & MFD).		
	NAV/GPS2 and COM2 breakers.	✓ NAV2 CDI loses deviation bar (PFD only).		
5.	Check for desired results.			
6.	Restore power to GIA2. Allow GPS2 to re- acquire satellites.			
Dua	al GIA Failure Conditions:	Dual GIA Failure – For a dual GIA failure, the following		
1.	Remove power from both GIA units.	shall occur:		
2.	Check for desired results.	COM1/NAV1 & COM2/NAV2 fields flag invalid.		
3.	Restore power to both GIA units.	GPS CDI flags IN LEG on PFD.		
		✓ NAV1 & NAV2 CDI loses deviation bar.		
		 XPDR field flags invalid on PFD. 		
		 Engine Instrument field flags invalid on MFD. 		
		✓ All AHRS & ADC fields remain valid.		

8.3 Display Failure Test

Step	Desired Result			
MFD Display Failure Conditions:1. Remove power from MFD.2. Check for desired results.3. Restore power to MFD.	 The following shall occur when power is removed from the MFD: PFD switches to reversion mode. Attitude and Heading remain valid from AHRS. Airspeed, Altitude, Vertical Speed, and OAT remain valid from Air Data Computer. Valid Engine Instrumentation appears on PFD. XPDR field remains valid on PFD. COM2/NAV/2 fields flag invalid 			
PFD Display Failure Conditions:1. Remove power from PFD.2. Check for desired results.3. Replace power to PFD.	 The following shall occur when power is removed from the PFD: MFD switches to reversion mode. Attitude and Heading remain valid from AHRS. Airspeed, Altitude, Vertical Speed, and OAT remain valid from Air Data Computer. MFD retains engine instrumentation. Valid XPDR field appears on MFD COM1/NAV 1 fields flag invalid. 			

8.4 AHRS/ADC Backup Path Test

Step	Desired Result		
Secondary AHRS/ADC path check:	The following shall occur on the MFD when power is		
1. Remove power from PFD.	removed from the PFD and GIA2:		
2 Remove power from GIA2	 MFD switches to reversion mode. 		
2. Remove power from GIA2.	✓ Attitude and Heading remain valid from AHRS.		
3. Check for desired results.	✓ Airspeed, Altitude, Vertical Speed, and OAT remain		
4. Restore power to the PFD and GIA2.	valid from Air Data Computer.		
	✓ Engine Instrumentation flags invalid.		
	✓ All COM & NAV fields flag invalid.		

8.5 Flight Test

Perform a Function Check Flight (FCF) at the end of maintenance as required by the DA 40 Airplane Maintenance Manual. Refer to the DA 40 Airplane Maintenance Manual for check flight procedures and guidance. Always be thoroughly familiar with the G1000/DA40 Airplane Flight Manual Supplement and Cockpit Reference Guide before performing a flight test.

8.5.1 VHF COM Tests

To check the communications transceivers, maintain an appropriate altitude and contact a ground station facility at a range of at least 50 nautical miles. Contact a ground station that is in close proximity. Press the squelch disable button to defeat the automatic squelch feature and listen for any unusual electrical noise that would increase the squelch threshold. If possible, verify the communications capability on both the high and low ends of the VFH COM spectrum. It may be required by the governing regulatory agency to verify operation of the COM transmitter and receiver at the extents of the ground facility's service volume. (FAA AC 23-8A)

8.5.2 VOR/ILS Tests

Select a VOR channel within a 40 nautical mile range. Listen to the VOR audio and verify that no electrical interference such as magneto noise is present. Check the tone identifier filter operation. Fly inbound or outbound on a selected VOR radial and check for proper LEFT/RIGHT, TO/FROM flag indications on the CDI. Check the VOR accuracy. It may be required by the governing regulatory agency to verify operation of the VOR receiver at the extents of a ground facility's service volume. (FAA AC 23-8A)

8.6 Maintenance Records

After conducting the function check flight in accordance with the Diamond DA 40 Airplane Maintenance Manual, the aircraft may be returned to service.

Record the following information in appropriate aircraft maintenance logs:

- Part number of the G1000/DA 40 SW Loader Card used to perform software loading or software updates.
- Part numbers and versions of LRU software files reported after maintenance is complete (found at the System Status page in Configuration Mode).
- Any other applicable information related to the maintenance work performed on the aircraft.

Appendix A Installation Data

A.1 G1000 Equipment List

The following table shows all available G1000 LRUs and compatible software versions/part numbers. Any time a software file is changed or reloaded, the part number and version must be checked against the following table for correctness.

Equipment	LRU PART NUMBER	CODE LOADER PART NUMBER	SOFTWARE PART NUMBER	SOFTWARE VERSION
GTX 33 Mode S Transponder	011-00779-00		006-B0172-XX	3.06
GEA 71 Engine/Airframe Unit	011-00831-00		006-B0193-01	2.03
GDC 74A Air Data Computer	011-00882-00		006-B0261-01 & 006-C0055-00	2.03 1.05
GMU 44 Magnetometer	011-00870-00	-04	006-B0224-00 & 006-C0048-00	2.01 2.00
GDU 1040 PFD	011-00972-00	-69	006-B0319-05	2.02
GDU 1040 MFD	011-00972-00	003	006-B0319-05	2.02
GIA 63 Integrated Avionics Unit No. 1	011-00781-00	010-0	006-B0190-07 & 006-B0093-XX	2.02 3.01
GIA 63 Integrated Avionics Unit No. 2	011-00781-00		006-B0190-07 & 006-B0093-XX	2.02 3.01
GRS 77 AHRS	011-00868-00		006-B0223-00 006-C0049-00	2.01 2.00
GMA 1347 Audio Panel	011-00809-00		006-B0203-02	2.03

A.2 Additional Equipment Required

Qty	Description	Part Number	Vendor
1	Tachometer Sensor	494-00024-00	
1	Alternator Current Sensor	494-00025-00	Garmin International
4	Cylinder Head Temp Sensor	494-00026-01	1200 E 151 st Street
4	Exhaust Gas Temp Sensor	494-00026-00	TEL: 013 307 8200
5	Voltage Suppressors	682-00002-00	FAX: 913-3978282
1	Remote Avionics Enclosure	011-01015-00	www.garmin.com
1	GTP 59 OAT Probe	011-00978-00	
2	CDU Fan	013-00102-00	
		-	·

1	Oil Pressure Sensor	IPT-20RT1-1000-100G	Kulite Semiconductor Products, Inc. 889 North Maize Road, Suite 101
1	Fuel Pressure Sensor	IPT-20RT1-1000-100G	Wichita, KS 67212 U.S.A.
1	Manifold Pressure Sensor	APT-151B-1000-20A	Fax: 316-773-1115

1	Oil Pressure Hose	AE3660001E0112	Eaton Aerospace	
1	Fuel Pressure Hose	AE3660001E0066	Aeroquip Engineered Systems Division	
1	Manifold Pressure Hose	AE3660121B0195	To locate an authorized Aeroquip dealer, go to the following web site: www.aeroquip.com	

1	VOR/LOC/GS Diplexer	CI-1125	Diamond Aircraft Telephone: 519-457-4051 Fax: 800-934-3519 or 519-457-4045
			www.diamondair.com

1	Fuel Flow Sensor	680501-1(29.8)	Shadin Company Incorporated 6831 Oxford Street St. Louis Park, MN 55426-4414 U.S.A. Telephone: 952-927-6500 Fax: 952-924-1111
		[
			Norwich Aero Products, Inc. 50 O'Hara Drive

1	Oil Temperature Sensor	MS28034-1	50 O'Hara Drive Norwich, NY 13815 U.S.A.
			Telephone: 604-336-7636 Fax: 607-336-2610

A.3 Optional Equipment

Qty	Description	Part Number	Vendor
2	Terrain Database Card (Installed in lower card slot on PFD and MFD)	010-00330-40	Garmin International 1200 E 151st Street Olathe, KS 66062 U.S.A. TEL: 913-397-8200 FAX: 913-3978282 www.garmin.com

A.4 Parts List

PART NUMBER	DESCRIPTION	VENDOR	QTY
MS35206-220	SCREW	MIL SPEC PART	4
NAS1149FN432P	WASHER	MIL SPEC PART	6
MS21044N04	NUT	MIL SPEC PART	4
MS35206-226	SCREW	MIL SPEC PART	2
AN960-6	WASHER	MIL SPEC PART	2
MS35214-25	SCREW	MIL SPEC PART	4
MS24693-BB26	SCREW	MIL SPEC PART	3
QQB575R30T1125	WIRE BRAID	MIL SPEC PART	AR
QQB575F30T1375	WIRE BRAID	MIL SPEC PART	AR
AN960-8	WASHER	MIL SPEC PART	8
MS27039C1-16	SCREW	MIL SPEC PART	4
NAS1149C0363R	WASHER	MIL SPEC PART	8
MS21044C3	NUT	MIL SPEC PART	4
MS21044N08	NUT	MIL SPEC PART	7
M22759/16-22-2	WIRE 22 AWG RED	MIL SPEC PART	AR
M22759/16-22-9	WIRE 22 AWG WHITE	MIL SPEC PART	AR
M22759/16-22-4	WIRE 22 AWG YELLOW	MIL SPEC PART	
M22759/16-22-6	WIRE 22 AWG BLUE	MIL SPEC PART	
M22759/16-12-9	WIRE 12 AWG WHITE	MIL SPEC PART	
M22759/16-16-2		MIL OF LO TAN	
OR M22759/34-16-2	WIRE, 16 AWG, WHITE	MIL SPEC PART	AR
M23053/5-102-X	HEAT SHRINK TUBING	MIL SPEC PART	AR
M23053/5-104-X	HEAT SHRINK TUBING	MIL SPEC PART	AR
M23053/5-105-X	HEAT SHRINK TUBING	MIL SPEC PART	AR
M23053/5-106-X	HEAT SHRINK TUBING	MIL SPEC PART	AR
M23053/5-107-X	HEAT SHRINK TUBING	MIL SPEC PART	AR
M23053/5-108-X	HEAT SHRINK TUBING	MIL SPEC PART	AR
M23053/5-109-X	HEAT SHRINK TUBING	MIL SPEC PART	AR
MS35207-263	SCREW	MIL SPEC PART	2
NAS1149F0332P	WASHER	MIL SPEC PART	4
MS21044N3	NUT	MIL SPEC PART	2
MS25036-112	RING TERMINAL	MIL SPEC PART	2
MS25036-157	RING TERMINAL	MIL SPEC PART	2
MS25036-154	RING TERMINAL	MIL SPEC PART	1
MS20659-144	RING TERMINAL	MIL SPEC PART	5
MS25036-149	RING TERMINAL. #8 (M4). 18-22	MIL SPEC PART	3
AN816-4J	FITTING	MIL SPEC PART	1
AN816-3J	FITTING	MIL SPEC PART	1
MS35206-249	SCREW	MIL SPEC PART	.3
MS35206-243	SCREW	MIL SPEC PART	2
NAS1149EN832P	WASHER	MIL SPEC PART	4
MS20426AD3-5	RIVET	MIL SPEC PART	4
MS27039-1-08	SCREW	MIL SPEC PART	5
RE70FR499R	RESISTOR, FIXED WIRE-WOUND	MIL SPEC PART	3
M39029/63-368	SOCKET CONTACT CRIMP 22G	MIL SPEC PART	6
M39029/64-369	PIN CONTACT. CRIMP 22G	MIL SPEC PART	9
MS35842-12	CLAMP. HOSE. LOW PRFS. TYPF "F"	MIL SPEC PART	2
MS21919WCJ19	CLAMP, LOOP, HIGH TEMP	MIL SPEC PART	2
MS21919WDG15	CLAMP	MIL SPEC PART	3
MS21333-105	CLAMP	MIL SPEC PART	
MS3367	TIEDOWN STRAP	MIL SPFC PART	AR
MS30526-245	SCREW	MIL SPEC PART	4
MS21042-4	NUT	MIL SPEC PART	12
MS24693-S3	SCREW	MIL SPEC PART	6
MS24693-S8	SCREW	MIL SPEC PART	6
MS27039C1-10	SCREW	MIL SPEC PART	2
AN960C10	WASHER	MIL SPEC PART	
MS2104603	NUT	MIL SPEC PART	2
M32107003		WIL SELC PART	L 4

PART NUMBER	DESCRIPTION	VENDOR	QTY
115-00631-01	COVER PLATE	GARMIN	1
115-00459-00	MOUNTING TRAY	GARMIN	1
211-60037-08	SCREW	GARMIN	2
115-00481-00	MOUNTING RING	GARMIN	1
147-00041-00	SPACER	GARMIN	1
115-00632-00	MOUNTING RING	GARMIN	1
231-00022-01	CLAMP, NYLON	GARMIN	1
233-10010-01	FITTING	GARMIN	1
231-00038-00	CLAMP, WORM GEAR	GARMIN	1
252-00125-00	GROMMET STRIP	GARMIN	AR
253-00113-01	FINGER STOCK	GARMIN	2
233-10012-00	2.0" [50.8] AIRDUCT TUBING	GARMIN	AR
350-A3201-01	FUSE, 3.2 AMP	GARMIN	5
330-00354-00	FUSE HOLDER	GARMIN	5
901-00162-J0	RESISTOR, 1.6k, .25W, 5%	GARMIN	1
901-00682-J0	RESISTOR, 6.8k, .25W, 5%	GARMIN	1
225395-6	CONNECTOR, RF, BNC	DIAMOND AIRCRAFT	1
60618-1	CONTACT	DIAMOND AIRCRAFT	3
1-480305-0	CONNECTOR	DIAMOND AIRCRAFT	1
190130	AIR FITTING	DIAMOND AIRCRAFT	2
282105-1	CONNECTOR	DIAMOND AIRCRAFT	2
183036-1	CONTACT	DIAMOND AIRCRAFT	14
281934-4	GROMMET	DIAMOND AIRCRAFT	22
282080-1	CONNECTOR	DIAMOND AIRCRAFT	4
183035-1	CONTACT	DIAMOND AIRCRAFT	8
282104-1	CONNECTOR	DIAMOND AIRCRAFT	4
DIN3771-9X2	VITON 0-RING	DIAMOND AIRCRAFT	1
RD9M000V30	CONNECTOR W/VIBRATION MOUNT	POSITRONIC	1
RD9F00LVL0	CONNECTOR W/HOOD & LEVER	POSITRONIC	1
03-06-2042	PLUG HOUSING, 4P	MOLEX	1
1560	MALE TERMINAL	MOLEX	4
100-36S	DUCT CLAMP	AERO SEAL BREEZE	2
2650–26, TYPE F	FIRESLEEVE	STRATOFLEX DEALER	9"
5027	FIRESLEEVE END DIP	STRATOFLEX DEALER	AR
SW-30	1/8" SPIRAL WRAP TUBING, HI TEMP	ALPHA WIRE	AR
LOCKTITE 425	THREAD LOCK COMPOUND	BEST SOURCE	AR
DYNAMARK II	CUSTOM IMAGING SYSTEM	3M	AR
.063 6061-T6 ALUMINUM	ALUMINUM PER AMS-QQ-A-250/11	BEST SOURCE	AR
.040 2024-T3 ALUMINUM	ALUMINUM PER AMS-QQ-A-250/5	BEST SOURCE	AR
.06 TYPE 304	TYPE 304 STAINLESS STEEL	REST SOURCE	
STAINLESS STEEL	PER ASTM A240 OR AMS 5513	DESI SUURCE	

A.5 Weight & Balance

EQUIPMENT WE	EIGHT & E	BALANCE	
UNIT	WEIGHT (kg)	ARM (mm)	MOMENT (kg/mm)
GDU 1040 PFD	3.06	1775	5426.6
GDU 1040 MFD	3.06	1775	5426.6
GIA 63 #1	3.16	4030	12741.0
GIA 63 #2	3.16	3939	12447.2
GDL 69/69A	1.13	4092	4621.7
GEA 71	1.01	1681	762.5
GDC 74A	0.99	1678	1659.3
GRS 77	1.37	3942	5417.8
GMU 44	0.29	2600	743.0
GTX 33	1.72	3871	6672.3
GMA 1347	1.09	1775	1932.3
GTP 59	0.09	2120	192.3
CYL 1 EGT SENSOR	0.04	720	26.1
CYL 2 EGT SENSOR	0.04	890	35.6
CYL 3 EGT SENSOR	0.04	910	36.4
CYL 4 EGT SENSOR	0.04	1070	42.8
CYL 1 CHT SENSOR	0.03	780	21.2
CYL 2 CHT SENSOR	0.03	820	24.6
CYL 3 CHT SENSOR	0.03	960	28.8
CYL 4 CHT SENSOR	0.03	1000	30.0
OIL PRESS SENSOR	0.10	1290	122.9
FUEL PRESS SENSOR	0.10	830	83.0
OIL TEMP SENSOR	0.06	1250	79.4
MANIFOLD PRESS SENSOR	0.12	1150	135.6
TACH SENSOR	0.03	1290	41.0
FUEL FLOW SENSOR	0.07	870	63.1
CDU 1 FAN	0.09	1724	148.6
CDU 2 FAN	0.09	1724	148.6
ALT CURRENT SENSOR	0.06	1592	93.9
DIPLEXER	0.09	4144	357.1
REM AV ENCLOSURE W/FAN	2.49	4012	9990.8
OIL PRESS HOSE	0.12	1140	134.4
MANIFOLD PRESS HOSE	0.14	950	133.6
FUEL PRESS HOSE	0.10	830	79.1

NOTE

The GDL 69/69A are shown as provisions only.

This page intentionally left blank.

Appendix B G1000 Software/Configuration Procedure

This section provides a complete software/configuration procedure for instances where the entire G1000 system software version is to be re-loaded and/or updated. The following diagram depicts an overview of the entire software/configuration sequence for the G1000 system. It should be noted that in some cases, not all LRU software versions are updated at the same time. LRUs with unchanged S/W versions may be skipped during the process. All software versions must be verified at the beginning and end of the procedure and must agree with the data presented in Appendix A.1. If any problems are encountered during the loading process, see Section 7.8 for troubleshooting.

B.1 System Power Up

Apply power to the G1000 by doing the following:

- 1. Turn on the BATT side master switch.
- 2. Turn on the ground power unit, if utilized.
- 3. Turn on the AVIONICS master switch. At this moment, all G1000 equipment is receiving power.

B.1.1 System Software Verification

Before loading any software files, the existing files are to be checked and verified against aircraft maintenance logs.

- 1. Remove power from the MFD and PFD by pulling the MFD and PFD circuit breakers.
- 2. Start the PFD in configuration mode by holding down the ENT key and closing the PFD circuit breaker. Hold the ENT key until the words **INITIALIZING SYSTEM** are displayed in the upper left corner of the PFD.
- 3. Start the MFD in the same manner as the PFD.
- 4. The PFD shows the System Status configuration page by default:

		SYSTEM STATUS
MFD1		
PFD1		
PFD2		
GIA1		
GIA2 📕		
GEA1 - GIA1	PART NUMBER	006-B0319-04
GEA1 - GIA2	VERSION	2.01
GIA1	PRODUCT	GDU1040
GIA2	DESCRIPTION	GDU10XX System Software
GMA1 - GIA1	COPYRIGHT	(c) 2002–04 Garmin Ltd ar subs
GMA1 - GIA2	SERIAL NUMBER	86400004
GMU1	MODEL NUMBER	4
GMU1 FPGA	FUNCTIONS PRESENT	Ø
GRS1 - GIA1	STATUS	ONLINE
GRS1 - GIA2	BB PART NUMBER	006-B0191-00
GRS1 FPGA	BB VERSION	1.05
GRS1 MV DB		
GTX1 - GIA1		
GTX1 - GIA2		
MFD1		

- 5. Activate the cursor and use the FMS knob to scroll down the items listed in the LRU window.
- 6. Highlight each LRU and verify the installed software version and part number against the information recorded in the aircraft maintenance logs.
- 7. After software versions and part numbers have been verified, the new software may be loaded to the system. Continue to the MFD & PFD Software Load section.

B.2 MFD & PFD Software Load

- 1. Remove power to the MFD and PFD by pulling the MFD and PFD circuit breakers.
- 2. Insert the correct G1000/DA 40 Card Loader (see Appendix A) into the MFD top card slot.
- 3. While holding the ENT key on the MFD, restore power by closing the MFD circuit breaker.
- 4. When the words **INITIALIZING SYSTEM** appear in the upper left corner of the MFD, release the ENT key.
- 5. Press the ENT key to acknowledge the following prompt:

DO YOU WANT TO UPDATE SYSTEM FILES?
PRESS CLR FOR NO AND ENT FOR YES
YOU HAVE 30 SECONDS BEFORE NO IS RETURNED

6. The following screen is displayed.

DO YOU WANT TO UPDATE SYSTEM FILES?
PRESS CLR FOR NO AND ENT FOR YES
YOU HAVE 30 SECONDS BEFORE NO IS RETURNED
UPDATING SYSTEM FILES. DO NOT TURN OFF POWER !!!
THIS MAY TAKE UP TO 10 MINUTES

- 7. New software is loaded to the MFD. When complete, the MFD starts in configuration mode.
- 8. Remove the G1000/DA 40 Card Loader from the MFD and insert it into the top card slot on the PFD. Repeat Steps 3 through 7 for the PFD.
- 9. When PFD update is complete, it starts in the configuration mode. Do not remove power.

For the rest of the software/configuration procedure, do not operate the MFD while loading software or configuration files unless specifically instructed to do so. A failed or cancelled load may result.

B.3 Initial G1000 Configuration

- 1. At the PFD, go to the Configuration Upload page using the FMS knob.
- 2. Activate the cursor and highlight 'AIRFRAME' in the FILE LIST field.
- 3. Press the LOAD softkey.
- 4. Select YES and press the ENT key to acknowledge the following prompt:

5. Monitor the status of the upload. When the upload is finished, press the ENT key to acknowledge the following confirmation:

- 6. Highlight 'SYSTEM' in the FILE LIST field and repeat steps 3 through 5.
- 7. Highlight 'MANIFEST' in the FILE LIST field and repeat steps 3 through 5.
- 8. Highlight 'MFD1' in the FILE LIST field and repeat steps 3 through 5.
- 9. Highlight 'PFD1' in the FILE LIST field and repeat steps 3 through 5.
- 10. View the SUMMARY field and ensure that all items are 'complete', then de-activate the cursor:

B.4 GIA Software Load

- 1. Go to the Software Upload page using the FMS knob.
- 2. Activate the cursor and select the GIA 63 software file. Verify that GIA1 and GIA2 appear in the LRU field as shown:

		SOFTWARE UPLOAD		
FILE LIST				
GMU44 VER 2.01	006-B0224-00	→GIA1	1.09	
GRS77 VER 2.01	006-B0223-00	GIA2	1.09	
GDC74 VER 2.02	006-B0261-00			
GMAX347 VER 2.03	006-B0203-02			
GTX33X VER 3.05	006-B0328-00			
GEA7X VER 2.02	006-B0193-00			
GPS VER 3.01	006-B0093-00			
→ GIA6X VER 2.01	006-B0190-06			

- 3. Press the LOAD softkey.
- 4. Select YES and press ENT to acknowledge the following prompt:

5. The software for GIA1 begins to load. GIA2 software loads immediately after GIA1 software finishes loading. Monitor the upload status as it progresses:

6. After the files finish loading, press ENT to acknowledge the following prompt:

7. View the SUMMARY field and verify that both GIA1 and GIA2 software loading is complete.

8. Highlight the GPS software file. Ensure that GPS1 and GPS2 appear in the LRU field as shown:

		SOFTWARE UPLOAD		
FILE LIST				
GMU44 VER 2.01	006-B0224-00	→GPS1	3.01	
GRS77 VER 2.01	006-B0223-00	GPS2	3.01	
GDC74 VER 2.02	006-B0261-00			
GMAX347 VER 2.03	006-B0203-02			
GTX33X VER 3.05	006-B0328-00			
GEA7X VER 2.02	006-B0193-00			
→GPS VER 3.01	006-B0093-00			
GIA6X VER 2.01	006-B0190-06			

- 9. Press the LOAD softkey.
- 10. Select YES and press the ENT key to acknowledge the following prompt:

11. The software for GPS1 begins to load. GPS2 software loads immediately after GPS1 software finishes loading. Monitor the upload status as it progresses:

12. After the files finish loading, press ENT to acknowledge the following prompt:

B.5 GIA Configuration

ELLE LIST. → AIRFRAME SYSTEM MANIFEST MFD 1 PFD 1 GIA 1 GIA 2 GMA 1 GIX 1 GEA 1 GC 1		CONFIGURA	TION UPLO	AD				
			57	STEM GDU GIA	GEA GTX	GRS GDC GM	A 0000	

- 1. Go to the Configuration Upload page using the FMS knob.
- 2. Activate the cursor and highlight GIA1 in the FILE LIST field.
- 3. Press the LOAD softkey.
- 4. Select YES and press ENT to acknowledge the following prompt:

5. Monitor the status of the upload. When the upload is finished, press the ENT key to acknowledge the following confirmation:

- 6. Highlight GIA2 in the FILE LIST field and repeat Steps 3 through 5.
- 7. View the SUMMARY field and ensure that all items are 'complete':

Upland of GTA1 configuration COMPLETE	
Upload of GIA2 configurationCOMPLETE	

8. De-activate the cursor.

B.6 Final LRU Software Load

1. Go to the Software Upload page using the FMS knob.

B.6.1 GMA 1347 Audio Panel Software

1. Highlight the GMA software file. Ensure that both paths to the GMA through GIA1 and GIA 2 appear in the LRU field as shown:

	S	OFTWARE UPLOAD		
FILE LIST				
GMU44 VER 2.01	006-80224-00	→GMA1 - GIA1	2.00	
GRS77 VER 2.01	006-B0223-00	GMA1 - GIA2	2.00	
GDC74 VER 2.02	006-80261-00			
→GMAX347 VER 2.03	006-B0203-02			
GTX33X VER 3.05	006-80328-00			
GEA7X VER 2.02	006-B0193-00			
GPS VER 3.01	006-80093-00			
GIA6X VER 2.01	006-80190-06			

- 2. Press the LRU softkey. Select the GMA1 GIA1 data path to load software. Press the LOAD softkey.
- 3. Select YES and press the ENT key to acknowledge the following prompt:

4. The software for the GMA 1347 Audio Panel begins to load. Monitor the upload status as it progresses:

5. After the files finish loading, press ENT to acknowledge the following prompt:

B.6.2 GDC 74A Air Data Computer Software

1. Highlight the GDC74 software file. Ensure that GDC to GIA data path appears in the LRU field as shown:

		SOFTWARE UPLOAD		
	000 00004 00		0.04	
GMU44 VER 2.01	UUB-BU224-UU	-GDC1 - GIA1	2.01	
GRS77 VER 2.01	006-B0223-00			
➡GDC74 VER 2.02	006-B0261-00			
GMAX347 VER 2.03	006-B0203-02			
GTX33X VER 3.05	006-B0328-00			
GEA7X VER 2.02	006-B0193-00			
GPS VER 3.01	006-B0093-00			
GIA6X VEF 2.01	006-B0190-06			

- 2. Press the LOAD softkey.
- 3. Select YES and press the ENT key to acknowledge the following prompt:

4. The software for the GDC 74A Air Data Computer begins to load. Monitor the upload status as it progresses:

5. After the files finish loading, press ENT to acknowledge the following prompt:

B.6.3 GRS 77 AHRS Software

1. Highlight the GRS77 software file. Ensure that the GRS to GIA data path appears in the LRU field as shown:

		SOFTWARE UPLOAD		
GMU44 VER 2.01	006-B0224-00	→GRS1 - GIA1	2.00	
→ GRS77 VER 2.01	006-B0223-00			
GDC74 VER 2.02	006-B0261-00			i i i
GMAX347 VER 2.03	006-B0203-02			i i i
GTX33X VER 3.05	006-B0328-00			
GEA7X VER 2.02	006-B0193-00			
GPS VER 3.01	006-B0093-00			
GIA6X VER 2.01	006-B0190-06			i i i
				·

- 2. Press the LOAD softkey.
- 3. Select YES and press the ENT key to acknowledge the following prompt:

4. The software for the GRS 77 AHRS begins to load. Monitor the upload status as it progresses:

5. After the files finish loading, press the ENT key to acknowledge the following prompt:

B.6.4 GMU 44 Magnetometer Software

1. Highlight the GMU44 software file. Ensure that GMU1 appears in the LRU field as shown:

		SOFTWARE UPLOAD		
FILE LIST				
➡GMU44 VER 2.01	006-B0224-00	→GMU1	2.00	
GRS77 VER 2.01	006-B0223-00			
GDC74 VER 2.02	006-B0261-00			
GMAX347 VER 2.03	006-B0203-02			
GTX33X VER 3.05	006-B0328-00			
GEA7X VER 2.02	006-B0193-00			
GPS VER 3.01	006-80093-00			
GIA6X VER 2.01	006-B0190-06			

- 2. Press the LOAD softkey.
- 3. Select YES and press the ENT key to acknowledge the following prompt:

4. The software for the GMU 44 Magnetometer begins to load. Monitor the upload status as it progresses:

5. After the files finish loading, press the ENT key to acknowledge the following prompt:

B.6.5 GTX 33 Transponder Software

1. Highlight the GTX33 software file. Ensure that both paths to the GTX 33 through GIA1 and GIA2 appear in the LRU field as shown:

		SOFTW	ARE UPLOAD		
FILE LIST					
GMU44 VER 2.01	006-80224-00		→GTX1 - GIA1	3.01	
GRS77 VER 2.01	006-B0223-00		GTX1 - GIA2	3.01	
GDC74 VER 2.02	006-80261-00				
GMAX347 VER 2.03	006-80203-02				
→ GTX33X VER 3.05	006-B0172-01				
GEA7X VER 2.02	006-B0193-00				
GPS VER 3.01	006-80093-00				
GIA6X VER 2.01	006-B0190-06				

- 2. Press the LRU softkey. Select the GTX1 GIA1 data path to load software. Press the LOAD softkey.
- 3. Select YES and press the ENT key to acknowledge the following prompt:

4. The software for the GTX 33 transponder begins to load. Monitor the upload status as it progresses:

5. After the files finish loading, press ENT to acknowledge the following prompt:

B.6.6 GEA 71 Engine/Airframe Unit Software

1. Highlight the GEA7X software file. Ensure that both paths to the GEA 71 through GIA1 and GIA 2 appear in the LRU field as shown:

		SOFTWARE UPLOAD		
GMU44 VER 2.01	006-B0224-00	→GEA1 - GIA1	2.01	
GRS77 VER 2.01	006-B0223-00	GEA1 - GIA2	2.01	
GDC74 VER 2.02	006-B0261-00			
GMAX347 VER 2.03	006-B0203-02			
GTX33X VER 3.05	006-B0328-00			
➡GEA7X VER 2.02	006-B0193-00			
GPS VER 3.01	006-B0093-00			
GIA6X VER 2.01	006-B0190-06			
] [

- 2. Press the LRU softkey. Select the GEA GIA1 data path to load software. Press the LOAD softkey.
- 3. Select YES and press the ENT key to acknowledge the following prompt:

4. The software for the GEA 71 Engine/Airframe Unit begins to load. Monitor the upload status as it progresses:

5. After the files finish loading, press ENT to acknowledge the following prompt:

- 6. Check the SUMMARY field to ensure the all software loads are 'COMPLETE'.
- 7. De-activate the cursor.

B.7 Final LRU Configuration

- 1. Go to the Configuration Upload page using the FMS knob.
- 2. Activate the cursor.
- 3. Highlight the following LRUs in the FILE LIST field:
 - a) GMA1
 - i. Press the LOAD softkey.
 - ii. Press ENT at the START CONFIGURATION UPLOAD prompt.
 - iii. Press ENT at the CONFIGURATION UPLOAD COMPLETE prompt.
 - b) GTX1
 - i. Press the LOAD softkey.
 - ii. Press ENT at the START CONFIGURATION UPLOAD prompt.
 - iii. Press ENT at the CONFIGURATION UPLOAD COMPLETE prompt.
 - c) GEA1
 - i. Press the LOAD softkey.
 - ii. Press ENT at the START CONFIGURATION UPLOAD prompt.
 - iii. Press ENT at the CONFIGURATION UPLOAD COMPLETE prompt.
 - d) GDC1
 - i. Press the LOAD softkey.
 - ii. Press ENT at the START CONFIGURATION UPLOAD prompt.
 - iii. Press ENT at the CONFIGURATION UPLOAD COMPLETE prompt.
- 4. Ensure that all Configuration files are 'Complete' in the SUMMARY field as shown:

_ 1	
	Upload of GMA 1 configurationCOMPLETE
	Upload of GTX 1 configurationCOMPLETE
	Upload of GEA 1 configurationCOMPLETE
	Upload of GDC 1 configurationCOMPLETE

5. Deactivate the cursor.

B.8 Software Load Confirmation

		SYSTEM STATUS
PFD1		
PFD2		
GIA'S ONLINE		·
GIA1 🔳		
GIA2 🔳		
	DATA	
GEA1 - GIA1	PART NUMBER	006-B0319-01
GEA1 - GIA2	VERSION	1.17
GIA1	PRODUCT	GDU1040
GIA2	DESCRIPTION	GDU10XX System Software
GMA1 - GIA1	COPYRIGHT	(c) 2002-04 Garmin Ltd or subs
GMA1 - GIA2	SERIAL NUMBER	86400004
GMU1	MODEL NUMBER	4
GMU1 FPGA	FUNCTIONS PRESENT	Ø
GRS1 - GIA1	STATUS	ONLINE
GRS1 - GIA2	BB PART NUMBER	006-B0191-00
GRS1 FPGA	BB VERSION	1.05
GRS1 MV DB		
GTX1 - GIA1		
GTX1 - GIA2		
MED1		

- 1. Go to the System Status page using the FMS knob. Activate the cursor and highlight the LRU window.
- 2. Highlight each of the following items in the LRU window and verify that the reported software part number and version matches the information in Appendix A:
 - -MFD1 -PFD1 -GIA1 -GIA2 -GPS1 -GPS2 -GRS1 – GIA1, GRS1 – GIA2, & GRS1 FPGA -GMU1 & GMU1 FPGA -GDC1 – GIA1 & GDC1 FPGA -GTX1 – GIA1 & GTX1 – GIA2 -GEA1 – GIA1 & GEA1 – GIA2 -GMA1 – GIA1 & GMA1 – GIA2
- 3. De-activate the cursor.
- 4. Remove the G1000/DA 40 Card Loader from the PFD top slot and set aside.

IMPORTANT

If any software version and/or part number does not match the data in Appendix A, or if the software is not successfully loaded, do not continue with maintenance checkouts. Troubleshoot and resolve the issue before continuing (see Section 7.8).

B.9 Aviation Database Loading

- 1. Remove power from the system.
- 2. Insert an aviation database update SD card into the top slot of the PFD.
- 3. Turn the G1000 system on. The following prompt is displayed in the upper left corner of the PFD:

I)()	YOL	յ հլ	ĤΝΤ	TO	UPDA'	TE T	HE 1	AVIA	ITI	ΟN	DATA) BAS	ΞE?
F	PRE	SS	CLI	7 F(DR N	NO ANI	D EN	ΤF	DR ነ	ΈS				
ł	YOL	J Hƙ	λVE	30	SEC	CONDS	BEF	ORE	NO	IS	RE	TURN	IED	

4. Press the ENT key to confirm the database update. The following prompt is displayed:

DO YOU WANT TO UPDATE THE AVIATION DATABASE? PRESS CLR FOR NO AND ENT FOR YES YOU HAVE 30 SECONDS BEFORE NO IS RETURNED UPDATING AVIATION DATABASE . UPDATED 1 FILES SUCCESSFULLY!

- 5. After the update completes, the PFD starts in normal mode. Remove the aviation database update SD Card from the PFD.
- 6. Power the G1000 system down.
- 7. Repeat steps 1 through 4 for the MFD. The MFD and PFD aviation databases are now updated.
- 8. Confirm that the correct update cycle and version is loaded during startup of the MFD.
- 9. Remove the aviation database update SD Card from the MFD.

B.10 Final System Testing

After completion of system software loading, perform the tests for each LRU as specified in Section 7, as applicable.

After completing all LRU tests, perform the final system checkout as specified in Section 8.

Be sure to record the maintenance performed in the appropriate aircraft maintenance documentation.