INSTRUCTIONS FOR USING THIS SAMPLE FLIGHT MANUAL SUPPLEMENT

1. A flight manual supplement should be created for each installation, using this document as a guideline. Variations to the configurations recommended in this document, including external switches and annunciators, must be approved by the installer on an individual basis.

2. These instructions are for reference only and should not be included as part of the flight manual supplement.

3. Non-applicable sections must be omitted and all paragraphs re-numbered accordingly.
LBA APPROVED FLIGHT MANUAL SUPPLEMENT
GARMIN GNS 430 VHF COMMUNICATIONS TRANSCEIVER /
VOR/ILS RECEIVER / GPS RECEIVER

AIRCRAFT MAKE: ____________________________

AIRCRAFT MODEL: __________________________

AIRCRAFT SERIAL NO.: _______________________

This document must be carried in the aircraft at all times. It describes the operating procedures for the GARMIN GNC 430 navigation system when it has been installed in accordance with GARMIN Installation Manual 190-00140-02 Rev. ___ (Rev. A or later).

For aircraft with an FAA/LBA Approved Airplane Flight Manual, this document serves as the LBA Approved Flight Manual Supplement for the GARMIN GNS 430. For aircraft that do not have an approved flight manual, this document serves as the LBA Approved Supplemental Flight Manual for the GARMIN GNS 430.

The Information contained herein supplements or supersedes the basic Airplane Flight Manual only in those areas listed herein. For limitations, procedures, and performance information not contained in this document, consult the basic Airplane Flight Manual.

LBA APPROVED

[Signature]

Date: 01 April 99

LBA APPROVED ___________________ DATE: 1 April 1999 ___________ PAGE 2 OF 8
SECTION I
GENERAL

1. The GNS 430 System is a fully integrated, panel mounted instrument, which contains a VHF Communications Transceiver, a VOR/ILS receiver, and a Global Positioning System (GPS) Navigation computer. The system consists of a GPS antenna, GPS Receiver, VHF VOR/LOC/GS antenna, VOR/ILS receiver, VHF COMM antenna and a VHF Communications Transceiver. The primary function of the VHF Communication portion of the equipment is to facilitate communication with Air Traffic Control. The primary function of the VOR/ILS Receiver portion of the equipment is to receive and demodulate VOR, Localizer, and Glide Slope signals. The primary function of the GPS portion of the system is to acquire signals from the GPS system satellites, recover orbital data, make range and Doppler measurements, and process this information in real-time to obtain the user’s position, velocity, and time.

2. Provided the GARMIN GNS 430’s GPS receiver is receiving adequate usable signals, it has been demonstrated capable of and has been shown to meet the accuracy specifications for:

 • VFR/IFR enroute, terminal, and non-precision instrument approach (GPS, Loran-C, VOR, VOR-DME, TACAN, NDB, NDB-DME, RNAV) in accordance with AC 20-138.

Navigation is accomplished using the WGS-84 (NAD-83) coordinate reference datum. Navigation data is based upon use of only the Global Positioning System (GPS) operated by the United States of America.

SECTION II
LIMITATIONS

1. The GARMIN GNS 430 Pilot’s Guide, P/N 190-00140-00, Rev. A, dated October, 1998, or later appropriate revision, must be immediately available to the flight crew whenever navigation is predicated on the use of the system.
2. The GNS 430 must utilize the following or later FAA approved software versions:

<table>
<thead>
<tr>
<th>Sub-System</th>
<th>Software Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main</td>
<td>2.00</td>
</tr>
<tr>
<td>GPS</td>
<td>2.00</td>
</tr>
<tr>
<td>COMM</td>
<td>1.22</td>
</tr>
<tr>
<td>VOR/LOC</td>
<td>1.25</td>
</tr>
<tr>
<td>G/S</td>
<td>2.00</td>
</tr>
</tbody>
</table>

The Main software version is displayed on the GNS 430 self test page immediately after turn-on for 5 seconds. The remaining system software versions can be verified on the AUX group sub-page 2, „SOFTWARE/DATABASE VER”.

3. IFR enroute and terminal navigation predicated upon the GNS 430’s GPS Receiver is prohibited unless the pilot verifies the currency of the data base or verifies each selected waypoint for accuracy by reference to current approved data.

4. Instrument approach navigation predicated upon the GNS 430’s GPS Receiver must be accomplished in accordance with approved instrument approach procedures that are retrieved from the GPS equipment data base. The GPS equipment database must incorporate the current update cycle.

 (a) Instrument approaches utilizing the GPS receiver must be conducted in the approach mode and Receiver Autonomous Integrity Monitoring (RAIM) must be available at the Final Approach Fix.

 (b) Accomplishment of ILS, LOC, LOC-BC, LDA, SDF, MLS or any other type of approach not approved for GPS overlay with the GNS 430’s GPS receiver is not authorized.

 (c) Use of the GNS 430 VOR/ILS receiver to fly approaches not approved for GPS require VOR/ILS navigation data to be present on the external indicator.

 (d) When an alternate airport is required by the applicable operating rules, it must be served by an approach based on other than GPS or Loran-C navigation, the aircraft must have...
the operational equipment capable of using that navigation aid, and the required navigation aid must be operational.

(e) VNAV information may be utilized for advisory information only. Use of VNAV information for Instrument Approach Procedures does not guarantee Step-Down Fix altitude protection, or arrival at approach minimums in normal position to land.

5. If not previously defined, the following default settings must be made in the „SETUP 1“ menu of the GNS 430 prior to operation (refer to Pilot’s Guide for procedure if necessary):

(a) dis, spd \(\frac{R}{k} \) (sets navigation units to „nautical miles“ and „knots“)
(b) alt, vs \(\frac{ft}{pm} \) (sets altitude units to „feet“ and „feet per minute“)
(c) map datum . WGS 84 (sets map datum to WGS-84, see note below)
(d) posn deg-min (sets navigation grid units to decimal minutes)

NOTE: In some areas outside the United States, datums other than WGS-84 or NAD-83 may be used. If the GNS 430 is authorized for use by the appropriate Airworthiness authority, the required geodetic datum must be set in the GNS 430 prior to its use for navigation.

SECTION III
EMERGENCY PROCEDURES

ABNORMAL PROCEDURES

1. If GARMIN GNS 430 navigation information is not available or invalid, utilize remaining operational navigation equipment as required.

2. If "RAIM POSITION WARNING" message is displayed the system will flag and no longer provide GPS based navigational guidance. The crew should revert to the GNS 430 VOR/ILS receiver or an alternate means of navigation other than the GNS 430’s GPS Receiver.

3. If "RAIM IS NOT AVAILABLE" message is displayed in the enroute, terminal, or initial approach phase of flight, continue to navigate using the GPS equipment or revert to an alternate means of navigation other than the GNS 430’s GPS receiver appropriate to the route and phase of flight. When continuing to use GPS navigation, position must be verified every 15 minutes using the GNS 430’s VOR/ILS receiver or another IFR-approved navigation system.
4. If "RAIM IS NOT AVAILABLE" message is displayed while on the final approach segment,
GPS based navigation will continue for up to 5 minutes with approach CDI sensitivity (0.3
nautical mile). After 5 minutes the system will flag and no longer provide course guidance
with approach sensitivity. Missed approach course guidance may still be available with 1
nautical mile CDI sensitivity by executing the missed approach.

5. In an in-flight emergency, depressing and holding the Comm transfer button for 2 seconds
will select the emergency frequency of 121.500 MHz into the "Active" frequency window.

SECTION IV
NORMAL PROCEDURES

1. DETAILED OPERATING PROCEDURES

Normal operating procedures are described in the GARMIN GNS 430 Pilot's Guide, P/N
190-00140-00, Rev. A, dated October, 1998, or later appropriate revision.

2. PILOT'S DISPLAY

The GNS 430 System data will appear on the Pilot's HSI. The source of data is either GPS
or VLOC as annunciated on the display above the CDI key.

3. AUTOPILOT/FLIGHT DIRECTOR OPERATION

Coupling of the GNS 430 System steering information to the autopilot/flight director can be
accomplished by engaging the autopilot/flight director in the NAV or APR mode.

When the autopilot/flight director system is using course information supplied by the GNS
430 System and the course pointer is not automatically driven to the desired track, the course
pointer on the HSI must be manually set to the desired track (DTK) indicated by the GNS
430. For detailed autopilot/flight director operational instructions, refer to the FAA/LBA
Approved Flight Manual Supplement for the autopilot/flight director.
Aircraft Make: ___________________________ GARMIN GNS 430 VHF Communications
Aircraft Model: __________________________ Transceiver / VOR/ILS Receiver / GPS Receiver
Aircraft Serial Number: ____________________

SECTION V
PERFORMANCE

No change.

SECTION VI
WEIGHT AND BALANCE

See current weight and balance data.

SECTION VII
AIRPLANE & SYSTEM DESCRIPTIONS

See GNS 430 Pilot's Guide for a complete description of the GNS 430 system.