**Important Safety Information**

**WARNING**

See the *Important Safety and Product Information* guide in the product box for product warnings and other important information.

You are responsible for the safe and prudent operation of your vessel. The autopilot is a tool that enhances your capability to operate your boat. It does not relieve you of the responsibility of safely operating your boat. Avoid navigational hazards and never leave the helm unattended.

Always be prepared to promptly regain manual control of your boat.

Learn to operate the autopilot on calm and hazard-free open water.

Use caution when operating the autopilot near hazards in the water, such as docks, pilings, and other boats.

**CAUTION**

When in use, beware of hot motor and solenoid components and the risk of entrapment from moving parts.

Failure to install and maintain this equipment in accordance with these instructions could result in damage or injury.

**NOTICE**

To avoid damage to your boat, the autopilot system should be installed by a qualified marine installer. Specific knowledge of hydraulic steering componentry and marine electrical systems is required for proper installation.

**Installation Preparation**

The autopilot system consists of multiple components. You should familiarize yourself with all of the component mounting and connection considerations before beginning installation. You must know how the components operate together in order to correctly plan the installation on your boat.

You can consult the layout diagrams (*Power and Data Layout*) to help understand the mounting and connection considerations.

You should lay out all of the components on the boat as you plan the installation to make sure your cables will reach each component. If needed, extension cables (sold separately) for various components are available from your Garmin® dealer or from [www.garmin.com](http://www.garmin.com).

You should record the serial number of each component for registration and warranty purposes.

**Tools Needed**

- Safety glasses
- Drill and drill bits
- Wrenches
- 90 mm (3.5 in.) hole saw or a rotary cutting tool
- Wire cutters/stripers
- Phillips and flat screwdrivers
- Cable ties
- Waterproof wire connectors (wire nuts) or heat-shrink tubing and a heat gun
- Marine sealant
- Marine corrosion inhibitor spray
- Portable or handheld compass (to test for magnetic interference)
- Hydraulic hose with machine-crimped or field-replaceable fittings that have a minimum rating of 1000 lbf/in²
- Hydraulic T-fittings
- Inline hydraulic shut-off valves
- Hydraulic fluid
- Thread sealant
- Hydraulic bleeding equipment
- Anti-seize lubricant (optional)

**NOTICE:** Mounting screws are provided for the main components of the autopilot system. If the provided screws are not appropriate for the mounting surface, you must provide the correct types of screws.

**Mounting and Connection Considerations**

The autopilot components connect to each other and to power using the included cables. Ensure that the correct cables reach each component and that each component is in an acceptable location before mounting or wiring any components.

**Helm Control Mounting Considerations**

**NOTICE**

This device should be mounted in a location that is not exposed to extreme temperatures or conditions. The temperature range for this device is listed in the product specifications. Extended exposure to temperatures exceeding the specified temperature range, in storage or operating conditions, may cause device failure. Extreme-temperature-induced damage and related consequences are not covered by the warranty.

The mounting surface must be flat to avoid damaging the device when it is mounted.

Using the included hardware and template, you can flush mount the device in the dashboard. If you want to mount the device using an alternative method where it appears flat with the front of the dashboard, you must purchase a flat-mount kit (professional installation recommended) from your Garmin dealer.

When selecting a mounting location, observe these considerations.

- The mounting location should be at or below eye level to provide optimal viewing as you operate your vessel.
- The mounting location should allow easy access to the keys on the device.
- The mounting surface must be strong enough to support the weight of the device and protect it from excessive vibration or shock.
- To avoid interference with a magnetic compass, the device should not be installed closer to a compass than the compass-safe distance value listed in the product specifications.
**CCU Mounting and Connection Considerations**

- The CCU is the primary sensor of the GHP Reactor SmartPump autopilot system. For best performance, observe these considerations when selecting a mounting location.
  - A handheld compass should be used to test for magnetic interference in the area where the CCU is to be mounted. If the needle on a handheld compass moves when you hold it where you intend to mount the CCU, magnetic interference is present. You must choose another location and test again.
  - The CCU should be mounted on a rigid surface for best performance.
  - Although the CCU can be installed in any orientation on your boat, you can avoid the step of defining north in the setup procedure by meeting all of these considerations when selecting a mounting location (optional).
  - The connectors on the CCU must point toward the bow.
  - The base of the CCU must be at a right angle to the roll and pitch axis of the boat.
  - The CCU must be located near the center of rotation of the boat, slightly toward the front, if necessary.

- The CCU cable connects the CCU to the SmartPump and is 5 m (16 ft.) long.
  - If the CCU cannot be mounted within 5 m (16 ft.) of the SmartPump, extension cables are available from your local Garmin dealer or at www.garmin.com.
  - This cable must not be cut.

**Finding the Best Mounting Location**

1. Create a list of all suitable mounting locations for the CCU where no iron, magnets, or high-current wires are located within 60 cm (2 ft.). A large magnet, such as a subwoofer-speaker magnet should be no closer than 1.5 m (5 ft.) to these locations.
2. Locate the center of rotation of the boat, and measure the distance between the center of rotation and each of the suitable mounting locations you listed in step 1.
3. Select the location closest to the center of rotation.
   - If more than one location is approximately the same distance from the center of rotation, you should select the location that best meets these considerations.
     - The best location is closest to the centerline of the boat.
     - The best location is lower in the boat.
     - The best location is slightly forward in the boat.

**Pump Mounting Considerations**

Consult the hydraulic-layout diagrams in these instructions to help determine the pump-installation location (Hydraulic Layouts).

- The pump must be mounted at a location to which you can extend the hydraulic steering lines of the boat.
- The pump should be mounted horizontally if possible.
- If the pump must be mounted vertically, you should mount it with the hydraulic connections facing up.
- The pump has five hydraulic-connector fittings, although only three are used when installing the pump as recommended.

**Pump Hydraulic Considerations**

**NOTICE**

When adding hydraulic line to the system, use only hose with machine-crimped or field-replaceable fittings that have a minimum rating of 1000 lbf/in² (6,895 kPa).

Do not use plumber’s tape on any hydraulic fitting. Use an appropriate thread sealant rated for marine use on all pipe threads in the hydraulic system.

Do not attempt to use the autopilot to steer the boat until you bleed all air from each part of the hydraulic system.

Consult the hydraulic-layout diagrams starting on Hydraulic Layouts to help determine how to best install the pump in the hydraulic system of the boat.

The recommended pump installation method requires the installation of T-fittings and shutoff valves so the pump can be removed for service without disabling the steering system. This type of installation will use only three of the five ports on the manifold. Although it is not recommended, all five ports can be used instead of installing shutoff valves. See Pump Valves and Fittings for more information on the fittings and alternate connection methods.

**Pump Valves and Fittings**

The pump can be connected to the hydraulic system using one of two methods. The recommended three-connector method uses only the H1 ① and H2 ② fittings, with a T-connector splitting the connection between the helm and cylinder. The return line fitting ③ connects to only the helm. The check valves ④ should not be reconfigured if the boat is equipped with a balanced cylinder. If the boat is equipped with an unbalanced cylinder, the check valves must be reconfigured (Configuring the Pump for an Unbalanced Cylinder). The bypass valve ⑤ is opened only for hydraulic bleeding, and must be fully tightened during normal operation.

If necessary, the C1 ⑥ and C2 ⑦ fittings can be used with the recommended three-connector installation instead of the H1 and H2 fittings.

Alternatively, the pump can be installed using all five connectors. This installation option uses the C1 and C2 fittings to connect the pump to the cylinder and the H1 and H2 fittings to connect the pump to the helm. This type of installation is not recommended, because the pump cannot be removed for service without disabling the steering system of the boat.

**Configuring the Pump for an Unbalanced Cylinder**

**NOTICE**

To avoid damage to the pump, keep all parts clean and free of dust and debris while configuring the pump for an unbalanced-cylinder steering system.
If you remove the check valves after bleeding the hydraulic system, you must bleed it again. Reconfiguring the check valves may introduce air into the hydraulic system.

If the boat has an unbalanced cylinder steering system, you must configure the pump to work properly with the steering system.

1. Remove the check valves ① from the pump manifold.

2. Pull the pistons ② out of the pump manifold.
   The pump is configured from the factory with the pistons in the balanced configuration ③.

3. Remove the o-rings ④ from the pistons and discard them. If you cannot easily pull the o-rings from the pistons, you may need to cut them.

4. Re-insert the pistons into the pump manifold in the unbalanced configuration ⑤.

5. Insert the check valves into the pump manifold, and tighten them.

**Shadow Drive™ Mounting Considerations**

**NOTE:** The Shadow Drive is a sensor you install in the hydraulic steering lines of your boat. It detects when you manually take control of the helm and suspends autopilot control of the boat.

- The Shadow Drive must be mounted horizontally and as level as possible, with cable ties firmly securing it in place.
- The Shadow Drive must be mounted at least 305 mm (12 in.) away from magnetic materials or devices, such as speakers or electric motors.
- The Shadow Drive should be mounted closer to the helm than to the pump.
- The Shadow Drive should be mounted lower than the helm, but higher than the pump.
- The Shadow Drive must not be connected directly to the fitting at the back of the helm. There must be a length of hose between the fitting at the helm and the Shadow Drive.
- The Shadow Drive must not be connected directly to a hydraulic T-connector in the hydraulic line. There must be a length of hose between a T-connector and the Shadow Drive.
- In a single-helm installation, there must not be a T-connector between the helm and the Shadow Drive.
- In a dual-helm installation, the Shadow Drive should be installed between the pump and the hydraulic T-connector that leads to the upper and lower helm, closer to the helm than to the T-connector.
- The Shadow Drive must be installed in either the starboard steering line or the port steering line.
- The Shadow Drive must not be installed in either the return line or the high-pressure line, if applicable.

**Alarm Mounting and Connection Considerations**

- The alarm should be mounted near the primary helm station.
- The alarm can be mounted under the dashboard.
- If needed, the alarm wires can be extended with 28 AWG (0.08 mm²) wire.

---

**NMEA 2000 Connection Considerations**

- The CCU and the helm control must connect to a NMEA 2000 network.
- If your boat does not already have a NMEA 2000 network, one can be built using the included NMEA 2000 cables and connectors (**Building a Basic NMEA 2000 Network for the Autopilot System**).
- To use the advanced features of the autopilot, optional NMEA 2000 devices, such as a wind sensor, a water-speed sensor, or a GPS device, can be connected to the NMEA 2000 network.

**Power and Data Layout**

**WARNING**

When connecting the power cable, do not remove the in-line fuse holder. To prevent the possibility of injury or product damage caused by fire or overheating, the appropriate fuse must be in place as indicated in the product specifications. In addition, connecting the power cable without the appropriate fuse in place will void the product warranty.

---

**Building a Basic NMEA 2000 Network for the Autopilot System**

**Item** | **Description** | **Important Considerations**
--- | --- | ---
① | Helm control |  
② | CCU | The CCU can be mounted in a non-submerged location near the center of the boat, in any orientation (**CCU Mounting and Connection Considerations**). The CCU must be located away from sources of magnetic interference.
③ | Helm control data cable | This cable should be installed only if you are connecting the autopilot to optional NMEA 0183 devices, such as a wind sensor, a water-speed sensor, or a GPS device (**NMEA 0183 Connection Considerations**).
④ | NMEA 2000 network | The helm control and the CCU must be connected to a NMEA 2000 network using the included T-connectors (**NMEA 2000 Connection Considerations**). If there is not an existing NMEA 2000 network on your boat, you can build one using the supplied cables and connectors (**Building a Basic NMEA 2000 Network for the Autopilot System**).
⑤ | CCU cable | To extend this cable to reach the ECU, extensions (sold separately) may be necessary (**CCU Mounting and Connection Considerations**). This cable connects to the alarm and the Shadow Drive.
Component Layout

Single-Helm Layout

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Important Considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SmartPump</td>
<td>This diagram does not show any hydraulic connections. Consult the hydraulic-layout</td>
</tr>
<tr>
<td></td>
<td></td>
<td>diagrams for details <strong>Hydraulic Layouts</strong>.</td>
</tr>
<tr>
<td>2</td>
<td>NMEA 2000 power cable</td>
<td>This cable should be installed only if you are building a NMEA 2000 network. Do not install</td>
</tr>
<tr>
<td></td>
<td></td>
<td>this cable if there is an existing NMEA 2000 network on your boat. The NMEA 2000 power</td>
</tr>
<tr>
<td></td>
<td></td>
<td>cable must be connected to a 9 to 16 Vdc power source.</td>
</tr>
<tr>
<td>3</td>
<td>Pump power cable</td>
<td>The pump must be connected to a 12 to 24 Vdc power source. To extend this cable, use the</td>
</tr>
<tr>
<td></td>
<td></td>
<td>correct wire gauge (<strong>Power Cable Extensions</strong>).</td>
</tr>
<tr>
<td>4</td>
<td>Alarm</td>
<td>The alarm provides audible alerts from the autopilot system, and should be installed near</td>
</tr>
<tr>
<td></td>
<td></td>
<td>the helm control (<strong>Installing the Alarm</strong>).</td>
</tr>
<tr>
<td>5</td>
<td>Shadow Drive</td>
<td>The Shadow Drive must be installed properly in the hydraulic steering line, and connected</td>
</tr>
<tr>
<td></td>
<td></td>
<td>to the CCU cable (<strong>Installing the Shadow Drive</strong>).</td>
</tr>
</tbody>
</table>

Component Layout

Dual-Helm Layout Guidelines

NOTE: This diagram is for planning purposes only. If needed, specific connection diagrams are included in the detailed installation instructions for each component. Hydraulic connections are not shown in this diagram.

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Important Considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Helm control</td>
<td>The pump must be connected to a 12 to 24 Vdc power source. To extend this cable, use the</td>
</tr>
<tr>
<td></td>
<td></td>
<td>correct wire gauge (<strong>Power Cable Extensions</strong>).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The NMEA 2000 power cable must be connected to a 9 to 16 Vdc power source.</td>
</tr>
<tr>
<td>2</td>
<td>12 to 24 Vdc battery</td>
<td>The pump must be connected to a 12 to 24 Vdc power source. To extend this cable, use the</td>
</tr>
<tr>
<td></td>
<td></td>
<td>correct wire gauge (<strong>Power Cable Extensions</strong>).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The NMEA 2000 power cable must be connected to a 9 to 16 Vdc power source.</td>
</tr>
<tr>
<td>3</td>
<td>SmartPump</td>
<td>The CCU can be mounted in a non-submerged location near the center of the boat, in any</td>
</tr>
<tr>
<td></td>
<td></td>
<td>orientation (<strong>CCU Mounting and Connection Considerations</strong>). The CCU must be located away</td>
</tr>
<tr>
<td></td>
<td></td>
<td>from sources of magnetic interference.</td>
</tr>
<tr>
<td>4</td>
<td>CCU</td>
<td>The CCU can be mounted in a non-submerged location near the center of the boat, in any</td>
</tr>
<tr>
<td></td>
<td></td>
<td>orientation (<strong>CCU Mounting and Connection Considerations</strong>). The CCU must be located away</td>
</tr>
<tr>
<td></td>
<td></td>
<td>from sources of magnetic interference.</td>
</tr>
<tr>
<td>5</td>
<td>NMEA 2000 network</td>
<td>The helmet control and the CCU must be connected to a NMEA 2000 network using the included</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T-connectors (<strong>NMEA 2000 Connection Considerations</strong>). If there is not an existing NMEA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2000 network on your boat, you can build one using the supplied cables and connectors (<strong>Building a Basic NMEA 2000 Network for the Autopilot System</strong>).</td>
</tr>
</tbody>
</table>

Hydraulic Layouts

**NOTICE**

If the steering system in your boat does not match any of the hydraulic layouts in this manual and you are unsure how to install the pump, contact Garmin Product Support.

Before you start the pump installation, identify the type of hydraulic steering system in your boat. Each boat is different, and you must consider certain aspects of the existing hydraulic layout before deciding where to mount the pump.

**Important Considerations**

- The pump must be reconfigured if the boat is equipped with an unbalanced steering cylinder (**Configuring the Pump for an Unbalanced Cylinder**).
- Garmin recommends using T-connectors to connect the hydraulic lines to the pump.
- To allow for easy pump disabling and removal, Garmin recommends installing shut-off valves in the hydraulic lines between the pump manifold and T-connectors.
- Teflon™ tape must not be used on any hydraulic fitting.
- An appropriate thread sealant should be used on all pipe threads in the hydraulic system.

NOTE: This diagram is for planning purposes only. If needed, specific connection diagrams are included in the detailed installation instructions for each component. Hydraulic connections are not shown in this diagram.
**Single-Helm without Power Assist Layout**

1. Shadow Drive
2. Starboard line
3. Return line
4. Pump
5. Port line
6. Shut-off valves
7. Helm
8. Steering cylinder

**Dual-Helm without Power Assist Layout**

1. Shadow Drive
2. Starboard line
3. Return line
4. Port line
5. Shut-off valves
6. Helm
7. Power-assist module
8. Pump
9. Steering cylinder

**Single-Helm with Power Assist Layout**

- **NOTICE**
  
  The pump must be installed between the cylinder and the power-assist module to function correctly.

- **NOTE:** Removal of the power assist-module may be necessary to gain access to the fittings, hoses, and bleed-tee fitting.

**Single-Helm with Uflex MasterDrive™ Layout**

- **CAUTION**
  
  When installing the pump in a system with a Uflex MasterDrive, do not cut the high-pressure line connecting the power unit to the helm to avoid injury or property damage.

**Dual-Helm with Uflex MasterDrive Layout**

- **CAUTION**
  
  When installing the pump in a system with a Uflex MasterDrive, do not cut the high-pressure line connecting the power unit to the helm to avoid injury or property damage.
**Installation Procedures**

**CAUTION**
Always wear safety goggles, ear protection, and a dust mask when drilling, cutting, or sanding.

**NOTICE**
When drilling or cutting, always check what is on the opposite side of the surface.

After you have planned the autopilot installation on your boat and satisfied all of the mounting and wiring considerations for your particular installation, you can begin mounting and connecting the components.

**Helm Control Installation**
You must install the helm control by flush-mounting it in the dashboard near the helm and connecting it to a NMEA 2000 network.

To use advanced features of the autopilot, optional NMEA 2000-compatible or NMEA 0183-compatible devices, such as a wind sensor, water-speed sensor, or GPS device, can be connected to the NMEA 2000 network or connected to the helm control through NMEA 0183.

**Mounting the Helm Control**

**NOTICE**
If you are mounting the device in fiberglass, when drilling the four pilot holes, it is recommended to use a countersink bit to drill a clearance counterbore through only the top gel-coat layer. This will help to avoid any cracking in the gel-coat layer when the screws are tightened.

Stainless-steel screws may bind when screwed into fiberglass and overtightened. Garmin recommends applying an anti-seize lubricant to the screws before installing them.

Before you can mount the helm control, you must select a mounting location (Helm Control Mounting Considerations).

1. Hold the pump in the intended mounting location and mark the locations of the mounting holes on the mounting surface, using the pump as a template.
2. Using a drill bit appropriate for the mounting surface and selected mounting hardware, drill the four holes through the mounting surface.
3. Secure the pump to the mounting surface using the selected mounting hardware.

**Mounting the CCU**
1. Determine the mounting location.
2. Using the CCU as a template, mark the two pilot hole locations on the mounting surface.
3. Using a 3 mm (1/8 in.) bit, drill the pilot holes.
4. Use the included screws to attach the CCU to the mounting surface.

**Pump Installation**

**Mounting the Pump**

Before you mount the pump, if your boat has an unbalanced cylinder steering system, you must re-configure the pump to work properly with the unbalanced cylinder (Configuring the Pump for an Unbalanced Cylinder).

Before you can mount the pump, you must select a location (Pump Mounting Considerations) and determine the correct mounting hardware (Tools Needed).

1. Hold the pump in the intended mounting location and mark the locations of the mounting holes on the mounting surface, using the pump as a template.
2. Using a drill bit appropriate for the mounting surface and selected mounting hardware, drill the four holes through the mounting surface.
3. Secure the pump to the mounting surface using the selected mounting hardware.
Connecting the Hydraulic Lines to the Pump

Refer to the layout diagrams beginning on Single-Helm with Power Assist Layout for assistance.

1. Disconnect the necessary lines from the hydraulic system.
2. Add a T-connector to the starboard and port lines of the system between the helm and the steering cylinder.

   **NOTE:** If the boat has a power-assist module, add the T-connectors between the power-assist module and the steering cylinder.

3. Complete an action:
   - If the boat does not have a power-assist module, add enough hydraulic hose to connect the return fitting on the helm to the pump fitting labeled with a T.
   - If the boat has a power-assist module, a return line should already exist between the helm and the power-assist module. Add a T-connector to the return line of the system between the power-assist module and the helm.

4. Add hydraulic hose to the unused fitting on each T-connector, with enough hose to connect the T-connector to the pump fittings.

5. Connect the starboard line T-connector to a pump fitting labeled with a C1 or C2.

6. Connect the port line T-connector to the pump fitting labeled with a C1 or C2 that you did not use in step 4.

7. Complete an action:
   - If the boat does not have a power-assist module, connect the return fitting on the helm to the pump fitting labeled with a T.
   - If the boat has a power-assist module, connect the return line T-connector to the pump fitting labeled with a T.

8. Install the Shadow Drive in the port or starboard hydraulic line between the helm and the T-connector (Installing the Shadow Drive).

9. Install a shut-off valve (not included) on each hydraulic line that connects directly to the pump.

10. Insert, tighten, and seal the included plugs in the unused pump fittings, if they are not already in place.

Connecting the Pump to Power

**WARNING**

When connecting the power cable, do not remove the in-line fuse holder. To prevent the possibility of injury or product damage caused by fire or overheating, the appropriate fuse must be in place as indicated in the product specifications. In addition, connecting the power cable without the appropriate fuse in place will void the product warranty.

You should connect the pump power cable directly to the boat battery, if possible. Although it is not recommended, if you connect the power cable to a terminal block or other source, connect it through a 40 A fuse.

If you plan to route the pump through a breaker or a switch near the helm, you should use an appropriately sized relay and control wire. Do not extend the pump power cable in this case.

1. Route the connector-terminated end of the power cable to the pump, but do not connect it to the pump.

2. Route the bare-wire end of the power cable to the boat battery.

   If the cable is not long enough, it can be extended by splicing a larger wire (Power Cable Extensions).

   Observe the cautions at the beginning of this section about extending the power cable.

3. Connect the black wire (-) to the negative (-) terminal of the battery.

4. Connect the red wire (+) to the positive (+) terminal of the battery.

5. Leave the power cable disconnected from the pump at this time.

   You should connect the power cable to the pump only after you install all of the other autopilot components to avoid unwanted activity from the pump.

Power Cable Extensions

If necessary, the power cable can be extended using the appropriate wire gauge for the length of the extension.

---

### Power Cable Extensions

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Splice</td>
</tr>
<tr>
<td>2</td>
<td>8 AWG (8.36 mm²) extension wire</td>
</tr>
<tr>
<td>3</td>
<td>Fuse</td>
</tr>
<tr>
<td>4</td>
<td>8 in. (20.3 cm)</td>
</tr>
<tr>
<td>5</td>
<td>Battery</td>
</tr>
<tr>
<td>6</td>
<td>8 in. (20.3 cm)</td>
</tr>
<tr>
<td>7</td>
<td>Up to 23 ft. (7 m)</td>
</tr>
</tbody>
</table>

---

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Splice</td>
</tr>
<tr>
<td>2</td>
<td>6 AWG (13.29 mm²) extension wire</td>
</tr>
<tr>
<td>3</td>
<td>Fuse</td>
</tr>
<tr>
<td>4</td>
<td>8 in. (20.3 cm)</td>
</tr>
<tr>
<td>5</td>
<td>Battery</td>
</tr>
<tr>
<td>6</td>
<td>8 in. (20.3 cm)</td>
</tr>
<tr>
<td>7</td>
<td>Up to 36 ft. (11 m)</td>
</tr>
</tbody>
</table>
**Bleeding the Hydraulics**

**NOTICE**
This is a general procedure for bleeding a hydraulic steering system. Refer to the instructions provided by the manufacturer of the steering system for more-specific information about bleeding the system.

Before you bleed the hydraulic system, you should verify that all hose connections are complete and fully tightened.

1. Select an option:
   - If the helm reservoir contains insufficient fluid, fill it as needed.
   - If the helm reservoir contains excess fluid, remove the excess to avoid fluid overflow during the bleeding process.

2. Insert a bypass hose between the cylinder bleed ports.
   **TIP:** If you use a clear plastic hose for this bypass, you can observe air bubbles during the bleeding processes.

3. Manually steer the helm fully to port.
4. Open both bypass valves at the cylinder fittings.
5. Open the bypass valve on the pump manifold.
6. Manually turn the helm slowly to port over three minutes.
   **TIP:** You can stop turning when you no longer see air moving through the bypass hose.
7. Turn on the autopilot system and disable the Shadow Drive. You can refer to the autopilot system documentation for more information on disabling the Shadow Drive.
8. Hold left (port) on the helm control for at least 10 seconds.
   **TIP:** You can stop holding left when you no longer see air moving through the bypass hose.
9. Close both bypass valves at the cylinder fittings.
10. Close the bypass valve on the pump manifold.
11. If necessary, add fluid to the helm reservoir.
12. Repeat steps 3 through 11 for the starboard side.
13. Hold left (port) on the helm control until steering stops and **Hydraulic Pump Stall** is shown on the helm control.
14. Hold right (starboard) on the helm control until steering stops and **Hydraulic Pump Stall** is shown on the helm control.
15. Select an option:
   - If **Hydraulic Pump Stall** is not shown within 2 to 3 seconds after the cylinder stops, repeat steps 1-15 to bleed the system again.
   - If **Hydraulic Pump Stall** is shown within 2 to 3 seconds after the cylinder stops, the system bleed completed successfully.

After hydraulic bleeding is complete, you can re-enable the Shadow Drive.

**Corrosion Blocker**

**NOTICE**
To ensure long life of all parts, apply corrosion blocker to the pump at least twice yearly.

A marine-rated corrosion blocker should be applied to the pump after all hydraulic and electrical connections are made and the hydraulic system has been bled.

**Installing a Garmin Rudder Feedback Sensor**
Installing a rudder feedback sensor, such as the GRF™ 10 (sold separately), is not necessary for the autopilot to function correctly, but doing so will increase performance, provide an on-screen rudder indication, and extend the life of the SmartPump.

Follow the installation instructions provided with your GRF rudder feedback sensor to connect it to your rudder control and autopilot system.

**Connecting the CCU**
1. Route the connector end of the CCU cable to the SmartPump and make the connection.
2. Route the orange and blue wires from the bare-wire portion of the CCU cable to the location where you plan to install the alarm (Installing the Alarm).
   If the cable is not long enough, extend the appropriate wires with 0.08 mm² (28 AWG) wire.
3. Route the brown and black wires from the bare-wire portion of the CCU cable to the location where you plan to install the Shadow Drive (Installing the Shadow Drive).
   If the cable is not long enough, extend the appropriate wires with 0.08 mm² (28 AWG) wire.

**Installing the Shadow Drive**

**Connecting the Shadow Drive to the Hydraulic System**
Before you can install the Shadow Drive, you must select a location at which to connect the Shadow Drive to the hydraulic steering of your boat (Shadow Drive™ Mounting Considerations). For further assistance, consult the hydraulic-layout diagrams (Hydraulic Layouts).

Use hydraulic connectors (not included) to install the Shadow Drive in the appropriate hydraulic line.

**Connecting the Shadow Drive to the CCU**
1. Route the bare-wire end of the CCU cable to the Shadow Drive.
   If the cable is not long enough, extend the appropriate wires with 28 AWG (0.08 mm²) wire.
2. Connect the cables, based on this table.

<table>
<thead>
<tr>
<th>Shadow Drive Wire Color</th>
<th>CCU Cable Wire Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red (+)</td>
<td>Brown (+)</td>
</tr>
<tr>
<td>Black (-)</td>
<td>Black (-)</td>
</tr>
</tbody>
</table>

3. Solder and cover all bare-wire connections.

**Installing the Alarm**
Before you can mount the alarm, you must select a mounting location (Alarm Mounting and Connection Considerations).
1. Route the alarm cable to the bare-wire end of the CCU cable.
   If the cable is not long enough, extend the appropriate wires with 28 AWG (0.08 mm²) wire.
2. Connect the cables, based on this table.

<table>
<thead>
<tr>
<th>Alarm Wire Color</th>
<th>CCU Cable Wire Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>White (+)</td>
<td>Orange (+)</td>
</tr>
<tr>
<td>Black (-)</td>
<td>Blue (-)</td>
</tr>
</tbody>
</table>

3. Solder and cover all bare-wire connections.
4. Secure the alarm with cable ties or other mounting hardware (not included).

**NMEA 2000 and the Autopilot Components**

**NOTICE**
If you have an existing NMEA 2000 network on your boat, it should already be connected to power. Do not connect the NMEA 2000 power cable to an existing NMEA 2000 network, because only one power source should be connected to a NMEA 2000 network.

You can connect the helm control and the CCU through an existing NMEA 2000 network. If you do not have an existing NMEA 2000 network on your boat, all the parts needed to build one are supplied in the autopilot package (Building a Basic NMEA 2000 Network for the Autopilot System).

To use advanced features of the autopilot, optional NMEA 2000 devices, such as a GPS device, can be connected to the NMEA 2000 network.
If you are unfamiliar with NMEA 2000, you should read the “NMEA 2000 Network Fundamentals” chapter of the Technical Reference for NMEA 2000 Products. To download this document, select Manuals on the product page for your device at www.garmin.com.

Building a Basic NMEA 2000 Network for the Autopilot System

**NOTICE**
If you are installing a NMEA 2000 power cable, you must connect it to the boat ignition switch or through another in-line switch. NMEA 2000 devices will drain your battery if the NMEA 2000 power cable is connected to the battery directly.

1. Connect the three T-connectors together side-by-side.  
2. Connect the included NMEA 2000 power cable to a 9 to 12 Vdc power source through a switch.  
   Connect the power cable to the ignition switch of the boat if possible, or route it through an inline switch (not included).  
   **NOTE:** The braided drain wire (bare) on the NMEA 2000 power cable must be connected to the same ground as the black wire on the NMEA 2000 power cable.
3. Connect the NMEA 2000 power cable to one of the T-connectors.
4. Connect one of the included NMEA 2000 drop cables to one of the T-connectors and to the helm control.
5. Connect the other included NMEA 2000 drop cable to the other T-connector and to the CCU.
6. Connect the male and female terminators to each end of the combined T-connectors.

Connecting the Autopilot Components to an Existing NMEA 2000 Network

1. Determine where to connect the helm control and the CCU to your existing NMEA 2000 backbone.
2. In the location where you want to connect the helm control, disconnect one side of a NMEA 2000 T-connector from the network.
3. If necessary, connect a NMEA 2000 backbone extension cable (not included) to the side of the disconnected T-connector to extend the NMEA 2000 network backbone.
4. Add an included T-connector for the helm control to the NMEA 2000 backbone by connecting it to the side of the disconnected T-connector or backbone extension cable.
5. Route the included drop cable to the helm control and to the bottom of the T-connector added in step 4.
   If the included drop cable is not long enough, you can use a drop cable up to 6 m (20 ft.) long (not included).
6. Connect the drop cable to the helm control and the T-connector.
7. Repeat steps 2 through 6 for the CCU.

Connecting Optional NMEA 2000 Devices to the Autopilot System

You can use advanced features of the autopilot system by connecting optional NMEA 2000 compatible devices, such as a wind sensor, a water-speed sensor, or a GPS device to the NMEA 2000 network.

**NOTE:** You can connect optional devices that are not NMEA 2000 compatible to the helm control through NMEA 0183 (NMEA 0183 Connection Considerations).

1. Add an additional T-connector (not included) to the NMEA 2000 network.
2. Connect the optional NMEA 2000 device to the T-connector by following the instructions provided with the device.

**Configuring the Autopilot**

The autopilot must be configured and tuned to your boat dynamics. The Dockside Wizard and the Sea Trial Wizard on the helm control are used to configure the autopilot. These wizards walk you through the necessary configuration steps.

The Dockside Wizard

**NOTICE**
If you perform the Dockside Wizard while your boat is out of the water, provide rudder-movement clearance to avoid damage to the rudder or other objects.

You can complete the Dockside Wizard while the boat is in or out of the water.

If the boat is in the water, it must be stationary while you complete the wizard.
Performing the Dockside Wizard

NOTICE
If you have a boat with a power assist steering system, turn on the power assist steering system before performing the Dockside Wizard to avoid damaging the steering system.

1 Turn on the autopilot.
   The first time you turn on the autopilot, you are prompted to complete a short setup sequence.
2 If the Dockside Wizard does not start automatically after the setup sequence, select Menu > Setup > Dealer Autopilot Setup > Wizards > Dockside Wizard.
3 Select the vessel type.
4 If necessary, calibrate the rudder sensor (Calibrating the Rudder).
5 Test the steering direction (Testing the Steering Direction).
6 If necessary, select the speed source (Selecting the Speed Source).
7 If necessary, verify the tachometer (Verifying the Tachometer).
8 Test the helm lock-to-lock.
9 Review the results of the Dockside Wizard (Reviewing the Results of the Dockside Wizard).

Calibrating the Rudder
NOTE: If an error appears during these steps, the rudder feedback sensor may have reached its limit. If this happens, the rudder feedback sensor may not have been installed correctly. If the problem persists, you can continue with calibration by moving the rudder to the farthest position that does not report an error.

1 Position the rudder so that the boat would steer fully starboard and select OK.
2 After the starboard calibration is complete, position the rudder so that the boat would steer fully port, and select OK.
3 After the port calibration is complete, center the rudder position, let go, and select Begin.
   The autopilot takes control of the rudder.
4 Without touching the rudder or helm control, allow the autopilot to calibrate the rudder.
5 Select an option:
   • If the calibration did not complete successfully, repeat steps 1 through 4.
   • If the calibration completed successfully, select OK.

Testing the Steering Direction
1 While moving at a low rate of speed, select ← and →. When you select ←, the rudder must turn the boat to the left. When you select →, the rudder must turn the boat to the right.
2 Select Continue.
3 Select an option:
   • If the steering test turns the boat in the correct direction, select Yes.
   • If the steering test turns the boat in the opposite direction, select No and repeat steps 1 through 3.

Selecting the Speed Source
Select an option:
   • If you connected a NMEA 2000 compatible engine (or engines) to the NMEA 2000 network, select Tach. - NMEA 2000 or Proprietary.
   • If NMEA 2000 tachometer data source is not available or unusable, select GPS as a speed source.
   • If you did not connect a NMEA 2000 tachometer or GPS device as a speed source, select None.

NOTE: If the autopilot does not perform well using None as the speed source, Garmin recommends connecting a tachometer through the NMEA 2000 network or using a GPS device as the speed source.

Verifying the Tachometer
This procedure does not appear when GPS or None is selected as the speed source.
With the engine (or engines) running, compare the RPM readings on the helm control with the tachometer (or tachometers) on the dashboard of your boat.
If the RPM numbers do not align, there may be a problem with the NMEA 2000 speed source or connection.

Reviewing the Results of the Dockside Wizard
The helm control displays the values you chose when you ran the Dockside Wizard.
1 Examine the results of the Dockside Wizard.
2 Select any incorrect value, and select Select.
3 Correct the value.
4 Repeat steps 2–3 for all incorrect values.
5 When you are finished reviewing the values, select Done.

The Sea Trial Wizard
The Sea Trial Wizard configures the fundamental sensors on the autopilot, and it is extremely important to complete the wizard in conditions appropriate for your boat.

Important Sea Trial Wizard Considerations
The Sea Trial Wizard must be completed in calm water. Because the nature of calm water is relative to the size and shape of the boat, before you begin the Sea Trial Wizard, the boat must be in an appropriate location.
• The boat must not rock while sitting still or moving very slowly.
• The boat must not be significantly affected by the wind.
While completing the Sea Trial Wizard, observe these considerations.
• Weight on the boat must remain balanced. While completing any of the steps in the Sea Trial Wizard, do not move around on the boat.

Performing the Sea Trial Wizard
1 Drive your boat to an open area of calm water.
2 Select Menu > Setup > Dealer Autopilot Setup > Wizards > Sea Trial Wizard.
3 If necessary, configure the planing RPM.
   This step applies only to planing-hull power boats with the speed source set to Tach. - NMEA 2000 or Proprietary.
4 If necessary, configure the planing speed.
   This step applies only to planing-hull power boats with the speed source set to GPS.
5 If necessary, configure the high RPM limit.
   This step applies only to power boats with the speed source set to Tach. - NMEA 2000 or Proprietary or GPS.
6 If necessary, configure the maximum speed.
   This step applies only to power boats with the speed source set to GPS.
7 Calibrate the compass (Calibrating the Compass).
8 Perform the Autotune procedure (Performing the Autotune Procedure).
9 Set north (Setting North) if GPS-heading information is available, or set the fine heading adjustment (Setting the Fine Heading Adjustment) if GPS-heading information is not available.
Calibrating the Compass

1 Select an option:
   • If you are performing this procedure as part of the Sea Trial Wizard, select Begin.
   • If you are performing this procedure outside of the Sea Trial Wizard, from the heading screen, select Menu > Setup > Dealer Autopilot Setup > Compass Setup > Calibrate Compass > Begin.

2 Follow the directions on the helm control until calibration is complete, taking care to keep the boat as steady and flat as possible. The boat should not list during calibration.

3 Select an option:
   • If the calibration completes successfully, select Done.
   • If the calibration is not successful, select Retry and repeat steps 1 through 3.

When the calibration is complete, calibration values are displayed. You can use these values to determine the quality of the calibration procedure.

Compass-Calibration Values

After the compass calibration process is complete, you can review the results provided on the helm control to determine the successfulness of the calibration.

Magnetic Environment: Indicates the level of distortion of the Earth’s magnetic field at the mounting location.
   • A value of 100 indicates the device experiences no magnetic interference at the mounting location.
   • If this value is low, you might need to move the CCU and calibrate the compass again.
   • A value of 100 is ideal, but it is not necessary for the autopilot to function correctly. If the CCU is mounted in an optimal location on your boat, you should continue configuring the autopilot and evaluate the performance again later.

Spin Quality: Represents how level the boat remained during the compass-calibration process.
   • A value of 100 indicates the boat remained perfectly level during compass calibration.
   • If this value is low, you might need to calibrate the compass again.

Performing the Autotune Procedure

Before you can begin this procedure, you must have a large stretch of open water available.

1 Adjust the throttle so the boat travels at a typical cruising speed that provides responsive steering.

2 Select an option:
   • If you are performing this procedure as part of the Sea Trial Wizard, select Begin.
   • If you are performing this procedure outside of the Sea Trial Wizard, from the heading screen, select Menu > Setup > Dealer Autopilot Setup > Autopilot Tuning > Autotune > Begin.

The boat performs various zigzag motions while the Autotune is in progress.

3 After the procedure is finished, follow the on-screen instructions.

4 Select an option:
   • If the Autotune procedure is not successful, but you have not reached maximum cruising speed, increase the speed and repeat steps 1 through 3 until the Autotune procedure completes successfully.
   • If the Autotune procedure is not successful, and you have reached maximum cruising speed, reduce your speed to the initial Autotune speed and select Alternate Autotune to begin an alternate procedure.

When the Autotune procedure is complete, gain values are displayed. You can use these values to determine the quality of the Autotune procedure.

Autotune Gain Values

After the autotune procedure is complete, you can review the gain values provided on the helm control. You can record these numbers for reference if you want to run the autotune procedure at a later time or if you want to manually adjust the gain settings (not recommended) (Adjusting the Autopilot Gain Settings).

Gain: Sets how tightly the autopilot holds the heading and how aggressively it makes turns.

Counter Gain: Sets how aggressively the autopilot adjusts any over-steering after making a turn.

Setting North

Before you can begin this procedure, you must have a large stretch of open water available.

NOTE: If you followed the guidelines when mounting the CCU, this procedure may not be necessary (CCU Mounting and Connection Considerations).

This procedure appears if the autopilot is connected to an optional GPS device (Connecting Optional NMEA 2000 Devices to the Autopilot System), and the device has acquired a GPS position. During this procedure, the autopilot uses the GPS heading information to calibrate north on the autopilot system.

If you do not have a GPS device connected, you are prompted to set the fine heading adjustment instead (Setting the Fine Heading Adjustment).

1 Drive your boat at cruising speed in a straight line.

2 Select an option:
   • If you are performing this procedure as part of the Sea Trial Wizard, select Begin.
   • If you are performing this procedure outside of the Sea Trial Wizard, from the heading screen, select Menu > Setup > Dealer Autopilot Setup > Compass Setup > Set North > Begin.

3 Continue to drive the boat at cruising speed in a straight line and follow the on-screen instructions.

4 Select an option:
   • If the calibration completes successfully, select Done.
   • If the calibration is not successful, repeat steps 1 through 3.

Setting the Fine Heading Adjustment

This procedure appears only if you do not have an optional GPS device connected to the autopilot (Connecting Optional NMEA 2000 Devices to the Autopilot System). If the autopilot is connected to a GPS device that has acquired a GPS position, you are prompted to set north instead (Setting North).

1 Using a handheld compass, identify north.

2 Select an option:
   • If you are performing this procedure as part of the Sea Trial Wizard, adjust the fine heading setting until it matches north on the magnetic compass.
   • If you are performing this calibration outside of the Sea Trial Wizard, from the heading screen, select Menu > Setup > Dealer Autopilot Setup > Compass Setup > Fine Heading Adjustment, and adjust the fine heading setting until it matches north on the magnetic compass.

3 Select Done.
Testing and Adjusting the Configuration

**NOTICE**
Test the autopilot at a slow speed. After the autopilot has been tested and adjusted at a slow speed, test it at a higher speed to simulate normal operating conditions.

1. Drive the boat in one direction with the autopilot engaged (heading hold).
   The boat may oscillate slightly, but it should not oscillate significantly.

2. Turn the boat in one direction using the autopilot and observe the behavior.
   The boat should turn smoothly, not too quickly or too slowly. When you turn the boat using the autopilot, the boat should approach and settle on the desired heading with minimal overshoot and oscillation.

3. Select an option:
   - If the boat turns too quickly or too sluggishly, adjust the autopilot acceleration limiter (Adjusting the Acceleration Limiter Settings).
   - If the heading hold oscillates significantly or the boat does not correct when turning, adjust the autopilot gain (Adjusting the Autopilot Gain Settings).
   - If the boat turns smoothly, the heading hold oscillates only slightly or not at all, and the boat adjusts the heading correctly, the configuration is correct, and no further adjustments are necessary.

**Adjusting the Acceleration Limiter Settings**

1. Enable Dealer Mode (Enabling Dealer Configuration).
3. Select an option:
   - Increase the setting if the autopilot turns too quickly.
   - Decrease the setting if the autopilot turns too slowly.
   When you manually adjust the acceleration limiter, make relatively small adjustments. Test the change before making additional adjustments.
4. Test the autopilot configuration.
5. Repeat steps 3–4 until the autopilot performance is satisfactory.

**Adjusting the Autopilot Gain Settings**

1. Enable Dealer Mode (Enabling Dealer Configuration).
2. Select Menu > Setup > Dealer Autopilot Setup > Autopilot Tuning > Rudder Gains.
3. Select an option based on the type of boat:
   - If you have a sailboat, a displacement-hull powerboat, or a powerboat with the speed source set to None, select Gain and adjust how tightly the rudder holds the heading and makes turns.
     If you set this value too high, the autopilot may be overactive and attempt to constantly adjust the heading at the slightest deviation. An overactive autopilot can drain the battery at a faster-than-normal rate.
   - If you have a sailboat, a displacement-hull powerboat, or a powerboat with the speed source set to None, select Counter Gain and adjust how tightly the rudder corrects the turn overshoot.
     If you set this value too low, the autopilot can overshoot the turn again when it attempts to counter the original turn.
   - If you have a planing-hull powerboat with the speed source set to Tach. - NMEA 2000 or Proprietary or GPS, select Low Speed or High Speed and adjust how tightly the rudder holds the heading and makes turns at low speed or high speed.

4. Test the autopilot configuration, and repeat steps 2 and 3 until the autopilot performance is satisfactory.

**Enabling Dealer Configuration**

Advanced Configuration options are not available on the helm control under normal conditions. To access the advanced configuration settings of the autopilot, you must first enable Dealer Mode (Enabling Dealer Configuration).

1. From the heading screen, select Menu > Setup > System > System Information.
2. Hold the center key for 5 seconds.
   Dealer Mode appears.
   If the option for Dealer Autopilot Setup is available on the Setup screen, the procedure was successful.

**Advanced Configuration Settings**

You can run the autotune procedure, calibrate the compass, and define north on the autopilot without running the wizards. You can also define each setting individually, without running the configuration processes.

**Running the Automated Configuration Processes Manually**

1. Enable Dealer Mode (Enabling Dealer Configuration).
2. From the heading screen, select Menu > Setup > Dealer Autopilot Setup.
3. Select an automated process:
   - Select Compass Setup > Calibrate Compass to start the compass calibration procedures (Calibrating the Compass).
   - Select Compass Setup > Set North to start the procedures to define north (Setting North).
   - Select Autopilot Tuning > Autotune to start the automatic autopilot tuning procedures (Performing the Autotune Procedure).
4. Follow the on-screen instructions.

**Defining Individual Configuration Settings Manually**

Configuring certain configuration settings may require you to modify other settings. Review the "Detailed Configuration Settings" section (Detailed Configuration Settings) prior to modifying any settings.

1. Enable Dealer Mode (Enabling Dealer Configuration).
2. From the heading screen, select Menu > Setup > Dealer Autopilot Setup.
3. Select a setting category.
4. Select a setting to configure.
   Descriptions of each setting are available in the appendix (Detailed Configuration Settings).
5. Configure the value of the setting.
Appendix

NMEA 0183 Connection Diagrams
These wiring diagrams are examples of different situations you may encounter when connecting your NMEA 0183 device to the helm control.

NMEA 0183 Connection Considerations
• The installation instructions provided with your NMEA 0183 compatible device should contain the information you need to identify the transmitting (Tx) and receiving (Rx) A (+) and B (-) wires.
• When connecting NMEA 0183 devices with two transmitting and two receiving wires, it is not necessary for the NMEA 2000 bus and the NMEA 0183 device to connect to a common ground.
• When connecting a NMEA 0183 device with only one transmitting (Tx) wire or with only one receiving (Rx) wire, the NMEA 2000 bus and the NMEA 0183 device must be connected to a common ground.

Two-Way NMEA 0183 Communication

Wire Helm Control Wire Color — Function NMEA 0183-Compatible Device Wire Function
1 N/A Power
2 N/A NMEA 0183 ground
3 Blue — Tx/A (+) Rx/A (+)
4 White — unconnected N/A
5 Brown — Rx/A (+) Tx/A (+)
6 Green — Rx/B (-) Tx/B (-)

NOTE: When connecting a NMEA 0183 device with two transmitting and two receiving lines, it is not necessary for the NMEA 2000 bus and the NMEA 0183 device to connect to a common ground.

Only One Transmitting Wire
If your NMEA 0183-compatible device has only one transmitting (Tx) wire, it must be connected to the brown wire (Rx/A) from the helm control, and the green wire (Rx/B) from the helm control must be connected to NMEA 0183 ground.

Wire Helm Control Wire Color — Function NMEA 0183-Compatible Device Wire Function
1 N/A Power
2 Green — Rx/B (-) (connect to NMEA 0183 ground) NMEA 0183 ground
3 Blue — Tx/A (+) Rx/A (+)
4 White — Tx/B (-) Rx/B (-)
5 Brown — Rx/A (+) Tx/A (+)

NOTE: When connecting a NMEA 0183 device with only one transmitting (Tx) line, the NMEA 2000 bus and the NMEA 0183 device must be connected to a common ground.

Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensions (H × W × D)</td>
<td>197 x 190 x 244 mm (7.75 × 7.48 × 9.61 in.)</td>
</tr>
<tr>
<td>Weight</td>
<td>7.5 kg (16.5 lb.)</td>
</tr>
<tr>
<td>Temperature range</td>
<td>From -15° to 55°C (from 5° to 131°F )</td>
</tr>
</tbody>
</table>
| Material               | • Electronics control unit (ECU): Fully gasketed aluminum alloy  
|                        | • Bracket: Carbon steel                           |
|                        | • Manifold: Aluminum alloy                        |
|                        | • Motor: Aluminum alloy                           |
| Power cable length     | 2.7 m (9 ft.)                                    |
| Input voltage          | From 11.5 to 30 Vdc                              |
### CCU

**Specification**

<table>
<thead>
<tr>
<th>Measurement</th>
<th>CCU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuse</td>
<td>40 A, blade-type</td>
</tr>
<tr>
<td>Main power usage</td>
<td></td>
</tr>
<tr>
<td>• Standby: Less than 1 A</td>
<td></td>
</tr>
<tr>
<td>• Engaged: From 5 to 10 A</td>
<td></td>
</tr>
<tr>
<td>• Peak: 34 A</td>
<td></td>
</tr>
</tbody>
</table>

**CCU**

<table>
<thead>
<tr>
<th>Specification</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensions (L × W × H)</td>
<td>170 × 90 × 50 mm (6.7 × 3.5 × 2 in.)</td>
</tr>
<tr>
<td>Weight</td>
<td>200 g (7 oz.)</td>
</tr>
<tr>
<td>Temperature range</td>
<td>From -15° to 70°C (from 5° to 158°F)</td>
</tr>
<tr>
<td>Material</td>
<td>Fully gasketed, high-impact plastic</td>
</tr>
<tr>
<td>Water resistance</td>
<td>IEC 60529 IPX7*</td>
</tr>
<tr>
<td>CCU cable length</td>
<td>5 m (16 ft.)</td>
</tr>
<tr>
<td>NMEA 2000 input voltage</td>
<td>From 9 to 16 Vdc</td>
</tr>
<tr>
<td>NMEA 2000 LEN</td>
<td>4 (200 mA)</td>
</tr>
</tbody>
</table>

*The device withstands incidental exposure to water of up to 1 m for up to 30 min. For more information, go to [www.garmin.com/waterrating](http://www.garmin.com/waterrating).*

### Helm Control

**Specification**

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Helm Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensions without sun cover (H × W × D)</td>
<td>110 × 115 × 30 mm (4.33 × 4.53 × 1.18 in.)</td>
</tr>
<tr>
<td>Dimensions with sun cover (H × W × D)</td>
<td>115 × 120 × 35.5 mm (4.53 × 4.72 × 1.40 in.)</td>
</tr>
<tr>
<td>Weight without sun cover</td>
<td>247 g (8.71 oz.)</td>
</tr>
<tr>
<td>Weight with sun cover</td>
<td>283 g (9.98 oz.)</td>
</tr>
<tr>
<td>Temperature range</td>
<td>From -15° to 70°C (from 5° to 158°F)</td>
</tr>
<tr>
<td>Compass-safe distance</td>
<td>209 mm (8.25 in.)</td>
</tr>
<tr>
<td>Material</td>
<td>Case: fully-gasketed polycarbonate Lens: glass with an anti-glare treatment</td>
</tr>
<tr>
<td>Water resistance</td>
<td>IEC 60529 IPX7*</td>
</tr>
<tr>
<td>Power usage</td>
<td>2.5 W max</td>
</tr>
<tr>
<td>Unit max. voltage</td>
<td>32 Vdc</td>
</tr>
<tr>
<td>NMEA 2000 input voltage</td>
<td>9 to 16 Vdc</td>
</tr>
<tr>
<td>NMEA 2000 (LEN)</td>
<td>6 (300 mA at 9 Vdc)</td>
</tr>
</tbody>
</table>

*The device withstands incidental exposure to water of up to 1 m for up to 30 min. For more information, go to [www.garmin.com/waterrating](http://www.garmin.com/waterrating).*

### Alarm

**Specification**

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Alarm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensions (L×diameter)</td>
<td>29/32 × 1 in. (23 × 25 mm)</td>
</tr>
<tr>
<td>Weight</td>
<td>2.4 oz. (68 g)</td>
</tr>
<tr>
<td>Temperature range</td>
<td>From 5°F to 140°F (from -15°C to 60°C)</td>
</tr>
<tr>
<td>Cable length</td>
<td>10 ft. (3.0 m)</td>
</tr>
</tbody>
</table>

### NMEA 2000 PGN Information

#### CCU

<table>
<thead>
<tr>
<th>Type</th>
<th>PGN</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmit and receive</td>
<td>059392</td>
<td>ISO acknowledgment</td>
</tr>
<tr>
<td>059904</td>
<td>ISO request</td>
<td></td>
</tr>
<tr>
<td>060928</td>
<td>ISO address claim</td>
<td></td>
</tr>
<tr>
<td>126208</td>
<td>NMEA: Command/Request/Acknowledge group function</td>
<td></td>
</tr>
<tr>
<td>126464</td>
<td>Transmit/Receive PGN list group function</td>
<td></td>
</tr>
<tr>
<td>126996</td>
<td>Product information</td>
<td></td>
</tr>
<tr>
<td>127257</td>
<td>Transmit/Receive attitude data</td>
<td></td>
</tr>
<tr>
<td>127251</td>
<td>Transmit/Receive rate of turn</td>
<td></td>
</tr>
<tr>
<td>Transmit only</td>
<td>127250</td>
<td>Vessel heading</td>
</tr>
</tbody>
</table>

#### Helm Control

<table>
<thead>
<tr>
<th>Type</th>
<th>PGN</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmit and receive</td>
<td>059392</td>
<td>ISO Acknowledgment</td>
</tr>
<tr>
<td>059904</td>
<td>ISO Request</td>
<td></td>
</tr>
<tr>
<td>060928</td>
<td>ISO Address Claim</td>
<td></td>
</tr>
<tr>
<td>126208</td>
<td>NMEA - Command/Request/Acknowledge Group Function</td>
<td></td>
</tr>
<tr>
<td>126464</td>
<td>Transmit/Receive PGN List Group Function</td>
<td></td>
</tr>
<tr>
<td>126996</td>
<td>Product Information</td>
<td></td>
</tr>
<tr>
<td>Transmit only</td>
<td>128259</td>
<td>Water Speed</td>
</tr>
<tr>
<td>129025</td>
<td>Position - Rapid Update</td>
<td></td>
</tr>
<tr>
<td>129026</td>
<td>COG &amp; SOG - Rapid Update</td>
<td></td>
</tr>
<tr>
<td>129283</td>
<td>Cross Track Error</td>
<td></td>
</tr>
<tr>
<td>129284</td>
<td>Navigation Data</td>
<td></td>
</tr>
<tr>
<td>129540</td>
<td>GNSS Satellites in View</td>
<td></td>
</tr>
<tr>
<td>Receive only</td>
<td>127245</td>
<td>Rudder Data</td>
</tr>
<tr>
<td>127250</td>
<td>Vessel Heading</td>
<td></td>
</tr>
<tr>
<td>127488</td>
<td>Engine Parameters - Rapid Update</td>
<td></td>
</tr>
<tr>
<td>128259</td>
<td>Water Speed</td>
<td></td>
</tr>
<tr>
<td>129025</td>
<td>Position - Rapid Update</td>
<td></td>
</tr>
<tr>
<td>129029</td>
<td>GNSS Position Data</td>
<td></td>
</tr>
<tr>
<td>129283</td>
<td>Cross-Track Error</td>
<td></td>
</tr>
<tr>
<td>129284</td>
<td>Navigation Data</td>
<td></td>
</tr>
<tr>
<td>129285</td>
<td>Navigation - Route/WP information</td>
<td></td>
</tr>
<tr>
<td>130306</td>
<td>Wind Data</td>
<td></td>
</tr>
<tr>
<td>130576</td>
<td>Small Craft Status</td>
<td></td>
</tr>
</tbody>
</table>

#### NMEA 0183 Information

When connected to optional NMEA 0183-compatible devices, the autopilot uses the following NMEA 0183 sentences.

<table>
<thead>
<tr>
<th>Type</th>
<th>Sentence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmit</td>
<td>hdg</td>
</tr>
<tr>
<td>Receive</td>
<td>wpl</td>
</tr>
<tr>
<td></td>
<td>gga</td>
</tr>
<tr>
<td></td>
<td>grme</td>
</tr>
<tr>
<td></td>
<td>gsa</td>
</tr>
<tr>
<td></td>
<td>gsv</td>
</tr>
<tr>
<td></td>
<td>rmc</td>
</tr>
<tr>
<td></td>
<td>rmb</td>
</tr>
<tr>
<td></td>
<td>bwc</td>
</tr>
<tr>
<td></td>
<td>dtm</td>
</tr>
<tr>
<td></td>
<td>gll</td>
</tr>
<tr>
<td></td>
<td>vhw</td>
</tr>
<tr>
<td></td>
<td>mwv</td>
</tr>
<tr>
<td></td>
<td>xte</td>
</tr>
</tbody>
</table>
**Error and Warning Messages**

<table>
<thead>
<tr>
<th>Error Message</th>
<th>Cause</th>
<th>Autopilot Action</th>
</tr>
</thead>
</table>
| ECU Voltage is Low                     | The pump supply voltage has fallen below 10 Vdc for longer than 6 seconds. | • Alarm sounds for 5 seconds  
• Continues in normal operation |
| Autopilot is not receiving navigation data. Autopilot placed in Heading Hold. | The autopilot is no longer receiving valid navigation data while performing a Route To maneuver. This message also appears if navigation is stopped on a chartplotter before the autopilot is disengaged. | • Alarm sounds for 5 seconds  
• Autopilot transitions to heading hold |
| Connection with Autopilot Lost         | The helm control has lost connection with the CCU.                    | N/A                                                   |
| Lost Wind Data (sailboat only)         | The autopilot is no longer receiving valid wind data.                 | • Alarm sounds for 5 seconds  
• Autopilot transitions to heading hold |
| Low GHC™ Supply Voltage                | The supply voltage level has fallen below the value specified in the low voltage alarm menu. | N/A                                                   |
| Error: ECU High Voltage                | The pump supply voltage has risen above 33.5 Vdc.                     | • Alarm sounds for 5 seconds  
• The ECU shuts down |
| Error: ECU Voltage has Dropped Rapidly| The ECU voltage has dropped quickly below 7.0 Vdc.                    | • Alarm sounds for 5 seconds  
• The error is cleared when the ECU voltage rises above 7.3 Vdc. |
| Error: ECU High Temperature            | The ECU temperature has risen above 100°C (212°F ).                   | • Alarm sounds for 5 seconds  
• The ECU shuts down |
| Error: Lost Communication Between ECU and CCU (when the autopilot is engaged) | Communication between the CCU and the pump has timed out.             | • The helm control beeps, and autopilot transitions to standby. |

**Detailed Configuration Settings**

Although all of the configuration is typically completed automatically through wizards, you can manually adjust any setting to fine-tune the autopilot. Advanced configuration settings are available only when using Dealer Mode (Enabling Dealer Configuration). User-specific settings are available during normal operation of the autopilot. See the configuration section of the owner's manual provided with the autopilot for more information.

**NOTE:** Depending upon the configuration of the autopilot, certain settings may not appear.

**NOTE:** On a powerboat, each time you change to the Speed Source setting, you must review the Verify Tachometer, Low RPM Limit, High RPM Limit, Planing RPM, Planing Speed, or Max. Speed settings, where applicable, before performing the autotune procedure (Performing the Autotune Procedure).

**Autopilot Tuning Settings**

To open the general autopilot tuning settings, select Menu > Setup > Dealer Autopilot Setup.

**Acceleration Limiter:** Allows you to limit the speed of autopilot-controlled turns. You can increase the percentage to limit the turn rate, and decrease the percentage to allow higher turn rates.

**Speed Source Settings**

**NOTE:** Speed source settings are available only for power boats.

To open the speed source settings, select Menu > Setup > Dealer Autopilot Setup > Speed Source Setup.

**Speed Source:** Allows you to select the speed source.

**Verify Tachometer:** Allows you to compare the RPM readings on the helm control with the tachometers on the dashboard of your boat.

**Planing RPM:** Allows you to adjust the RPM reading on the helm control at the point when your boat transitions from displacement to planing speed. If the value does not match the value on the helm control, you can adjust the value.

**Planing Speed:** Allows you to adjust the planing speed of your boat. If the value does not match the value on the helm control, you can adjust the value.

**Low RPM Limit:** Allows you to adjust the lowest RPM point of your boat. If the value does not match the value on the helm control, you can adjust the value.

**High RPM Limit:** Allows you to adjust the highest RPM point of your boat. If the value does not match the value on the helm control, you can adjust the value.

**Max. Speed:** Allows you to adjust the maximum speed of your boat. If the value does not match the value on the helm control, you can adjust the value.

**Rudder Gain Settings**

**NOTE:** If you set these values too high or too low, the autopilot may become overactive, attempting to constantly adjust the heading at the slightest deviation. An overactive autopilot can cause excessive wear on the pump and drain the battery at a faster-than-normal rate.

Select Menu > Setup > Dealer Autopilot Setup > Rudder Gains.

**NOTE:** These settings apply only to sailboats, displacement-hull powerboats, and powerboats with the speed source set to None.

**Gain:** Allows you to adjust how tightly the rudder holds a heading and makes turns.

**Counter Gain:** Allows you to adjust how tightly the rudder corrects turn overshoot. If you set this value too low, the autopilot can overshoot a turn when attempting to counter the original turn.

**NOTE:** These settings apply only to planing-hull powerboats with the speed source set to Tach. - NMEA 2000 or Proprietary or GPS.

**Low Speed:** Allows you to set the rudder gain for low speeds. This setting applies when the vessel operates below planing speed.

**Low Speed Counter:** Allows you to set the rudder gain counter-correction for low speeds. This setting applies when the vessel operates below planing speed.

**High Speed:** Allows you to set the rudder gain for high speeds. This setting applies when the vessel operates above planing speed.

**High Speed Counter:** Allows you to set the rudder gain counter-correction for high speeds. This setting applies when the vessel operates above planing speed.

**Steering System Settings**

To open the steering system settings, select Menu > Setup > Dealer Autopilot Setup > Steering System Setup.

**Verify Steering Dir.** Allows you to set the direction the rudder must move to turn the vessel to port and to starboard. You can test and reverse the steering direction if necessary.
**Rudder Sensor Settings**

**NOTE:** Rudder sensor settings apply only when a rudder sensor is connected to the autopilot system.

To open the rudder sensor settings, select **Menu > Setup > Dealer Autopilot Setup > Steering System Setup > Rudder Sensor Setup**.

**Max. Port Angle:** Allows you to enter the angle at which your rudder turns furthest port.

**Max. Starboard Angle:** Allows you to enter the angle at which your rudder turns furthest starboard.

**Calibrate Rudder Sensor:** Initiates a procedure that establishes the maximum range of movement of the rudder and calibrates the rudder-position sensor. If an error appears during the calibration, the rudder-position sensor has likely reached its limit. The sensor might not be correctly installed. If the problem persists, you can bypass this error by moving the rudder to the farthest position that does not report an error.

**Calibrate Rudder Center:** Initiates a procedure that establishes the center position of the rudder. You can use this calibration if the on-screen rudder position indicator does not match the true rudder center on your boat.

**Registering Your Device**

Help us better support you by completing our online registration today.

- Go to [http://my.garmin.com](http://my.garmin.com).
- Keep the original sales receipt, or a photocopy, in a safe place.

**Contacting Garmin Product Support**

- Go to [www.garmin.com/support](http://www.garmin.com/support) and click **Contact Support** for in-country support information.
- In the USA, call (913) 397.8200 or (800) 800.1020.
- In the UK, call 0808 2380000.
- In Europe, call +44 (0) 870.8501241.