GARMIN®

G1000® Integrated Avionics System
Pilot's Guide

Diamond DA62

SYSTEM OVERVIEW	
FLIGHT INSTRUMENTS	
EIS	
AUDIO PANEL & CNS	
FLIGHT MANAGEMENT	
HAZARD AVOIDANCE	
AFCS	
ADDITIONAL FEATURES	
APPENDICES	
INDEX	

Copyright © 2015 Garmin Ltd. or its subsidiaries. All rights reserved.

This manual reflects the operation of System Software version 1373.00 or later for the Diamond DA62 Some differences in operation may be observed when comparing the information in this manual to earlier or later software versions.

Garmin International, Inc., 1200 East 151st Street, Olathe, Kansas 66062, U.S.A. Tel: 913/397.8200 Fax: 913/397.8282

Garmin AT, Inc., 2345 Turner Road SE, Salem, OR 97302, U.S.A.

Tel: 503/391.3411 Fax: 503/364.2138

Garmin (Europe) Ltd., Liberty House, Hounsdown Business Park, Southampton, SO40 9LR, U.K. Tel: 44 (0) 23 8052 4000 Fax: 44 (0) 23 8052 4004

Garmin Corporation, No. 68, Jangshu 2nd Road, Shijr, Taipei County, Taiwan

Tel: 886/02.2642.9199 Fax: 886/02.2642.9099

For after-hours emergency, aircraft on ground (AOG) technical support for Garmin panel mount and integrated avionics systems, please contact Garmin's AOG Hotline at 913.397.0836.

Website Address: www.garmin.com

Except as expressly provided herein, no part of this manual may be reproduced, copied, transmitted, disseminated, downloaded or stored in any storage medium, for any purpose without the express written permission of Garmin. Garmin hereby grants permission to download a single copy of this manual and of any revision to this manual onto a hard drive or other electronic storage medium to be viewed for personal use, provided that such electronic or printed copy of this manual or revision must contain the complete text of this copyright notice and provided further that any unauthorized commercial distribution of this manual or any revision hereto is strictly prohibited.

Garmin[®] is a registered trademark of Garmin Ltd. or its subsidiaries, and G1000[®] is a trademark of Garmin Ltd. or its subsidiaries. These trademarks may not be used without the express permission of Garmin.

Honeywell® is a registered trademark of Honeywell International, Inc. Stormscope® is a registered trademark of L-3 Communications. Avidyne® is a registered trademark of Avidyne Corporation. AC-U-KWIK® is a registered trademark of Penton Business Media Inc. SiriusXM Weather and SiriusXM Satellite Radio are provided by SiriusXM Satellite Radio, Inc.

AOPA Membership Publications, Inc. and its related organizations (hereinafter collectively "AOPA") expressly disclaim all warranties, with respect to the AOPA information included in this data, express or implied, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. The information is provided "as is" and AOPA does not warrant or make any representations regarding its accuracy, reliability, or otherwise. Under no circumstances including negligence, shall AOPA be liable for any incidental, special or consequential damages that result from the use or inability to use the software or related documentation, even if AOPA or an AOPA authorized representative has been advised of the possibility of such damages. User agrees not to sue AOPA and, to the maximum extent allowed by law, to release and hold harmless AOPA from any causes of action, claims or losses related to any actual or alleged inaccuracies in the information. Some jurisdictions do not allow the limitation or exclusion of implied warranties or liability for incidental or consequential damages so the above limitations or exclusions may not apply to you.

AC-U-KWIK and its related organizations (hereafter collectively "AC-U-KWIK Organizations") expressly disclaim all warranties with respect to the AC-U-KWIK information included in this data, express or implied, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. The information is provided "as is" and AC-U-KWIK Organizations do not warrant or make any representations regarding its accuracy, reliability, or otherwise. Licensee agrees not to sue AC-U-KWIK Organizations and, to the maximum extent allowed by law, to release and hold harmless AC-U-KWIK Organizations from any cause of action, claims or losses related to any actual or alleged inaccuracies in the information arising out of Garmin's use of the information in the datasets. Some jurisdictions do not allow the limitation or exclusion of implied warranties or liability for incidental or consequential damages so the above limitations or exclusions may not apply to licensee.

March 2015 Printed in the U.S.A

- **WARNING:** Navigation and terrain separation must NOT be predicated upon the use of the terrain avoidance feature. The terrain avoidance feature is NOT intended to be used as a primary reference for terrain avoidance and does not relieve the pilot from the responsibility of being aware of surroundings during flight. The terrain avoidance feature is only to be used as an aid for terrain avoidance. Terrain data is obtained from third party sources. Garmin is not able to independently verify the accuracy of the terrain data.
- **WARNING:** The displayed minimum safe altitudes (MSAs) are only advisory in nature and should not be relied upon as the sole source of obstacle and terrain avoidance information. Always refer to current aeronautical charts for appropriate minimum clearance altitudes.
- **WARNING:** The altitude calculated by G1000 GPS receivers is geometric height above Mean Sea Level and could vary significantly from the altitude displayed by pressure altimeters, such as the Air Data Computer, or other altimeters in aircraft. GPS altitude should never be used for vertical navigation. Always use pressure altitude displayed by the G1000 PFD or other pressure altimeters in aircraft.
- **WARNING:** Do not use outdated database information. Databases used in the G1000 system must be updated regularly in order to ensure that the information remains current. Pilots using any outdated database do so entirely at their own risk.
- **WARNING:** Do not use basemap (land and water data) information for primary navigation. Basemap data is intended only to supplement other approved navigation data sources and should be considered as an aid to enhance situational awareness.
- **WARNING:** Traffic information shown on the G1000 is provided as an aid in visually acquiring traffic. Pilots must maneuver the aircraft based only upon ATC guidance or positive visual acquisition of conflicting traffic.
- **WARNING:** Use of the Lightning Detection System is not intended for hazardous weather penetration (thunderstorm penetration). Lightning Detection System information, as displayed on the G1000, is to be used only for weather avoidance, not penetration.
- **WARNING:** XM Weather should not be used for hazardous weather penetration. Weather information provided by the GDL 69A is approved only for weather avoidance, not penetration.
- **WARNING:** NEXRAD weather data is to be used for long-range planning purposes only. Due to inherent delays in data transmission and the relative age of the data, NEXRAD weather data should not be used for short-range weather avoidance.

- **WARNING:** The Garmin G1000, as installed in this aircraft, has a very high degree of functional integrity. However, the pilot must recognize that providing monitoring and/or self-test capability for all conceivable system failures is not practical. Although unlikely, it may be possible for erroneous operation to occur without a fault indication shown by the G1000. It is thus the responsibility of the pilot to detect such an occurrence by means of cross-checking with all redundant or correlated information available in the cockpit.
- **WARNING:** For safety reasons, G1000 operational procedures must be learned on the ground.
- **WARNING:** The United States government operates the Global Positioning System and is solely responsible for its accuracy and maintenance. The GPS system is subject to changes which could affect the accuracy and performance of all GPS equipment. Portions of the Garmin G1000 utilize GPS as a precision electronic NAVigation AID (NAVAID). Therefore, as with all NAVAIDs, information presented by the G1000 can be misused or misinterpreted and, therefore, become unsafe.
- **WARNING:** To reduce the risk of unsafe operation, carefully review and understand all aspects of the G1000 Pilot's Guide documentation and the Airplane Flight Manual. Thoroughly practice basic operation prior to actual use. During flight operations, carefully compare indications from the G1000 to all available navigation sources, including the information from other NAVAIDs, visual sightings, charts, etc. For safety purposes, always resolve any discrepancies before continuing navigation.
- **WARNING:** The illustrations in this guide are only examples. Never use the G1000 to attempt to penetrate a thunderstorm. Both the FAA Advisory Circular, Subject: Thunderstorms, and the Aeronautical Information Manual (AIM) recommend avoiding "by at least 20 miles any thunderstorm identified as severe or giving an intense radar echo."
- **WARNING:** Lamp(s) inside this product may contain mercury (HG) and must be recycled or disposed of according to local, state, or federal laws. For more information, refer to our website at www.garmin.com/aboutGarmin/environment/disposal.jsp.
- WARNING: Because of variation in the earth's magnetic field, operating the G1000 within the following areas could result in loss of reliable attitude and heading indications. North of 72° North latitude at all longitudes; South of 70° South latitude at all longitudes; North of 65° North latitude between longitude 75° W and 120° W. (Northern Canada); North of 70° North latitude between longitude 85° E and 114° E. (Northern Russia); South of 55° South latitude between longitude 120° E and 165° E. (Region south of Australia and New Zealand)

- **WARNING**: Do not use GPS to navigate to any active waypoint identified as a 'NON WGS84 WPT' by a system message. 'NON WGS84 WPT' waypoints are derived from an unknown map reference datum that may be incompatible with the map reference datum used by GPS (known as WGS84) and may be positioned in error as displayed.
- **WARNING**: Do not use a QFE altimeter setting with this system. System functions will not operate properly with a QFE altimeter setting. Use only a QNH altimeter setting for height above mean sea level, or the standard pressure setting, as applicable.
- **CAUTION:** The PFD and MFD displays use a lens coated with a special anti-reflective coating that is very sensitive to skin oils, waxes, and abrasive cleaners. CLEANERS CONTAINING AMMONIA WILL HARM THE ANTI-REFLECTIVE COATING. It is very important to clean the lens using a clean, lint-free cloth and an eyeglass lens cleaner that is specified as safe for anti-reflective coatings.
- CAUTION: The Garmin G1000 does not contain any user-serviceable parts. Repairs should only be made by an authorized Garmin service center. Unauthorized repairs or modifications could void both the warranty and the pilot's authority to operate this device under FAA/FCC regulations.
- **NOTE**: When using the on-board Lightning Detection System, there are several atmospheric phenomena in addition to nearby thunderstorms that can cause isolated discharge points in the strike display mode. However, clusters of two or more discharge points in the strike display mode do indicate thunderstorm activity if these points reappear after the screen has been cleared.
- **NOTE:** All visual depictions contained within this document, including screen images of the G1000 panel and displays, are subject to change and may not reflect the most current G1000 system. Depictions of equipment may differ slightly from the actual equipment.
- **NOTE:** This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.
- **NOTE:** Interference from GPS repeaters operating inside nearby hangars can cause an intermittent loss of attitude and heading displays while the aircraft is on the ground. Moving the aircraft more than 100 feet away from the source of the interference should alleviate the condition.
- NOTE: Use of polarized eyewear may cause the flight displays to appear dim or blank.

- **NOTE:** This product, its packaging, and its components contain chemicals known to the State of California to cause cancer, birth defects, or reproductive harm. This notice is being provided in accordance with California's Proposition 65. If you have any questions or would like additional information, please refer to our web site at www.garmin.com/prop65.
- **NOTE:** The FAA has asked Garmin to remind pilots who fly with Garmin database-dependent avionics of the following:
- It is the pilot's responsibility to remain familiar with all FAA regulatory and advisory guidance and information related to the use of databases in the National Airspace System.
- Garmin equipment will only recognize and use databases that are obtained from Garmin or Jeppesen. Databases
 obtained from Garmin or Jeppesen are assured compliance with all data quality requirements (DQRs) by virtue
 of a Type 2 Letter of Authorization (LOA) from the FAA. A copy of the Type 2 LOA is available for each database
 and can be viewed at http://fly.garmin.com by selecting 'Type 2 LOA Status.'
- Use of a current Garmin or Jeppesen database in your Garmin equipment is required for compliance with established FAA regulatory guidance, but does not constitute authorization to fly any and all terminal procedures that may be presented by the system. It is the pilot's responsibility to operate in accordance with established AFM(S) and regulatory guidance or limitations as applicable to the pilot, the aircraft, and installed equipment.
- **NOTE:** The pilot/operator must review and be familiar with Garmin's database exclusion list as discussed in SAIB CE-14-04 to determine what data may be incomplete. The database exclusion list can be viewed at www.flygarmin.com by selecting 'Database Exclusions List.'
- **NOTE:** The pilot/operator must have access to Garmin and Jeppesen database alerts and consider their impact on the intended aircraft operation. The database alerts can be viewed at www.flygarmin.com by selecting 'Aviation Database Alerts.'
- **NOTE:** If the pilot/operator wants or needs to adjust the database, contact Garmin Product Support to coordinate the revised DQRs.
- **NOTE:** Garmin requests the flight crew report any observed discrepancies related to database information. These discrepancies could come in the form of an incorrect procedure; incorrectly identified terrain, obstacles and fixes; or any other displayed item used for navigation or communication in the air or on the ground. Go to FlyGarmin.com and select 'Report An Aviation Data Error Report.'

Record of Revision					
Part Number	Revision	Date	Page Range	Description	
190-01895-00	А		i – I-6	Initial release with GDU SW Version 14.04	

	SECTION 1 SYSTEM OVERVIEW	2.4	Abnormal Operations
1.1	Line Replaceable Units2		Abnormal GPS Conditions
1.2	Secure Digital (SD) Cards6		Unusual Attitudes
1.3	System Power-up7		SECTION 3 ENGINE INDIC
1.4	System Operation8	3.1	Engine Display
	Display Operation8	3.2	System Display
	G1000 System Annunciations9	3.3	Fuel Display
	System Status10		
	AHRS Operation12		SECTION 4 AUDIO PA
	GPS Receiver Operation	4.1	
1.5	G1000 Controls 17		MFD/PFD Controls and Freque
	PFD/MFD Controls		Audio Panel Controls
	Softkey Function19	4.2	COM Operation
1.6	Accessing G1000 Functionality26		COM Transceiver Selection and
	Menus		COM Transceiver Manual Tunir
	Data Entry		Quick-tuning and Activating 1
	Page Groups28		Auto-tuning the COM Frequen
	System Settings32		Frequency Spacing
	Timers		Automatic Squelch
	Electronic Checklists41		Volume
1.7	Display Backlighting43	4.3	NAV Operation
	SECTION 2 FLIGHT INSTRUMENTS		NAV Radio Selection and Activ
2.4			NAV Receiver Manual Tuning.
2.1	Flight Instruments		Auto-tuning a NAV Frequency
	Airspeed Indicator		Marker Beacon Receiver
	Attitude Indicator		ADF/DME Tuning
	Altimeter	4.4	GTX 33/GTX 33 ES Mode
	Vertical Speed Indicator (VSI)		Transponder Controls
	Vertical Deviation		Transponder Mode Selection
	Horizontal Situation Indicator (HSI)		ADS-B TX (Optional)
	Course Deviation Indicator (CDI)		Entering a Transponder Code .
2.2	Supplemental Flight Data67		IDENT Function
	Outside Air Temperature		Flight ID Reporting
	Wind Data	4.5	Additional Audio Panel Fo
	Vertical Navigation (VNV) Indications		Power-up
2.3	PFD Annunciations and Alerting Functions 71		Mono/Stereo Headsets
	System Alerting71		Intercom
	Marker Beacon Annunciations		Clearance Recorder and Player
	Traffic Annunciation		Split COM
	Altitude Alerting		Entertainment Inputs
	Low Altitude Annunciation	4.6	Audio Panel Preflight Pro
	Minimum Descent Altitude/Decision Height Alerting 74	4.7	Abnormal Operation
	Radar Altimeter		-

2.4	Abnormal Operations	77
	Abnormal GPS Conditions	77
	Unusual Attitudes	78
9	SECTION 3 ENGINE INDICATION SYSTEM (EIS)
3.1	Engine Display	82
3.2	System Display	84
3.3	Fuel Display	86
	SECTION 4 AUDIO PANEL AND CNS	
4.1	Overview	89
	MFD/PFD Controls and Frequency Display	90
	Audio Panel Controls	
4.2	COM Operation	94
	COM Transceiver Selection and Activation	94
	COM Transceiver Manual Tuning	95
	Quick-tuning and Activating 121.500 MHz	96
	Auto-tuning the COM Frequency	97
	Frequency Spacing	101
	Automatic Squelch	
	Volume	102
4.3	NAV Operation	
	NAV Radio Selection and Activation	
	NAV Receiver Manual Tuning	
	Auto-tuning a NAV Frequency from the MFD	
	Marker Beacon Receiver	
	ADF/DME Tuning	
4.4	GTX 33/GTX 33 ES Mode S Transponder	
	Transponder Controls	
	Transponder Mode Selection	
	ADS-B TX (Optional)	
	Entering a Transponder Code	
	IDENT Function	
4.5	Flight ID Reporting	
4.5	Additional Audio Panel Functions	
	Power-up	
	Mono/Stereo Headsets	
	Intercom	
	Clearance Recorder and Player	
	Split COM Entertainment Inputs	
4.6	Audio Panel Preflight Procedure	
4.7	Abnormal Operation	129

	Stuck Microphone	
	COM Tuning Failure	
	Audio Panel Fail-safe Operation	
	Reversionary Mode	129
	SECTION 5 FLIGHT MANAGEMENT	
5.1	Introduction	131
	Navigation Status Box	132
5.2	Using Map Displays	
	Map Orientation	
	Map Range	
	Map Panning	
	Measuring Bearing and Distance	
	Topography	
	Map Symbols	
	Airways	
	Track Vector	155
	Wind Vector	156
	Nav Range Ring	157
	Fuel Range Ring	158
	Field of View (SVT)	159
	Selected Altitude Intercept Arc	160
5.3	Waypoints	161
	Airports	162
	Intersections	169
	NDBs	171
	VORs	173
	User Waypoints	175
5.4	Airspaces	181
5.5	Direct-to-Navigation	185
5.6	Flight Planning	190
	Flight Plan Creation	191
	Adding Waypoints to an Existing Flight Plan	196
	Adding Airways to a Flight Plan	
	Adding Procedures to a Stored Flight Plan	200
	Flight Plan Storage	
	Flight Plan Editing	209
	Along Track Offsets	212
	Parallel Track	214
	Activating a Flight Plan Leg	217
	Inverting a Flight Plan	218
	Flight Plan Views	219

	Closest Point of FPL	221
	User-Defined Holding Patterns	221
5.7	Vertical Navigation	226
	Altitude Constraints	228
5.8	Procedures	232
	Departures	233
	Arrivals	236
	Approaches	239
5.9	Trip Planning	247
	Trip Planning	247
5.10	RAIM Prediction	251
5.11	Navigating a Flight Plan	254
5.12	Abnormal Operation	282
	SECTION 6 HAZARD AVOIDANCE	
6.1	SiriusXM Weather	286
	Activating Services	286
	Using SiriusXM Weather Products	287
6.2	Garmin Connext Weather	320
	Registering the Iridium Satellite System	320
	Registering Garmin Connext Weather	
	Accessing Garmin Connext Weather Products	323
	Connext Data Requests	330
	Garmin Connext Weather Products	334
	Abnormal Operations	349
6.3	Airborne Color Weather Radar	351
	System Description	351
	Principles of Pulsed Airborne Weather Radar	351
	Safe Operating Distance	355
	Basic Antenna Tilt Setup	
	Weather Mapping and Interpretation	
	Ground Mapping and Interpretation	
	Weather Radar Overlay on the Navigation Map Page.	
	System Status	
6.4	Lightning Detection System	373
	Setting Up Lightning Detection Information on the	272
	Navigation Map	
c =	Selecting the Stormscope Page	
6.5	Terrain Proximity	
	Displaying Terrain Proximity Data	
	Terrain Proximity Page	382

6.6	Profile View Terrain	384	7.5	Autopilot and Yaw Damper Operation	441
	Profile View Display	385		Flight Control	441
6.7	Terrain-SVS	388		Engaging the Autopilot and Yaw Damper	442
	Displaying Terrain-SVS Data	389		Control Wheel Steering	442
	Terrain-SVS Page			Disengaging the Autopilot and Yaw Damper	443
	Terrain-SVS Alerts			Underspeed Protection	444
	System Status	396	7.6	Example Flight Plan	446
6.8	Traffic Information Service (TIS)	397		Departure	446
	Displaying Traffic Data	398		Intercepting a VOR Radial	448
	Traffic Map Page			Flying a Flight Plan/GPS Course	449
	TIS Alerts			Descent	450
	System Status	403		Approach	454
6.9	Avidyne TAS600 Traffic			Go Around/Missed Approach	456
	TAS Symbology		7.7	AFCS Annunciations and Alerts	458
	Displaying Traffic Data			AFCS Status Alerts	458
	Altitude Display			Overspeed Protection	459
	Traffic Map Page Display Range	408		SECTION 8 ADDITIONAL FEATURES	
	TAS Alerts	410	8.1	Synthetic Vision Technology (SVT)	
	System Status	411	0.1	(Optional)	162
SE	CTION 7 AUTOMATIC FLIGHT CONTROL	SYSTEM		SVT Operation	
7.1	AFCS Controls			SVT Features	
7.1 7.2	Flight Director Operation			Field of View	
1.2	Activating the Flight Director		8.2	SafeTaxi	
	AFCS Status Box		8.3	ChartView (Optional)	
	Command Bars		0.5	· · · · · · · · · · · · · · · · · · ·	
	Flight Director Modes			ChartView Softkeys Terminal Procedures Charts	
7.3	Vertical Modes				
7.5	Pitch Hold Mode (PIT)			Chart Options	
	Selected Altitude Capture Mode (ALTS)			ChartView Cycle Number and Expiration Date	
	Altitude Hold Mode (ALT)		8.4	FliteCharts	
	Vertical Speed Mode (VS)		0.4		
	Flight Level Change Mode (FLC)			FliteCharts Softkeys Terminal Procedures Charts	
	Vertical Navigation Modes (VPTH, ALTV)			Chart Options	
	Glidepath Mode (GP) (SBAS only)			Day/Night View	
	Glideslope Mode (GS)			FliteCharts Cycle Number and Expiration Date	
	Takeoff (TO) and Go Around (GA) Modes		8.5	Airport Directory	
7.4	Lateral Modes		0.5		
	Roll Hold Mode (ROL)			Airport Directory Database Cycle Number and Rev SiriusXM Satellite Radio Entertainment	ISIUH DZU
	Heading Select Mode (HDG)		8.6		F22
	Navigation Modes (GPS, VOR, LOC, BC)			(Optional)	
	Approach Modes (GPS VAPP LOC)			Activating SiriusXM Satellite Radio Services	522

	Using SiriusXM Radio	524
8.7	Satellite Telephone Services (Optional)	527
	Telephone Communication	527
	Text Messaging (SMS)	534
8.8	Electronic Stability and Protection	
	(Garmin ESP™)	545
	Roll Engagement	
	Pitch Engagement	547
	High Airspeed Protection	548
8.9	Scheduler	549
8.10	Electronic Checklists	551
8.11	Flight Data Logging	554
8.12	Auxiliary Video (Optional)	
	Video Setup	
	Display Selection	
	Zoom/Range	
8.13	Abnormal Operation	559
	SVT Troubleshooting	559
	Reversionary Mode	559
	Unusual Attitudes	560
	GDL 69/69A Data Link Receiver Troubleshooting	561
	APPENDICES	
Annu	nciations and Alerts	563
	SVS Terrain Alerts	582
	SVS Terrain Status Annunciations	583
Data	base Management	584
	Jeppesen Databases	584
	Garmin Databases	586
Gloss	sary	593
Frequ	uently Asked Questions	599
Gene	ral TIS Information	603
	Introduction	603
	TIS VS. TAS/TCAS	603
	TIS Limitations	603
Мар	Symbols	605
	INDEX	
Inde		I₋1

BLANK PAGE

SECTION 1 SYSTEM OVERVIEW

NOTE: Refer to the Automatic Flight Control System (AFCS) Section for details on the Garmin AFCS.

The G1000 Integrated Avionics System presents flight instrumentation, position, navigation, communication, and identification information using flat-panel color displays. The system is distributed across the following Line Replaceable Units (LRUs):

- **GDU 1040** Primary Flight Display (PFD)
- GDU 1045 Multi Function Display (MFD)
- **GMA 1347** Audio Panel with Integrated Marker Beacon Receiver
- GIA 63W Integrated Avionics Units (IAU)
- GDC 74A Air Data Computer (ADC)
- GEA 71 Engine/Airframe Unit
- GTX 33 Mode S Transponder
- **GRS 77** Attitude and Heading Reference System (AHRS)

- **GMU 44** Magnetometer
- GDL 69/69A Data Link Receiver
- **GSA 80** AFCS Yaw Damper Servo
- **GSA 81** AFCS Servos (3)
- **GSM 86** Servo Mounts (4)
- **GSR 56** Iridium Transceiver (optional)
- **GWX 70** Weather Radar
- **GRA 5500** Radar Altimeter (optional)

Figure 1-1 shows interactions between the LRUs. Additional/optional equipment are shown in Figure 1-2.

The Diamond DA62 may be optionally equipped with a Garmin AFCS Automated Flight Control System, providing flight director (FD), autopilot (AP), and manual electric trim (MET) functions of the G1000 System.

1.1 LINE REPLACEABLE UNITS

- **GDU 1040/1045** (2) A GDU 1040 is configured as the Primary Flight Display (PFD) and a GDU 1045 as the Multi Function Display (MFD). Both displays feature 10.4-inch LCD screens with 1024 x 768 resolution. The displays communicate with each other through a High-speed Data Bus (HSDB) Ethernet connection. Each display is also paired with an Ethernet connection to an IAU.
- **GMA 1347** The Audio Panel integrates navigation/communication radio (NAV/COM) digital audio, intercom, and marker beacon controls, and is installed between the displays. This unit also provides manual control of display Reversionary Mode (red **DISPLAY BACKUP** button; see Section 1.4, System Operation) and communicates with both IAUs using an RS-232 digital interface.
- **GIA 63W** (2) The Integrated Avionics Units (IAU) function as the main communications hub, linking all LRUs with the PFD. Each GIA 63W contains a GPS SBAS receiver, VHF COM/NAV/GS receivers, a flight director (FD; if Garmin AFCS is installed), and system integration microprocessors. Each GIA 63W is paired with the on-side display via an HSDB connection. The IAUs are not paired together and do not communicate with each other directly.

NOTE: Refer to the Airplane Flight Manual (AFM) to determine whether SBAS functionality is approved.

- **GDC 74A** The Air Data Computer (ADC) processes data from the pitot/static system and outside air temperature (OAT) sensor. The ADC provides pressure altitude, airspeed, vertical speed, and OAT information to the G1000 System, and it communicates with the primary IAU, displays, and AHRS using an ARINC 429 digital interface.
- **GEA 71** The Engine Airframe Unit receives and processes signals from the engine and airframe sensors. This unit communicates with both IAUs using an RS-485 digital interface.
- **GTX 33 or GTX 33 with Extended Squitter** The GTX 33 solid-state Transponder provides Modes A, C, and S capability. The GTX 33 with Extended Squitter will also provide 1090 MHz Extended Squitter (1090ES) transmit capability. The transponder communicates with both IAUs through an RS-232 digital interface.
- **GRS 77** (2) The Attitude and Heading Reference System (AHRS) provides aircraft attitude and heading information via ARINC 429 to both the PFD and the primary IAU. The AHRS contains advanced sensors (including accelerometers and rate sensors) and interfaces with the Magnetometer to obtain magnetic field information, with the ADC to obtain air data, and with both IAUs to obtain GPS information. AHRS operation is discussed in Section 1.4, System Operation.
- **GMU 44** The Magnetometer measures local magnetic field and sends data to the AHRS for processing to determine aircraft magnetic heading. This unit receives power directly from the AHRS and communicates with it via an RS-485 digital interface.
- **GDL 69/69A** The Data Link Satellite Radio Receiver provides real-time weather information to MFD maps and the PFD Inset Map. The GDL 69A model is also capable of providing digital audio entertainment. The Data Link Receiver communicates with the MFD via an HSDB connection. A subscription to XM Satellite Radio Service is required to enable Data Link Receiver capability.
- **GSA 80**, **GSA 81** and **GSM 86** The GSA servos are used for the automatic control of pitch, pitch trim, roll and yaw. These units interface with each IAU.
 - The GSM 86 servo mounts are responsible for transferring the output torque of the servo actuators to the mechanical flight-control surface linkages (not displayed in Figure 1-1).

OVERVIEW

NSTRUMENTS

S

AUDIO PANEL & CNS

FLIGHT MANAGEMEN

HAZARD

• **GRA 5500** – The optional Radar Altimeter provides altitude above the ground (AGL) to the MFD, through the GIA 63W, using an RS-422 digital interface.

• **GWX 70** – Provides airborne weather and ground mapped radar data to the MFD, via HSDB ethernet connection.

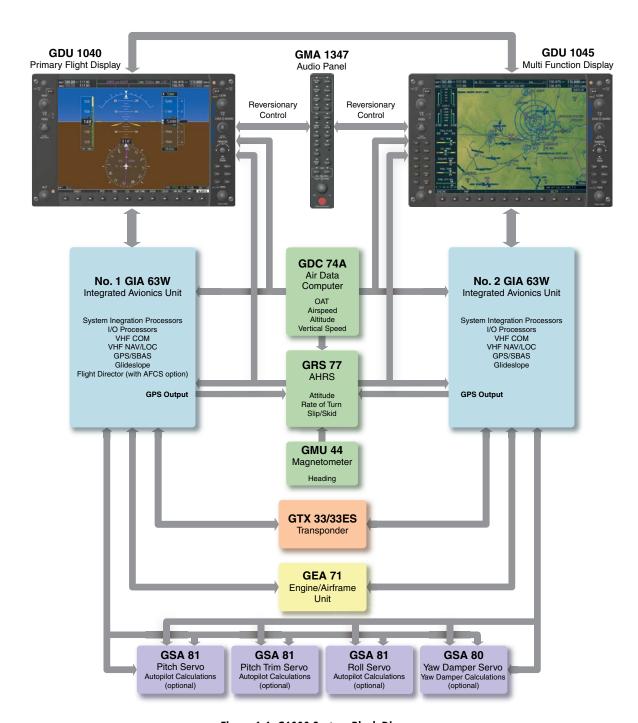


Figure 1-1 G1000 System Block Diagram

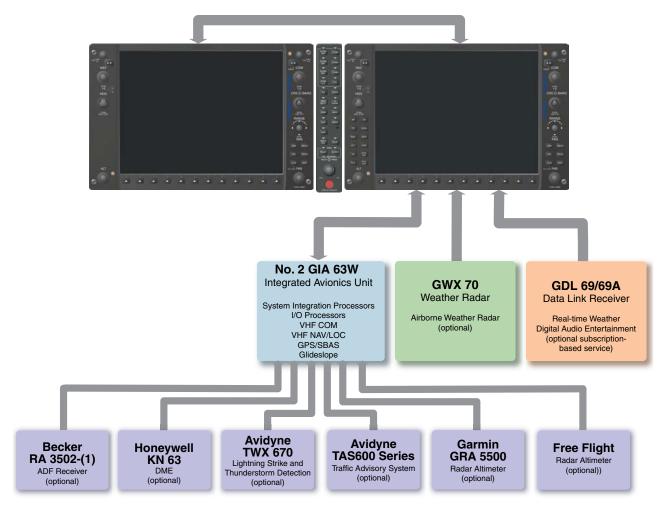


Figure 1-2 G1000 With Optional/Additional Interfaces

GARMIN

NOTE: For information on additional equipment shown in Figure 1-2, consult the applicable optional interface user's guide. This document assumes that the reader is already familiar with the operation of this additional equipment.

1.2 SECURE DIGITAL (SD) CARDS

NOTE: Ensure the G1000 System is powered off before inserting an SD card.

NOTE: Refer to the Appendix for instructions on updating databases.

The PFD and MFD data card slots use Secure Digital (SD) cards and are located on the upper right side of the display bezels. Each display bezel is equipped with two SD card slots. SD cards are used for aviation database and system software updates as well as terrain database storage.

Installing an SD card:

- 1) Insert the SD card in the SD card slot, pushing the card in until the spring latch engages. The front of the card should remain flush with the face of the display bezel.
- **2)** To eject the card, gently press on the SD card to release the spring latch.

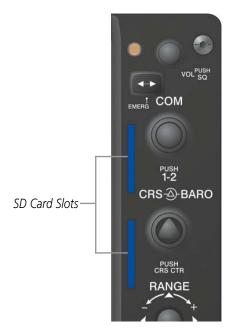


Figure 1-3 Display Bezel SD Card Slots

1.3 SYSTEM POWER-UP

NOTE: See the Airplane Flight Manual (AFM) for specific procedures concerning avionics power application and emergency power supply operation.

NOTE: Refer to the Appendix for system-specific annunciations and alerts.

The G1000 System is integrated with the aircraft electrical system and receives power directly from electrical busses. The PFD, MFD, and supporting sub-systems include both power-on and continuous built-in test features that exercise the processor, RAM, ROM, external inputs, and outputs to provide safe operation.

During system initialization, test annunciations are displayed, as shown in Figure 1-4. All system annunciations should disappear typically within the first minute of power-up. Upon power-up, key annunciator lights also become momentarily illuminated on the Audio Panel and the display bezels.

On the PFD, the AHRS begins to initialize and displays "AHRS ALIGN: Keep Wings Level". The AHRS should display valid attitude and heading fields typically within the first minute of power-up. The AHRS can align itself both while taxiing and during level flight.

When the MFD powers up, the screen (Figure 1-5) displays the following information:

- System version
- Copyright
- Land database name and version

- Obstacle database name and version
- Terrain database name and version
- Aviation database name, version, and effective dates

Current database information includes valid operating dates, cycle number, and database type. When this information has been reviewed for currency (to ensure that no databases have expired), the pilot is prompted to continue.

Pressing the **ENT** Key acknowledges this information, and displays the Navigation Map Page. When the system has acquired a sufficient number of satellites to determine a position, the aircraft's current position is shown on the Navigation Map Page.

Figure 1-4 PFD Initialization

Figure 1-5 Example MFD Power-up

1.4 SYSTEM OPERATION

NOTE: Refer to the Appendix for detailed descriptions of all alerts and annunciations. Refer to the Airplane Flight Manual (AFM) for additional information regarding pilot responses to these annunciations.

The displays are connected together via a single Ethernet bus for high-speed communication. As shown in Figure 1-1, each IAU is connected to the on-side display. This allows the units to share information, enabling true system integration

DISPLAY OPERATION

NOTE: In normal operating mode, backlighting can only be adjusted from the PFD. In Reversionary Mode, it can be adjusted from the remaining display.

In normal operating mode, the PFD presents graphical flight instrumentation (attitude, heading, airspeed, altitude, vertical speed), replacing the traditional flight instrument cluster (see the Flight Instruments Section for more information). The MFD normally displays a full-color moving map with navigation information (see the Flight Management Section), while the left portion of the MFD is dedicated to the Engine Indication System (EIS; see the EIS Section). Both displays offer control for COM and NAV frequency selection.

Figure 1-6 G1000 Normal Operation

In the event of a display failure, the G1000 System automatically switches to reversionary (backup) mode. In Reversionary Mode, all important flight information from the PFD is presented on the remaining display in the same format as in normal operating mode, with the addition of the EIS. EIS operation while in Reversionary Mode is discussed in the EIS Section. As when the PFD is operating normally, windows for flight planning, nearest airports, and procedures are available. The Inset Map is moved to the right side of the display.

If a display fails, the appropriate IAU-display Ethernet interface is cut off. Thus, the IAU can no longer communicate with the remaining display (refer to Figure 1-1), and the NAV and COM functions provided to the failed display by the IAU are flagged as invalid on the remaining display. The system reverts to backup paths for the AHRS, ADC, Engine/Airframe Unit, and Transponder, as required. The change to backup paths is completely automated for all LRUs and no pilot action is required.

If the system fails to detect a display problem, Reversionary Mode may be manually activated by pressing the Audio Panel's red **DISPLAY BACKUP** Button. Pressing this button again deactivates Reversionary Mode.

DISPLAY BACKUP Button Manually Activates/ Deactivates Reversionary Mode on Both Displays

NAV1 and COM1 (provided by the

Figure 1-7 G1000 Reversionary Mode (Failed PFD)

G1000 SYSTEM ANNUNCIATIONS

When an LRU or an LRU function fails, a large red 'X' is typically displayed over the instrument experiencing failed data (Figure 1-8 displays all possible flags and responsible LRUs). The G1000 System alerts the pilot when backup paths are utilized by the LRUs. Upon G1000 power-up, certain instruments remain invalid as equipment begins to initialize. All instruments should be operational within one minute of power-up. If any instrument remains flagged, the G1000 should be serviced by a Garmin-authorized repair facility.

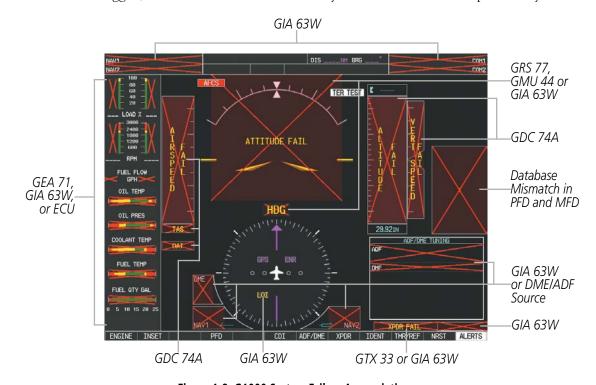


Figure 1-8 G1000 System Failure Annunciations

SYSTEM STATUS

The System Status Page displays the statuses, serial numbers, and software version numbers for all detected system LRUs. Active LRUs are indicated by green check marks; failed, by red 'X's. Failed LRUs should be noted and a service center or Garmin-authorized dealer informed.

Viewing LRU information:

- 1) Use the **FMS** Knob to select the AUX System Status Page.
- 2) To place the cursor in the 'LRU Info' Box,
- a) Press the LRU Softkey.

Or:

- a) Press the MENU Key.
- b) With 'Select LRU Window' highlighted, press the ENT Key.
- **3)** Use the **FMS** Knob to scroll through the box to view LRU status information.

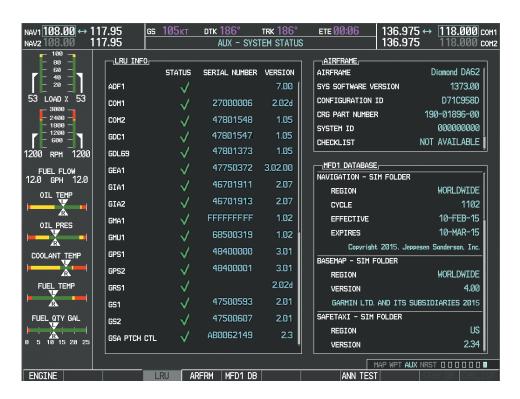


Figure 1-9 Example System Status Page

Airframe information which includes system software, Cockpit Reference Guide (CRG) part number, system ID, and checklist are also displayed on this page.

Viewing airframe information:

- 1) Use the **FMS** Knob to select the AUX System Status Page.
- 2) To place the cursor in the 'Airframe' Box,
 - a) Press the ARFRM Softkey.

Or:

- a) Press the **MENU** Key.
- **b)** Highlight 'Select Airframe Window' and press the **ENT** Key.
- 3) Use the **FMS** Knob to scroll through the box to view airframe information.

Pertinent information on all system databases is also displayed on this page. Refer to the Appendices and Additional Features sections for more information about databases.

Viewing database information:

- 1) Use the **FMS** Knob to select the AUX System Status Page.
- 2) To place the cursor in the 'Database' Box,
- a) Press the **DBASE** Softkey.

Or:

- a) Press the MENU Key.
- **b)** Highlight 'Select Dbase Window' and press the **ENT** Key.
- 3) Use the **FMS** Knob to scroll through the box to view database status information.

The G1000 uses aural tones to convey the priority of airframe-specific alerts. The alerting system's annunciation tone may be tested from the System Status Page. Refer to the Appendices for airframe-specific alerts.

Testing the system annunciation tone:

- 1) Use the **FMS** Knob to select the AUX System Status Page.
- **2)** Press the **ANN TEST** Softkey.

Or:

- a) Press the MENU Key.
- **b)** Highlight 'Enable Annunciator Test Mode' and press the **ENT** Key.

12

AHRS OPERATION

NOTE: Aggressive maneuvering while AHRS is not operating normally may degrade AHRS accuracy.

The Attitude and Heading Reference System (AHRS) performs attitude, heading, and vertical acceleration calculations for the G1000 System, utilizing GPS, magnetometer, and air data in addition to information from its internal sensors. Attitude and heading information are updated on the PFD while the AHRS receives appropriate combinations of information from the external sensor inputs.

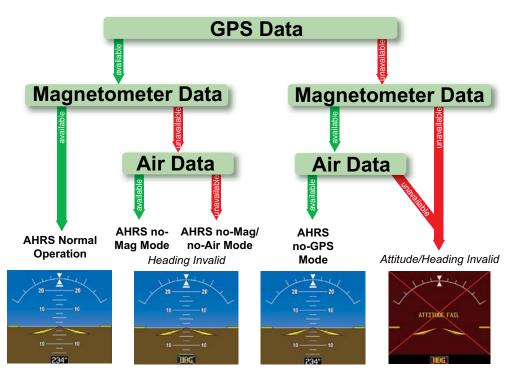


Figure 1-10 AHRS Operation

Loss of GPS, magnetometer, or air data inputs is communicated to the pilot by message advisory alerts (refer to Appendix A for specific AHRS alert information). Any failure of the internal AHRS inertial sensors results in loss of attitude and heading information (indicated by red 'X' flags over the corresponding flight instruments).

Two GPS inputs are provided to the AHRS. If GPS information from one of the inputs fails, the AHRS uses the remaining GPS input and an alert message is issued to inform the pilot. If both GPS inputs fail, the AHRS can continue to provide attitude and heading information to the PFD as long as magnetometer and airspeed data are available and valid.

If the magnetometer input fails, the AHRS continues to output valid attitude information; however, the heading output on the PFD is flagged as invalid with a red 'X'.

Failure of the air data input has no effect on the AHRS output while AHRS is receiving valid GPS information. Invalid/unavailable airspeed data in addition to GPS failure results in loss of all attitude and heading information.

GPS RECEIVER OPERATION

Each Integrated Avionics Unit (IAU) contains a GPS receiver. Internal system checking is performed to ensure both GPS receivers are providing accurate data to the PFD. When both GPS receivers are providing accurate data, the GPS receiver producing the better solution is used by the system. Information collected by the specified receiver (GPS1 for the #1 IAU or GPS2 for the #2 IAU) may be viewed on the AUX - GPS Status Page.

Viewing GPS receiver status information:

- 1) Use the large **FMS** Knob on the MFD to select the Auxiliary Page Group (see Section 1.6 for information on navigating MFD page groups).
- 2) Use the small **FMS** Knob to select GPS Status Page (third page in the AUX Page Group).
- **3)** To change the selected GPS receiver:

Press the desired **GPS** Softkey.

Or:

- a) Press the **MENU** Key.
- **b)** Use the **FMS** Knob to highlight the receiver which is not selected and press the **ENT** Key.

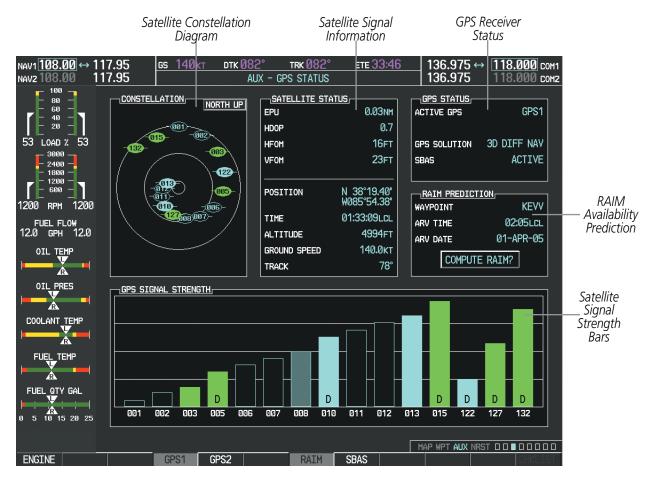


Figure 1-11 GPS Status Page

NOTE: Refer to the Airplane Flight Manual (AFM) to determine whether SBAS functionality is approved.

For SBAS-enabled systems, GPS sensor annunciations are most often seen after system power-up when one GPS receiver has acquired satellites before the other or one of the GPS receivers has not yet acquired a SBAS signal. While the aircraft is on the ground, the SBAS signal may be blocked by obstructions causing one GPS receiver to have difficulty acquiring a good signal. Also, while airborne, turning the aircraft may result in one of the GPS receivers temporarily losing the SBAS signal. If no failure message exists, check the GPS Status Page and compare the information for GPS1 and GPS2. Discrepancies may indicate a problem.

GPS RECEIVER STATUS

The GPS solution type (ACQUIRING, 2D NAV, 2D DIFF NAV, 3D NAV, 3D DIFF NAV) for the active GPS receiver (GPS1 or GPS2) is shown in the upper right of the GPS Status Page. When the receiver is in the process of acquiring enough satellite signals for navigation, the receiver uses satellite orbital data (collected continuously from the satellites) and last known position to determine the satellites that should be in view. ACQUIRING is indicated as the solution until a sufficient number of satellites have been acquired for computing a solution.

When the receiver is in the process of acquiring a 3D navigational GPS solution, 3D NAV is indicated as the solution until the 3D differential fix has finished acquisition. Satellite-Based Augmentation System (SBAS) status should be indicated as INACTIVE at this point. When acquisition is complete, the solution status changes to 3D DIFF NAV and SBAS becomes active.

In certain situations, such as when the aircraft is outside or on the fringe of the EGNOS, MSAS (used only in Japan), or WAAS coverage area, it may be desirable to disable EGNOS, MSAS, or WAAS (although it is not recommended). When disabled, the SBAS field in the GPS Status box indicates DISABLED. There may be a small delay for the GPS Status box to be updated upon EGNOS, MSAS, or WAAS enabling/disabling.

Disabling EGNOS, MSAS, or WAAS

- **1)** Select the GPS Status Page.
- 2) If necessary, press the **SBAS** Softkey.
- 3) Press the FMS Knob, and turn the large FMS Knob to hightlight 'EGNOS', 'MSAS', or 'WAAS'.
- **4)** Press the **ENT** Key to uncheck the box.
- **5)** Press the **FMS** Knob to remove the cursor.

Figure 1-12 Enable/Disable SBAS

RAIM PREDICTION

Receiver Autonomous Integrity Monitoring (RAIM) is a GPS receiver function that performs a consistency check on all tracked satellites. RAIM ensures that the available satellite geometry allows the receiver to calculate a position within a specified RAIM protection limit (2.0 nautical miles for oceanic and enroute, 1.0 nm for terminal, and 0.3 nm for non-precision approaches). During oceanic, enroute, and terminal phases of flight, RAIM is available nearly 100% of the time.

The RAIM prediction function also indicates whether RAIM is available at a specified date and time. RAIM computations predict satellite coverage within ±15 min of the specified arrival date and time. In G1000 systems with SBAS enabled, performing RAIM prediction is not necessary in most cases. However, if the selected approach is outside the SBAS coverage area, it may be necessary to perform a RAIM prediction for the intended approach.

NOTE: Refer to the Airplane Flight Manual (AFM) to determine whether SBAS functionality is approved.

Because of the tighter protection limit on approaches, there may be times when RAIM is not available. The G1000 automatically monitors RAIM and warns with an alert message when it is not available. If RAIM is not predicted to be available for the final approach course, the approach does not become active, as indicated by the message "Approach is not active". If RAIM is not available when crossing the FAF, the missed approach procedure must be flown.

Predicting RAIM availability:

- 1) Select the GPS Status Page.
- **2)** Press the **RAIM** Softkey.
- **3)** Press the **FMS** Knob. The 'WAYPOINT' field is highlighted.
- **4)** Turn the small **FMS** Knob to display the Waypoint Information Window.
- **5)** Enter the desired waypoint and press the **ENT** Key (refer to Section 1.6 for instructions on data entry).

Or:

- **a)** To use the present position, press the **MENU** Key.
- **b)** With 'Set WPT to Present Position' highlighted, press the **ENT** Key.
- c) Press the ENT Key to accept the waypoint entry.
- **6)** Enter an arrival time and press the **ENT** Key.
- 7) Enter an arrival date and press the ENT Key.
- **8)** With the cursor highlighting 'COMPUTE RAIM?', press the **ENT** Key. Once RAIM availability is computed, one of the following is displayed:
 - 'COMPUTE RAIM?'—RAIM has not been computed for the current waypoint, time, and date combination
 - 'COMPUTING AVAILABILITY'—RAIM calculation in progress
 - 'RAIM AVAILABLE'—RAIM is predicted to be available for the specified waypoint, time, and date
 - 'RAIM NOT AVAILABLE'—RAIM is predicted to be unavailable for the specified waypoint, time, and date

16

SATELLITE INFORMATION

Satellites currently in view are shown at their respective positions on a satellite constellation diagram. This sky view is always oriented north-up, with the outer circle representing the horizon, the inner circle representing 45° above the horizon, and the center point showing the position directly overhead. Each satellite is represented by an oval containing the Pseudo-random noise (PRN) number (i.e., satellite identification number). Satellites whose signals are currently being used are represented by solid ovals.

The GPS Status Page can be helpful in troubleshooting weak (or missing) signal levels due to poor satellite coverage or installation problems. As the GPS receiver locks onto satellites, a signal strength bar is displayed for each satellite in view, with the appropriate satellite PRN number (01-32 or 120-138 for SBAS) below each bar. The progress of satellite acquisition is indicated by signal bar appearance:

- No signal strength bar—Receiver is looking for the indicated satellite.
- Hollow signal strength bar—Receiver has found the satellite and is collecting data. Each satellite has a 30second data transmission that must be collected (signal strength bar is hollow) before the satellite may be used for navigation (signal strength bar becomes solid).
- Solid signal strength bar—Receiver has collected the necessary data and the satellite signal can be used.
- Checkered signal strength bar—Receiver has excluded the satellite (Fault Detection and Exclusion; FDE).
- "D" indication on signal strength bar—Satellite is being used for differential computations.
- Green signal strength bar—Satellites that are actually being used in the position calculation.
- Blue signal strength bar—Satellite is locked on but not yet being used in the position calculation.

Using the current satellite signal information, the system calculates the aircraft's GPS position, time, altitude, ground speed, and track for the aircraft (displayed below the satellite signal accuracy measurements for reference). The following quantities denote the accuracy of the aircraft's GPS fix:

- Estimated Position Uncertainty (EPU)—A statistical error indication; the radius of a circle centered on an estimated horizontal position in which actual position has 95% probability of lying
- Horizontal Dilution of Precision (HDOP)—Measures satellite geometry quality (i.e., number of satellites received and where they are relative to each other) on a range from 0.0 to 9.9, with lower numbers denoting better accuracy
- Horizontal and Vertical Figures of Merit (HFOM and VFOM)—Measures of horizontal and vertical position uncertainty; the current 95% confidence horizontal and vertical accuracy values reported by the GPS receiver

NOTE: Refer to the Airplane Flight Manual (AFM) to determine whether SBAS functionality is approved.

1.5 G1000 CONTROLS

The G1000 controls have been designed to simplify operation of the system and minimize workload and the time required to access sophisticated functionality. Controls are located on the PFD and MFD bezels and Audio Panel. PFD and MFD controls and softkeys are discussed in this section. See the Audio Panel and CNS Section for more information about Audio Panel and NAV/COM controls. AFCS controls (on the bezel of the MFD) are described in the AFCS section.

PFD/MFD CONTROLS

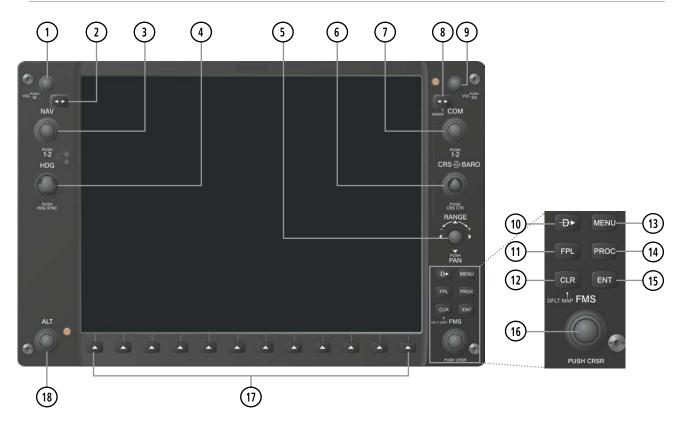


Figure 1-13 PFD/MFD Controls

The **NAV**, **CRS/BARO**, **COM**, **FMS**, and **ALT** knobs are concentric dual knobs, each having small (inner) and large (outer) control portion. When a portion of the knob is not specified in the text, either may be used.

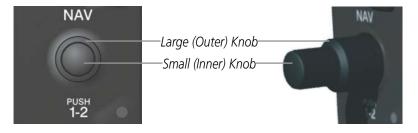


Figure 1-14 Dual Concentric Knob

1 NAV VOL/ID Knob	Turn to control NAV audio volume (shown in the NAV Frequency Box as a percentage)
	Press to toggle Morse code identifier audio on/off
2 NAV Frequency Transfer Key	Transfers the standby and active NAV frequencies
3 NAV Knob	Turn to tune NAV receiver standby frequencies (large knob for MHz; small for kHz)
	Press to toggle cyan tuning box between NAV1 and NAV2
4 Heading Knob	Turn to manually select a heading
	Press to display a digital heading momentarily to the left of the Horizontal Situation Indicator (HSI) and synchronize the Selected Heading to the and current heading
5 Joystick	Turn to change map range
	Press to activate Map Pointer and move in desired direction to pan map
6 CRS/BARO Knob	Turn large knob for altimeter barometric pressure setting
	Turn small knob to adjust course (only when HSI is in VOR or OBS Mode)
	Press to re-center the CDI and return course pointer directly to bearing of active waypoint/station
7 COM Knob	Turn to tune COM transceiver standby frequencies (large knob for MHz; small for kHz)
	Press to toggle cyan tuning box between COM1 and COM2
	The selected COM (green) is controlled with the COM MIC Key (Audio Panel).
8 COM Frequency	Transfers the standby and active COM frequencies
Transfer Key (EMERG)	Press and hold two seconds to tune the emergency frequency (121.5 MHz) automatically into the active frequency field
COM VOL/SQ Knob	Turn to control COM audio volume level (shown as a percentage in the COM Frequency Box)
	Press to turn the COM automatic squelch on/off
10 Direct-to Key ()	Activates the direct-to function and allows the user to enter a destination waypoint and establish a direct course to the selected destination (specified by identifier, chosen from the active route)
11) FPL Key	Displays flight plan information
(12) CLR Key	Erases information, cancels entries, or removes menus
(DFLT MAP)	Press and hold to display the MFD Navigation Map Page (MFD only).
(13) MENU Key	Displays a context-sensitive list of options for accessing additional features or making setting changes
14) PROC Key	Gives access to IFR departure procedures (DPs), arrival procedures (STARs), and

approach procedures (IAPs) for a flight plan or selected airport

- (15) ENT Key Validates/confirms selection or data entry
- (16) FMS Knob Press to turn the selection cursor on/off

(Flight Management Data Entry: With cursor on, turn to enter data in the highlighted field (large knob moves cursor location; small knob selects character for highlighted cursor location)

> **Scrolling:** When a list of information is too long for the window/box, a scroll bar appears, indicating more items to view. With cursor on, turn large knob to scroll through the list.

> **Page Selection**: Turn knob on MFD to select the page to view (large knob selects a page group; small knob selects a specific page from the group)

- (17) Softkey Selection Press to select softkey shown above the bezel key on the PFD/MFD display **Keys**
- (18) ALT Knob Sets the Selected Altitude, shown above the Altimeter (the large knob selects the thousands, the small knob selects the hundreds)

SOFTKEY FUNCTION

System Knob)

The softkeys are located along the bottoms of the displays. The softkeys shown depend on the softkey level or page being displayed. The bezel keys below the softkeys can be used to select the appropriate softkey. When a softkey is selected, its color changes to black text on gray background and remains this way until it is turned off, at which time it reverts to white text on black background. When a softkey function is disabled, the softkey label is subdued (dimmed).

Softkeys revert to the previous level after 45 seconds of inactivity.

Figure 1-15 Softkeys (Second-Level PFD Configuration)

In the following descriptions, top level softkeys are denoted with bullets.

PFD SOFTKEYS

The CDI, IDENT, TMR/REF, NRST, and ALERTS softkeys undergo a momentary change to black text on gray background and automatically switch back to white text on black background when selected.

The PFD softkeys provide control over flight management functions, including GPS, NAV, terrain, traffic, and lightning (optional). Each softkey sublevel has a **BACK** Softkey which can be selected to return to the previous level. The **ALERTS** Softkey is visible at all softkey levels (label changes if messages are issued).

Press the **CDI** Softkey to cycle through navigation sources:

- GPS
- NAV1 (VOR/LOC)
- NAV2 (VOR/LOC)

Figure 1-16 Top Level PFD Softkeys

• **INSET** Displays Inset Map in PFD lower left corner

OFF Removes Inset Map

DCLTR (3) Selects desired amount of map detail; cycles through declutter levels:

DCLTR (No Declutter): All map features visible

DCLTR-1: Removes land data

DCLTR-2: Removes land and SUA data

DCLTR-3: Removes everything except active flight plan

WX LGND Displays icon and age on the Inset Map for the selected weather products (optional)

TRAFFIC (2) Displays/removes traffic information on Inset Map

TRFC-1: Displays traffic on Inset Map.

TRFC-2: Removes everything except traffic. Inset Map position HDG UP only.

TOPO Displays/removes topographical data (e.g., coastlines, terrain, rivers, lakes) on Inset Map

TERRAIN Displays/removes terrain information on Inset Map

STRMSCP Displays/removes Stormscope weather information on Inset Map (optional)

NEXRAD Displays/removes NEXRAD weather and coverage information on Inset Map (optional)

XM LTNG Displays/removes XM lightning information on Inset Map (optional)

METAR Displays METAR flags on airport symbols shown on the Inset Map (optional)

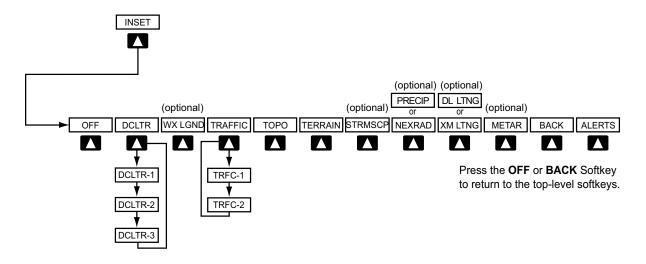


Figure 1-17 INSET Softkeys

• **PFD** Displays second-level softkeys for additional PFD configuration

SYN VIS Displays the softkeys for enabling or disabling Synthetic Vision features (*optional*)

PATHWAY Displays rectangular boxes representing the horizontal and vertical flight path

of the active flight plan

SYN TERR Enables synthetic terrain depiction

HRZN HDG Displays compass heading along the Zero-Pitch line

APTSIGNS Displays position markers for airports within approximately 15 nm of the

current aircraft position. Airport identifiers are displayed when the airport is

within approximately 9 nm.

DFLTS Resets PFD to default settings, including changing units to standard

WIND Displays softkeys to select and configure wind data

OPTN1 Displays wind data in longitudinal and lateral components

OPTN2 Displays wind data total direction and speed

OPTN3 Displays wind data total direction with head and cross-wind speed components

OFF Removes wind information from display

DME Displays/removes DME Information Window (optional)

BRG1 Cycles the Bearing 1 Information Window through:

NAV1: Waypoint frequency/identifier and DME information GPS: Waypoint identifier and GPS distance information

ADF: Waypoint frequency Off: Removes window

HSI FMT Displays softkeys to select the HSI format **360 HSI** Displays HSI as a 360° compass rose

ARC HSI Displays HSI as a 140° viewable arc (Bearing Information windows unavailable)

BRG2 Cycles the Bearing 2 Information Window through:

NAV2: Waypoint frequency/identifier and DME information GPS: Waypoint identifier and GPS distance information

ADF: Waypoint frequency Off: Removes window

ALT UNIT Displays softkeys for changing the Altimeter barometric setting and altitude displays to

metric units

METERS Displays the current and Selected altitudes in meters in addition to feet, when selected

IN Displays the Altimeter barometric setting in inches of mercury (in Hg)HPA Displays the Altimeter barometric setting in hectopascals (hPa)

STD BARO Sets barometric pressure to 29.92 in Hg (1013 hPa if metric display is selected)

OBS Selects OBS Mode on the CDI when navigating by GPS (only available with active leg)
 CDI Cycles CDI through GPS, NAV1 (VOR/LOC), and NAV2 (VOR/LOC) navigation sources

• ADF/DME Displays/removes ADF/DME Radio Tuning Window (optional; may appear as ADF, DME,

or **ADF/DME** depending on installation)

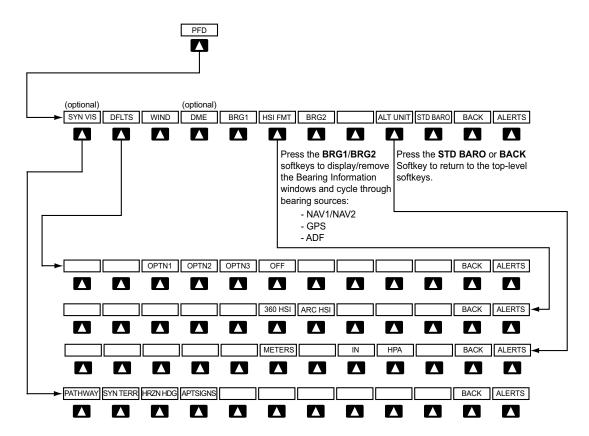


Figure 1-18 PFD Configuration Softkeys

• **XPDR** Displays transponder mode selection softkeys:

STBY Selects standby mode (Transponder does not reply to any interrogations)

ON Selects Mode A (Transponder replies to interrogations)

ALT Selects Mode C – altitude reporting mode (Transponder replies to identification and altitude

interrogations)

GND Manually selects Ground Mode (Transponder does not allow Mode A and Mode C

replies, but does permit acquisition squitter and replies to discretely addressed Mode S

interrogations)

VFR Automatically enters the VFR code (1200 in U.S.A. only)

CODE Displays transponder code selection softkeys 0-7

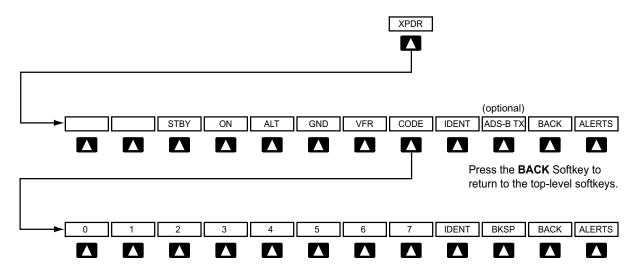
0 − 7 Use numbers to enter code

IDENT Activates the Special Position Identification (SPI) pulse for 18 seconds, identifying the

transponder return on the ATC screen

BKSP Removes numbers entered, one at a time

ADS-B TX Enables/disables automatic transmission of ADS-B position and speed. (optional)


• IDENT Activates the Special Position Identification (SPI) pulse for 18 seconds, identifying the

transponder return on the ATC screen

• TMR/REF Displays/removes Timer/References Window

- NRST Displays/removes Nearest Airports Window
- **ALERTS** Displays/removes Alerts Window

Press the **IDENT** or **BACK** Softkey to return to the toplevel softkeys.

Figure 1-19 XPDR Softkeys

MFD SOFTKEYS

MFD softkeys vary depending on the page selected. EIS and Navigation Map Page (default MFD page) softkeys are described here.

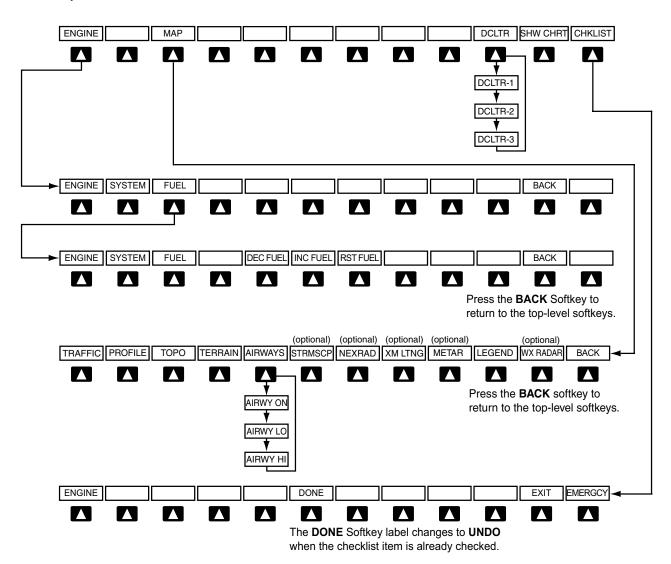


Figure 1-20 EIS and MFD Softkeys

• **ENGINE** Displays the Engine Page and top-level engine softkeys (see the EIS Section for more information)

SYSTEM Displays the System Page **FUEL** Displays the Fuel Page

DEC FUELDecreases displayed fuel remaining in 1-gal increments**INC FUEL**Increases displayed fuel remaining in 1-gal increments

RST FUEL Resets displayed fuel remaining to maximum fuel capacity for aircraft and fuel used

to zero

• MAP Enables second-level Navigation Map Page softkeys

TRAFFIC Displays/removes traffic information on Navigation Map Page

PROFILE Displays/removes profile view on Navigation Map Page

TOPO Displays/removes topographical data (e.g., coastlines, terrain, rivers, lakes) on Navigation

Map Page

TERRAIN Displays/removes terrain information on Navigation Map Page

AIRWAYS Selects the desired display of Airways; cycles through:

AIRWY ON: All Airways displayed

AIRWY LO: Low Altitude (Victor) Airways displayed AIRWY HI: High Altitude Airways (Jet Routes) displayed

AIRWAYS: Airways are not displayed

STRMSCP Displays/removes Stormscope weather information on Inset Map (optional)

NEXRAD Displays/removes NEXRAD weather/coverage on Navigation Map Page (optional)

XM LTNG Displays/removes XM lightning information on Navigation Map Page (optional)

METAR Displays/removes XM lightning information on Navigation Map Page (optional)

Displays METAR flags on airport symbols shown on Navigation Map Page (optional)

Displays the legend for the selected weather products. Available only when

NEXRAD, XM LTNG, and/or METAR softkeys are selected.

WX RADAR Displays/removes airborne weather radar information on Navigation Map Page.

BACK Returns to top-level softkeys

• **DCLTR (3)** Selects desired amount of map detail; cycles through declutter levels:

DCLTR (No Declutter): All map features visible

DCLTR-1: Removes land data

DCLTR-2: Removes land and SUA data

DCLTR-3: Removes everything except the active flight plan

• **SHW CHRT** Displays optional Flite Charts or Chart View charts (optional)

• **CHKLIST** Displays the Checklist Page

DONE Selects the highlighted checklist item **EXIT** Returns to the top-level softkeys

EMERGCY Immediately accesses the emergency procedures

1.6 ACCESSING G1000 FUNCTIONALITY

MENUS

The G1000 has a dedicated **MENU** Key that when pressed displays a context-sensitive list of options. This options list allows the user to access additional features or make setting changes which specifically relate to the currently displayed window/page. There is no all-encompassing menu. Some menus provide access to additional submenus that are used to view, edit, select, and review options. Menus display 'No Options' when there are no additional features or settings for the window/page selected.

Navigating a menu:

- 1) Press the **MENU** Key to display the menu.
- 2) Turn the **FMS** Knob to scroll through a list of available options (a scroll bar always appears to the right of the window/box when the option list is longer than the window/box).
- **3)** Press the **ENT** Key to select the desired option.
- **4)** Press the **CLR** Key or **FMS** Knob to remove the menu and cancel the operation.

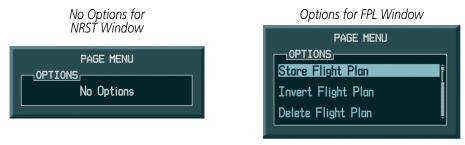


Figure 1-21 Page Menu Examples

DATA ENTRY

The **FMS** Knob can be used for directly entering alphanumeric data (e.g., Flight ID, waypoint identifiers, barometric minimum descent altitude) into the G1000 In some instances, such as when entering an identifier, the G1000 tries to predict the desired identifier based on the characters being entered. In this case, if the desired identifier appears, use the **ENT** Key to confirm the entry without entering the rest of the identifier manually. This can save the pilot from having to enter all the characters of the identifier.

Besides character-by-character data entry, the system also provides a shortcut for entering waypoint identifiers. When the cursor is on a field awaiting entry of a waypoint identifier, turning the small **FMS** Knob counter-clockwise accesses three different lists of waypoint identifiers for quick selection: flight plan (FPL), nearest (NRST), and recently-entered (RECENT). The G1000 automatically fills in the identifier, facility, and city fields with the information for the selected waypoint.

Using the FMS Knob to enter data:

- 1) If needed, press the **FMS** Knob to activate the cursor.
- 2) Use the large **FMS** Knob to highlight the desired field.
- **3)** Begin entering data.
- a) To quickly enter a waypoint identifier, turn the small FMS Knob counter-clockwise to display a list of waypoints in the active flight plan (list is titled FPL). If desired, turn the small FMS Knob clockwise to scroll through lists of nearest waypoints (NRST) and recently-entered waypoints (RECENT).
- **b)** Turn the large **FMS** Knob to highlight the desired waypoint from the list and press the **ENT** Key.

Or:

- a) Turn the small FMS Knob to select a character for the first placeholder.
 - Turning the knob clockwise scrolls through the alphabet (where appropriate) toward the letter Z, starting at K, and the digits zero through nine. Afterwards, turning the knob counter-clockwise scrolls in the opposite direction.
- **b)** Use the large **FMS** Knob to move the cursor to the next placeholder in the field.
- c) Repeat, using the small **FMS** Knob to select a character and the large **FMS** Knob to move the cursor, until the field is complete.
- **d)** Press the **ENT** Key to confirm entry.
- **4)** Press the **FMS** Knob or **CLR** Key to cancel data entry (the field reverts back to its previous information).

APPENDICES

PAGE GROUPS

NOTE: Refer to other supporting sections in this Pilot's Guide for details on specific pages.

Information on the MFD is presented on pages which are grouped according to function. The page group and active page title are displayed in the upper center of the screen, below the Navigation Status Box. In the bottom right corner of the screen, the current page group, number of pages available in the group, and placement of the current page within the group are indicated by icons. For some of these pages (Airport/Procedures/Weather Information, XM, Procedure Loading), the title of the page changes while the page icon remains the same.

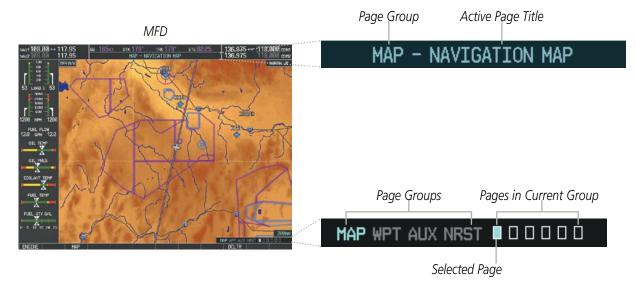


Figure 1-22 Page Title and Page Group Icons

There are four main page groups, navigated using the **FMS** Knob; specific pages within each group can vary depending on the configuration of optional equipment.

Selecting a page using the FMS Knob:

- 1) Turn the large FMS Knob until the desired page group is selected.
- **2)** Turn the small **FMS** Knob until the desired page is selected.

There are also several pages (Airport/Procedures/Weather Information and XM pages) which are selected first from within a main page group with the **FMS** Knob, then with the appropriate softkey at the bottom of the page (or from the page menu). In this case, the page remains set to the selected page until a different page softkey is selected, even if a different page group is selected.

• Map Page Group (MAP)

Navigation Map

Traffic Map

Weather Radar (optional)

Stormscope (optional)

XM Weather Data Link (service optional)

Terrain-SVS or Terrain Proximity

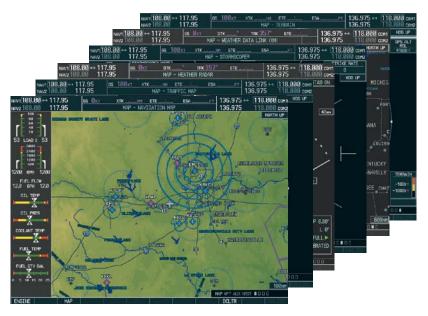


Figure 1-23 Map Pages

• Waypoint Page Group (WPT)

Airport/Procedures/Weather Information Pages:

- Airport Information (INFO-1, INFO-2 Softkeys)
- Departure Information (**DP** Softkey)
- Arrival Information (**STAR** Softkey)
- Approach Information (**APR** Softkey)
- Weather Information (optional)(WX Softkey)

Intersection Information

NDB Information

VOR Information

User Waypoint Information

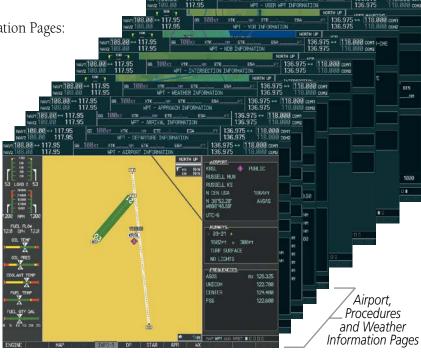


Figure 1-24 Waypoint Pages

• Auxiliary Page Group (AUX)

Trip Planning
Utility
GPS Status

System Setup Pages:

- System Setup 1 (SETUP 1 Softkey)
- System Setup 2 (**SETUP 2** Softkey)

XM Satellite Pages (optional):

- XM Radio (**RADIO** Softkey)
- XM Information (**INFO** Softkey)

Satellite Phone

- Telephone(TEL Softkey)
- SMS (**SMS** Softkey)

System Status

Video (optional)

Figure 1-25 Auxiliary Pages

• Nearest Page Group (NRST)

Nearest Airports

Nearest Intersections

Nearest NDB

Nearest VOR

Nearest User Waypoints

Nearest Frequencies

Nearest Airspaces

Figure 1-26 Nearest Pages

GARMIN.

In addition to the main page groups accessed exclusively using the **FMS** Knob, there are pages for flight planning (FPL) and loading procedures (PROC) which are accessed by key. In some instances, softkeys may be used to access the Procedure Loading pages.

The Flight Plan pages are accessed using the **FPL** Key on the MFD. Main pages within this group are selected by turning the small **FMS** Knob.

• Flight Plan Page Group (FPL)

Active Flight Plan

Flight Plan Catalog

Stored Flight Plan (NEW Softkey)

Figure 1-27 Flight Plan Pages

The Procedure Loading pages may be accessed at any time on the MFD by pressing the **PROC** Key. A menu is initialized, and when a departure, approach, or arrival is selected, the appropriate Procedure Loading page is opened. These pages can also be accessed from the Active and Stored Flight Plan pages using the **LD** softkeys. Turning the **FMS** Knob does not scroll through the Procedure Loading pages (note the single page icon in the lower right corner).

• Procedure Loading Page Group (PROC)

Departure Loading

Arrival Loading

Approach Loading

Figure 1-28 Procedure Loading Pages

Information on optional electronic checklist pages is offered later in this section. Checklist pages may be accessed from any page on the MFD using the **CHKLIST** Softkey.

APPENDICES

SYSTEM SETTINGS

G1000 system settings are managed from the System Setup Page. The following settings can be changed:

- Date/time
- Display Units (see Flight Instruments Section)
- Baro Transition Alert (see Flight Instruments Section)
- Airspace alerts (see Flight Management Section)
- Arrival alerts (see Flight Management Section)
- Audio Alerts

- MFD Data Bar Fields (see Flight Management Section)
- CDI scaling for GPS navigation source (see Flight Instruments Section)
- COM channel spacing (see Audio Panel and CNS Section)
- Criteria for displaying nearest airports (see Flight Management Section)

Restoring system setup defaults:

- 1) Use the **FMS** Knob to select the AUX System Setup Page.
- Press the **DFLTS** Softkey.

Or:

- a) Press the **MENU** Key.
- **b)** Highlight 'Restore Defaults' and press the **ENT** Key.

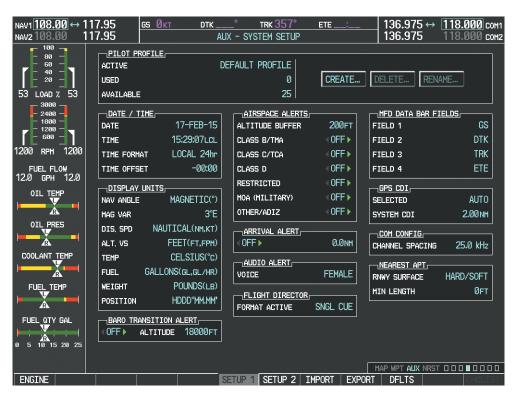


Figure 1-29 AUX - System Setup Page

DATE/TIME

The G1000 obtains the current Universal Coordinated Time (UTC) date and time directly from the GPS satellite signals (shown on the AUX - GPS Status Page, Figure 1-11). System time (displayed in the lower right corner of the PFD) can be displayed in three formats: local 12-hr, local 24-hr, or UTC. Local time is set by adding/subtracting an offset (hours:minutes) to/from UTC.

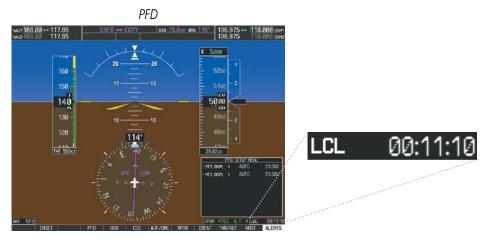


Figure 1-30 System Time (Local 24-hr Format)

Configuring the system time:

- 1) Select the AUX System Setup Page using the **FMS** Knob.
- 2) Press the **FMS** Knob to activate the cursor.
- **3)** Turn the large **FMS** Knob to highlight the 'Time Format' field.
- **4)** Turn the small **FMS** Knob to select the desired format and press the **ENT** Key to confirm selection. The 'Time Offset' field is highlighted.
- 5) Use the **FMS** Knob to enter the desired time offset (±HH:MM) and press the **ENT** Key to confirm selection.

Figure 1-31 Date/Time Settings (AUX - System Setup Page)

DISPLAY UNITS

Units in which various quantities are displayed on the G1000 screens are listed on the System Setup Page. The Navigation Angle reference can be set from here (refer to the Flight Instruments Section).

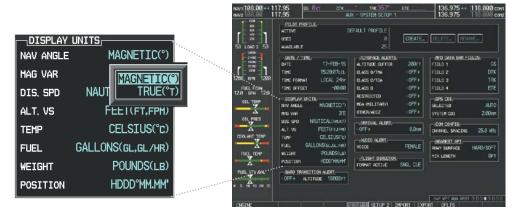


Figure 1-32 Display Unit Settings (AUX - System Setup Page)

Category	Settings	Affected Quantities	Exceptions
Navigation Angle	Magnetic (North)	Heading	
	True (North)	Course	
		Bearing	
		Track	
		Desired Track	
		Wind direction (Trip Planning Page)	
Distance and	Metric	Crosstrack error (HSI)	Airspeed Indicator
Speed	Nautical	Bearing distances (information windows)	True Airspeed (PFD)
		DME distance (information window)	Wind speed vector
		Flight plan distances	Map range (Traffic Page, Terrain
		Map ranges	Proximity/TAWS Page)
		DIS, GS, TAS, XTK fields (Navigation Status Box)	CDI scaling (System Setup)
		All distances on MFD	Fuel range calculation (EIS)
		Altitude buffer distance (System Setup)	
		Arrival Alert trigger distance (System Setup)	
		All speeds on MFD	
Altitude and	Feet	All altitudes on MFD	Altimeter
Vertical Speed	Meters	All elevations on MFD	Vertical Speed Indicator
			VNV altitudes (Active Flight Plan)
Temperature	Celsius	All temperatures on PFD	Engine Indication System (EIS)
	Fahrenheit	Total Air Temperature (Trip Planning Page)	

Category	Settings	Affected Quantities	Exceptions
Fuel and	Gallons	Fuel parameters (Trip Planning Page)	Engine Indication System (EIS)
Fuel Flow	Imp Gallons		
	Kilograms		
	Liters		
	Pounds		
Weight	Pounds	N/A	N/A
	Kilograms		
Position	HDDD°MM.MM'	All positions	N/A
	HDDD°MM'SS.S"		
	MGRS		
	UTM/UPS		

Table 1-1 Display Units Settings (AUX - System Setup Page)

GARMIN

PILOT PROFILES

System settings may be saved under a pilot profile. When the system is powered on, the last selected pilot profile is shown on the MFD Power-up Screen (Figure 1-5). The G1000 can store up to 25 profiles; the currently active profile, the amount of memory used, and the amount of memory available are shown at the top of the System Setup Page in the box labeled 'Pilot Profile'. From here, pilot profiles may be created, selected, renamed, or deleted.

Figure 1-33 Pilot Profile Settings (AUX - System Setup Page)

Creating a profile:

- Use the FMS Knob to select the AUX System Setup Page.
- 2) Press the **FMS** Knob momentarily to activate the flashing cursor.
- 3) Turn the large **FMS** Knob to highlight 'CREATE' in the Pilot Profile Box.
- **4)** Press the **ENT** Key. A 'Create Profile' window is displayed.
- 5) Use the **FMS** Knob to enter a profile name up to 16 characters long and press the **ENT** Key. Pilot profile names cannot begin with a blank as the first letter.
- 6) In the next field, use the small **FMS** Knob to select the desired settings upon which to base the new profile. Profiles can be created based on Garmin factory defaults, default profile settings (initially based on Garmin factory defaults unless edited by the pilot), or current system settings.
- 7) Press the ENT Key.

8) With 'CREATE' highlighted, press the ENT Key to create the profile

Or:

Use the large FMS Knob to select 'CREATE and ACTIVATE' and press the ENT Key to activate the new profile.

9) To cancel the process, select 'CANCEL' with the large FMS Knob and press the **ENT** Key.

Selecting an active profile:

- 1) Use the **FMS** Knob to select the AUX System Setup Page.
- **2)** Press the **FMS** Knob momentarily to activate the flashing cursor.
- 3) Turn the large **FMS** Knob to highlight the active profile field in the Pilot Profile Box.
- **4)** Turn the small **FMS** Knob to display the pilot profile list and highlight the desired profile.
- **5)** Press the **ENT** Key. The G1000 loads and displays the system settings for the selected profile.

Renaming a profile:

- 1) Use the **FMS** Knob to select the AUX System Setup Page.
- 2) Press the **FMS** Knob momentarily to activate the flashing cursor.
- 3) Turn the large FMS Knob to highlight 'RENAME' in the Pilot Profile Box.
- **4)** Press the **ENT** Key.
- **5)** In the 'Rename Profile' window, turn the **FMS** Knob to select the profile to rename.
- **6)** Press the **ENT** Key.
- 7) Use the **FMS** Knob to enter a new profile name up to 16 characters long and press the **ENT** Key.
- **8)** With 'RENAME' highlighted, press the **ENT** Key.
- **9)** To cancel the process, use the large **FMS** Knob to select 'CANCEL' and press the ENT Key.

Deleting a profile:

- 1) Use the FMS Knob to select the AUX System Setup Page.
- **2)** Press the **FMS** Knob momentarily to activate the flashing cursor.
- **3)** Turn the large **FMS** Knob to highlight 'DELETE' in the Pilot Profile Box.
- **4)** Press the **ENT** Key.
- 5) In the 'Delete Profile' window, turn the FMS Knob to select the profile to delete.
- **6)** Press the **ENT** Key.
- 7) With 'DELETE' highlighted, press the **ENT** Key.
- **8)** To cancel the process, use the large **FMS** Knob to select 'CANCEL' and press the **ENT** Key.

TIMERS

The G1000 timers available include:

- Stopwatch-like generic timers (available from the PFD Timer/References Window and on the MFD AUX Utility Page)
- Total-time-in-flight timer (MFD AUX Utility Page)
- Time since departure (MFD AUX Utility Page)

The generic timer can be set to count up or down from a specified time (HH:MM:SS). When the countdown on the timer reaches zero the digits begin to count up from zero. If the timer is reset before reaching zero on a countdown, the digits are reset to the initial value. If the timer is counting up when reset, the digits are zeroed.

Setting the generic timer (PFD):

- 1) Press the TMR/REF Softkey.
- 2) Turn the large **FMS** Knob to select the timer field (hh/mm/ss).
- 3) Use the **FMS** Knob to enter the desired time and press the **ENT** Key.
- **4)** With the UP/DN field highlighted, turn the small **FMS** Knob to select the timer counting direction.
- **5)** Press the **ENT** Key.
- 6) With 'START?' highlighted, press the ENT Key to start the timer. The field changes to 'STOP?'.
- 7) To stop the timer, press the **ENT** Key with 'STOP?' highlighted. The field changes to 'RESET?'.
- **8)** To reset the timer, press the **ENT** Key with 'RESET?' highlighted. The field changes back to 'START?' and the digits are reset.
- 9) To remove the window, press the **CLR** Key or the **TMR/REF** Softkey.

Figure 1-34 Generic Timer (Timer/References Window)

The flight timer can be set to count up from zero starting at system power-up or from the time that the aircraft lifts off; the timer can also be reset to zero at any time.

Setting the generic timer (MFD AUX - Utility Page):

- 1) Use the **FMS** Knob to select the AUX Utility Page.
- **2)** Press the **FMS** Knob momentarily to activate the flashing cursor.
- 3) Turn the small **FMS** Knob to select the timer counting direction (UP/DN) and press the **ENT** Key.
- **4)** If a specific starting time is desired:
- a) Use the large **FMS** Knob to highlight the HH:MM:SS field.
- b) Use the FMS Knob to enter the desired time and press the ENT Key.
- 5) Turn the large **FMS** Knob to highlight 'START?' and press the **ENT** Key to start the timer. The field changes to 'STOP?'.
- **6)** To stop the timer, press the **ENT** Key with 'STOP?' highlighted. The field changes to 'RESET?'.
- 7) To reset the timer, press the **ENT** Key with 'RESET?' highlighted. The field changes back to 'START?' and the digits are reset.



Figure 1-35 Timers (AUX - Utility Page)

Setting the flight timer starting criterion:

- 1) Use the **FMS** Knob to select the AUX Utility Page.
- 2) Press the **FMS** Knob momentarily to activate the flashing cursor.
- **3)** Turn the large **FMS** Knob to highlight the field next to the flight timer.
- **4)** Turn the small **FMS** Knob to select the starting criterion (PWR-ON or IN-AIR) and press the **ENT** Key.

Resetting the flight timer:

- 1) Use the **FMS** Knob to select the AUX Utility Page.
- **2)** Press the **MENU** Key.
- 3) With 'Reset Flight Timer' highlighted, press the **ENT** Key.

The G1000 records the time at which departure occurs, depending on whether the pilot prefers the time to be recorded from system power-up or from aircraft lift off. The displayed departure time can also be reset to display the current time at the point of reset. The format in which the time is displayed is controlled from the System Setup Page.

Setting the departure timer starting criterion:

- 1) Use the FMS Knob to select the AUX Utility Page.
- 2) Press the **FMS** Knob momentarily to activate the flashing cursor.
- 3) Turn the large **FMS** Knob to highlight the field next to the departure time.
- 4) Turn the small FMS Knob to select the starting criterion (PWR-ON or IN-AIR) and press the ENT Key.

Resetting the departure time:

- Use the FMS Knob to select the AUX Utility Page.
- 2) Press the **MENU** Key.
- 3) Use the **FMS** Knob to highlight 'Reset Departure Time' and press the **ENT** Key.

ELECTRONIC CHECKLISTS

NOTE: The checklists presented in this section are for example only and may not reflect checklists actually available for the Diamond DA62. The information described in this section is not intended to replace the checklist information described in the AFM or the Pilot Safety and Warning Supplements document.

NOTE: Garmin is not responsible for the content of checklists. Checklists are created by the aircraft manufacturer. Modifications or updates to the checklists are coordinated through the aircraft manufacturer. The user cannot edit these checklists.

The MFD is able to display optional electronic checklists which allow a pilot to quickly find the proper procedure on the ground and during each phase of flight. The G1000 accesses the checklists from an SD card inserted into the bezel slot (see Figure 1-3). If the SD card contains an invalid checklist file or no checklist, the Power-up Screen displays 'Invalid Checklist File' or 'Checklist File Not Present' and the **CHKLIST** Softkey is not available.

Figure 1-36 Checklist Page Example

Accessing and navigating checklists:

- 1) From any page, press the **CHKLIST** Softkey.
- Turn the large FMS Knob to select the 'GROUP' field.
- **3)** Turn the small **FMS** Knob to select the desired procedure and press the **ENT** Key.
- **4)** Turn the large **FMS** Knob to select the 'Checklist' field.
- 5) Turn the **FMS** Knob to select the desired checklist and press the **ENT** Key.
- 6) Turn the FMS Knob to scroll through the checklist and highlight the desired checklist item (has a hollow white box for checkmark).

The following colors are used for checklist items:

- Blue Items has not been highlighted
- Green Item has been selected
- White Item is highlighted for selection
- Yellow Warning notes
- 7) Press the **ENT** Key or **DONE** Softkey to select the highlighted checklist item (item turns green and a checkmark is placed in the box next to the item). The next item is automatically highlighted for selection.
 - Press the **CLR** Key to remove a check mark from an item.
- **8)** Once the last item in a checklist is selected, 'Go to the next checklist?' is highlighted. Press the **ENT** Key to advance to the next checklist displayed.
- **9)** Press the **EXIT** Softkey or hold down the **CLR** Key momentarily to exit the Checklist Page and return to the page last viewed.

Immediately accessing emergency procedures:

- 1) From any page, press the **CHKLIST** Softkey.
- Press the EMERGCY Softkey.



Figure 1-37 Sample Checklist

1.7 DISPLAY BACKLIGHTING

The backlighting of the PFD and MFD displays and bezel and Audio Panel keys can be adjusted automatically or manually. The default setting (automatic backlighting adjustment) uses photocell technology to automatically adjust for ambient lighting conditions. Photocell calibration curves are pre-configured to optimize display appearance through a broad range of cockpit lighting conditions. Manual backlighting adjustment can be accomplished using the existing instrument panel dimmer bus or the following procedures. In normal operating mode, backlighting can only be adjusted from the PFD. In Reversionary Mode, it can be adjusted from the remaining display.

Adjusting display backlighting:

- 1) Press the PFD MENU Key to display the PFD Setup Menu. 'AUTO' is now highlighted next to 'PFD DSPL'.
- 2) Turn the small **FMS** Knob to select 'MANUAL'.
- 3) Press the **ENT** Key. The intensity value is now highlighted.
- 4) Use the **FMS** Knob to enter the desired backlighting then press the **ENT** Key.
- **5)** Turn the large **FMS** Knob to highlight 'AUTO' next to 'MFD DSPL' and repeat steps 2-4.
- **6)** To remove the menu, press the **CLR** or **MENU** Key.

Adjusting key backlighting:

- 1) Press the PFD MENU Key to display the PFD Setup Menu. 'AUTO' is now highlighted next to 'PFD DSPL'.
- **2)** Turn the large **FMS** Knob to highlight 'PFD DSPL'.
- 3) Turn the small **FMS** Knob in the direction of the green arrowhead to display 'PFD KEY'.
- **4)** Turn the large **FMS** Knob to highlight 'AUTO'.
- 5) Turn the small **FMS** Knob to select 'MANUAL'.
- **6)** Press the **ENT** Key. The intensity value is now highlighted.
- **7)** Use the **FMS** Knob to enter the desired backlighting and press the **ENT** Key.
- **8)** Turn the large **FMS** Knob to highlight 'MFD DSPL'.
- 9) Turn the small **FMS** Knob in the direction of the green arrowhead to display 'MFD KEY' and repeat steps 4-7.
- **10)** To remove the menu, press the **CLR** or **MENU** Key.

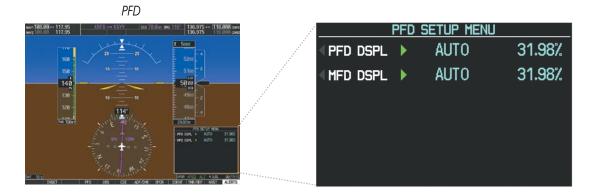
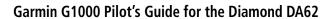



Figure 1-38 PFD Setup Menu

BLANK **P**AGE

SECTION 2 FLIGHT INSTRUMENTS

WARNING: If the airspeed, attitude, altitude, or heading indications become unusable, refer to the backup instruments.


Increased situational awareness is provided by replacing the traditional instruments on the panel with an easy-to-scan Primary Flight Display (PFD) that features a large horizon, airspeed, attitude, altitude, vertical speed, and course deviation information. In addition to the flight instruments, navigation, communication, terrain, traffic, and weather information are also presented on the PFD and explained in other sections of this Pilot's Guide.

The following flight instruments and supplemental flight data are displayed on the PFD:

- Airspeed Indicator, showing
 - Indicated airspeed
 - True airspeed
 - Airspeed awareness ranges
 - Vspeed reference bugs
- Attitude Indicator with slip/skid indication
- Altimeter, showing
 - Trend vector
 - Barometric setting
 - Selected altitude
- Radar Altimeter
- Vertical Deviation, Glideslope, and Glidepath Indicators
- Vertical Speed Indicator (VSI)
- Vertical Navigation (VNV) indications
- Outside air temperature (OAT)

- Horizontal Situation Indicator, showing
 - Turn Rate Indicator
 - Bearing pointers and information windows
 - Navigation source
 - Course Deviation Indicator (CDI)
 - Bearing pointers and information windows
 - DME Information Window
- Transponder Mode, Code, and Ident/Reply
- Course Deviation Indicator (CDI)
- References Window, showing
 - Generic timer
 - Vspeed bug values
 - Barometric minimum descent altitude/decision height (MDA/DH)
- Wind data

The PFD also displays various alerts and annunciations.

- 1) NAV Frequency Box
- 2 Airspeed Indicator
- (3) True Airspeed
- (4) Current Heading
- 5 Turn Rate Indicator
- 6 Horizontal Situation Indicator (HSI)
- 7 Outside Air Temperature (OAT)
- 8 Softkeys
- 9 System Time
- 10) Transponder Data Box
- 11) Heading Bug

- (12) Current Track Indicator
- 13) Barometric Altimeter Setting
- (14) Vertical Speed Indicator (VSI)
- (15) Reference Altitude Bug
- (16) Altimeter
- 17) Selected Altitude
- (18) COM Frequency Box
- (19) Navigation Status Box
- 20) Slip/Skid Indicator
- 21) Attitude Indicator

Figure 2-1 Primary Flight Display (Default)

- 1) Traffic Annunciation
- (2) Selected Heading
- (3) Wind Data
- (4) Inset Map
- (5) DME Information Window (optional)
- (6) Bearing Information Windows
- Barometric Minimum Descent Altitude / Decision Height

- 8 Flight Plan Window
- (9) Annunciation Window
- (10) Selected Course
- (11) Required Vertical Speed Indicator
- 12) Vertical Deviation Indicator
- (13) VNV Target Altitude
- (14) Radar Altimeter (optional)
 - 15) AFCS Status Annunciation

Figure 2-2 Additional PFD Information

GARMIN

2.1 FLIGHT INSTRUMENTS

AIRSPEED INDICATOR

NOTE: Refer to the Aircraft Flight Manual (AFM) for airspeed criteria and Vspeed values.

The Airspeed Indicator displays airspeed on a moving tape rolling number gauge. The true airspeed is displayed in knots below the Airspeed Indicator. The numeric labels and major tick marks on the moving tape are shown at intervals of 10 knots. The minor tick marks on the moving tape are marked at intervals of five knots. Speed indication starts at 20 knots, with 60 knots of airspeed viewable at any time. The indicated airspeed is displayed inside the black pointer. The pointer remains black until reaching never-exceed speed (V_{NF}) , at which point it appears red.

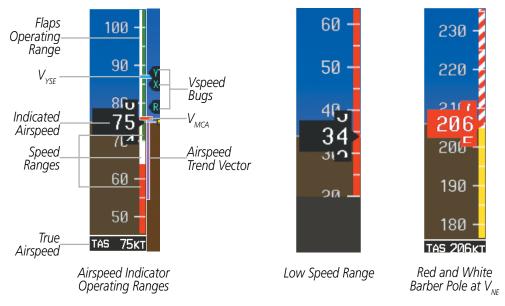


Figure 2-3 Example Airspeed Indicator Ranges

Color coded stripes appear on the Airspeed Indicator to show the operating ranges. The low speed range stripe is red. Normal operating range is green, caution range is yellow, and the never exceed speed (V_{NE}) begins with a red and white barber pole. The flap operating range is indicated by a white stripe.

A red horizontal bar on the airspeed tape represents V_{MCA} . A cyan horizontal bar represents V_{VSF}

The Airspeed Trend Vector is a vertical magenta line that appears to the right of the color-coded speed range strip when airspeed is either accelerating or decelerating. One end of the magenta line is anchored to the tip of the airspeed pointer while the other end moves continuously up or down corresponding to the rate of acceleration or deceleration. For any constant rate of acceleration or deceleration, the moving end of the line shows approximately what the indicated airspeed value will be in six seconds. The trend vector is absent if the speed remains constant or if any data needed to calculate airspeed is not available.

GARMIN

Vspeeds (Glide, V_R , V_X , V_Y , V_L , and V_{LO}) can be changed and their respective bugs turned on/off from the References Window. When active (on), the Vspeed bugs are displayed to the right of the airspeed scale. All Vspeed values are reset and all bugs turned off during power up.

NOTE: Refer to the Aircraft Flight Manual (AFM) for Vspeed values.

Changing Vspeeds and turning Vspeed bugs on/off:

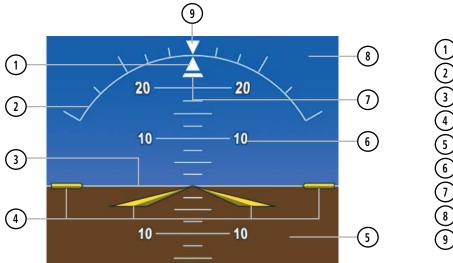
- 1) Press the TMR/REF Softkey.
- **2)** Turn the large **FMS** Knob to highlight the field of the desired Vspeed to be changed.
- 3) Use the **FMS** Knob to enter the desired value. When a speed has been changed from a default value, an asterisk appears next to the speed.
- **4)** Press the **ENT** Key or turn the large **FMS** Knob to highlight the ON/OFF field.
- **5)** Turn the small **FMS** Knob clockwise to ON or counterclockwise to OFF.
- **6)** To remove the window, press the **CLR** Key or the **TMR/REF** Softkey.

Figure 2-4 References Window and Menu

Turning all Vspeed bugs on/off:

- 1) Press the TMR/REF Softkey.
- 2) Press the MENU Key.
- **3)** To activate all Vspeed bugs, press the **ENT** Key with All References On highlighted.
- **4)** To remove all Vspeed bugs, turn the **FMS** Knob to highlight All References Off and press the **ENT** Key.

Restoring all Vspeed defaults:


- 1) Press the TMR/REF Softkey.
- 2) Press the MENU Key.
- **3)** Turn the **FMS** Knob to highlight Restore Defaults and press the **ENT** Key.

APPENDICES

ATTITUDE INDICATOR

Attitude information is displayed over a virtual blue sky and brown ground with a white horizon line. The Attitude Indicator displays the pitch, roll, and slip/skid information.

1) Roll Pointer

- Roll Scale
- (3) Horizon Line
- 4 Aircraft Symbol
- (5) Land Representation
- 6 Pitch Scale
- 7) Slip/Skid Indicator
- 8 Sky Representation
- 9 Roll Scale Zero

Figure 2-5 Attitude Indicator

The horizon line is part of the pitch scale. Above and below the horizon line, major pitch marks and numeric labels are shown for every 10° , up to 80° . Minor pitch marks are shown for intervening 5° increments, up to 25° below and 45° above the horizon line. Between 20° below to 20° above the horizon line, minor pitch marks occur every 2.5° . Refer to the Additional Features section for details regarding attitude indicator operation when the optional Garmin ESPTM or Synthetic Vision Technology System (SVT) is installed.

The inverted white triangle indicates zero on the roll scale. Major tick marks at 30° and 60° and minor tick marks at 10° , 20° , and 45° are shown to the left and right of the zero. Angle of bank is indicated by the position of the pointer on the roll scale.

The Slip/Skid Indicator is the bar beneath the roll pointer. The indicator bar moves with the roll pointer and moves laterally away from the pointer to indicate uncoordinated flight. Slip (inside the turn) or skid (outside the turn) is indicated by the location of the bar relative to the pointer.

Figure 2-6 Slip/Skid Indication

ALTIMETER

The Altimeter displays 600 feet of barometric altitude values at a time on a moving tape rolling number gauge. Numeric labels and major tick marks are shown at intervals of 100 feet. Minor tick marks are at intervals of 20 feet. The indicated altitude is displayed inside the black pointer.

The Selected Altitude is displayed above the Altimeter in the box indicated by a selection bug symbol. A bug corresponding to this altitude is shown on the tape. If the Selected Altitude exceeds the range shown on the tape, the bug appears at the upper or lower edge of the tape. When the metric value is selected it is displayed in a separate box above the Selected Altitude.

A magenta Altitude Trend Vector extends up or down the left of the altitude tape, the end resting at the approximate altitude to be reached in six seconds at the current vertical speed. The trend vector is not shown if altitude remains constant or if data needed for calculation is not available due to a system failure.

Setting the Selected Altitude:

Turn the **ALT** Knob to set the Selected Altitude (large knob for 1000-ft increments, small knob for 100-ft increments.

If set, the Minimum Descent Altitude/Decision Height (MDA/DH) value is also available for the Selected Altitude.

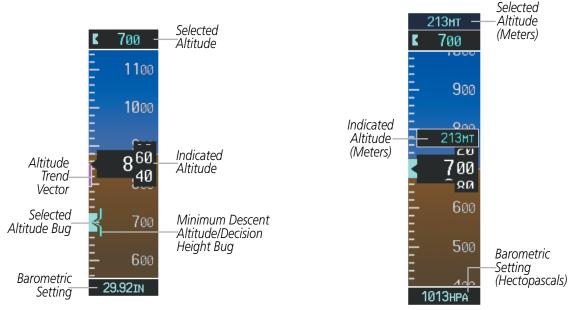


Figure 2-7 Altimeter

Figure 2-8 Altimeter (Metric Units)

Altitudes can also be displayed in meters (Figure 2-8). Note that the altitude tape does not change scale when the metric altitude overlay is enabled.

Displaying altitude in meters:

- 1) Press the **PFD** Softkey to display the second-level softkeys.
- **2)** Press the **ALT UNIT** Softkey.
- 3) Press the **METERS** Softkey to turn on metric altitude readouts.
- **4)** Press the **BACK** Softkey to return to the top-level softkeys.

The barometric pressure setting is displayed below the Altimeter in inches of mercury (in Hg) or hectopascals (hPa) when metric units are selected. Adjusting the altimeter barometric pressure setting creates discontinuities in VNV vertical navigation, moving the descent path. For large adjustments, it may take several minutes for the aircraft to re-establish on the descent patch. If the change is made while nearing a waypoint with a VNV Target Altitude, the aircraft may not re-establish on the descent path in time to meet the vertical constraint.

WARNING: Do not use a QFE altimeter setting with this system. System functions will not operate properly with a QFE altimeter setting. Use only a QNH altimeter setting for height above mean sea level, or the standard pressure setting, as applicable.

Selecting the altimeter barometric pressure setting:

Turn the **BARO** Knob to select the desired setting.

Selecting standard barometric pressure (29.92 in Hg):

- Press the PFD Softkey to display the second-level softkeys...
- 2) Press the **STD BARO** Softkey; STD BARO is displayed in barometric setting box.

Figure 2-9 Standard Barometric Altimeter Setting

Changing altimeter barometric pressure setting units:

- 1) Press the **PFD** Softkey to display the second-level softkeys.
- **2)** Press the **ALT UNIT** Softkey.
- **3)** Press the **IN** Softkey to display the barometric pressure setting in inches of mercury (in Hg). Or, press the **HPA** Softkey to display the barometric pressure setting in hectopascals (hPa).
- 4) Press the **BACK** Softkey to return to the top-level softkeys.

A Baro Transition Alert is provided to notify the pilot to change the barometric pressure setting when crossing the baro transition altitude. If the aircraft is at least 500 feet below the transition altitude and then climbs through this altitude and the **STD BARO** Softkey has not been pressed, the barometric pressure setting flashes in cyan until the pressure setting is changed. If the aircraft is at least 500 feet above the transition altitude and then descends through this altitude and the barometric pressure setting has not been changed from STD BARO, the setting flashes in cyan until it is changed (Figure 2-10).

Setting the Baro Transition Alert:

- 1) Use the **FMS** Knob to select the AUX System Setup Page on the MFD.
- 2) Press the **FMS** Knob to activate the cursor.
- **3)** Turn the large **FMS** Knob to highlight Altitude in the Baro Transition Alert box.
- **4)** Turn the small **FMS** Knob to turn the alert OFF or ON and press the **ENT** Key.
- **5)** Turn the small **FMS** Knob to change the altitude and press the **ENT** Key.
- **6)** To cancel the selection, press the **FMS** Knob.

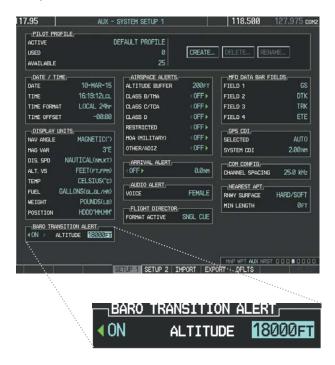


Figure 2-10 Aux System Setup Page, Baro Transition Alert

VERTICAL SPEED INDICATOR (VSI)

The Vertical Speed Indicator (VSI) displays the aircraft vertical speed on a fixed scale with labels at 2000 and 4000 fpm and minor tick marks every 1000 fpm. Digits appear in the pointer when the climb or descent rate is greater than 100 fpm. If the rate of ascent/descent exceeds 4000 fpm, the pointer appears at the edge of the tape and the rate appears inside the pointer.

VERTICAL DEVIATION

NOTE: The Glidepath Indicator is only available on GPS approaches supporting SBAS vertical guidance when SBAS is available.

The Vertical Deviation Indicator (VDI) is a magenta chevron indicating the baro-VNV vertical deviation when Vertical Navigation (VNV) is being used. The VDI appears in conjunction with the "TOD within 1 minute" alert. The VDI is removed from the display if vertical deviation becomes invalid. See the Flight Management Section for details on VNV features, and refer to Section 2.2, Supplemental Flight Data, for more information about VNV indications on the PFD.

The Glideslope Indicator appears to the left of the Altimeter whenever an ILS frequency is tuned in the active NAV field. A green diamond acts as the Glideslope Indicator, like a glideslope needle on a conventional indicator. If a localizer frequency is tuned and there is no glideslope, "NO GS" is displayed in place of the diamond.

The glidepath is analogous to the glideslope for GPS approaches supporting SBAS vertical guidance (LNAV+V, L/VNAV, LP+V). When an approach of this type is loaded into the flight plan and GPS is the selected navigation source, the Glidepath Indicator appears as a magenta diamond. If the approach type downgrades past the final approach fix (FAF), "NO GP" is displayed in place of the diamond.

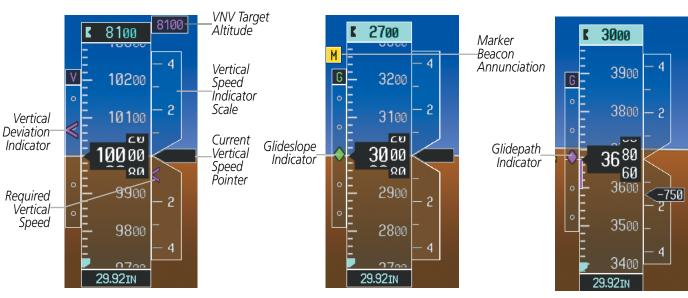
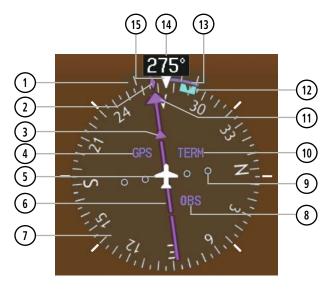


Figure 2-11 Vertical Speed and Deviation Indicator (VSI and VDI)

Figure 2-12 Glideslope Indicator

Figure 2-13 Glidepath Indicator


HORIZONTAL SITUATION INDICATOR (HSI)

The Horizontal Situation Indicator (HSI) displays a rotating compass card in a heading-up orientation. Letters indicate the cardinal points with numeric labels every 30°. Major tick marks are at 10° intervals and minor tick marks are at 5° intervals. A digital reading of the current heading appears on top of the HSI, and the current track is represented on the HSI by a magenta diamond. The HSI also presents turn rate, course deviation, bearing, and navigation source information. The HSI is available in two formats, a 360° compass rose and a 140° arc.

Changing the HSI display format:

- 1) Press the **PFD** Softkey
- **2)** Press the **HSI FRMT** Softkey.
- 3) Press the **360 HSI** or **ARC HSI** Softkey.

The 360° HSI contains a Course Deviation Indicator (CDI), with a Course Pointer, To/From Indicator, and a sliding deviation bar and scale. The course pointer is a single line arrow (GPS, VOR1, and LOC1) or a double line arrow (VOR2 and LOC2) which points in the direction of the set course. The To/From arrow rotates with the course pointer and is displayed when the active NAVAID is received.

- 1) Turn Rate Indicator
 - rator (9) Lateral Deviation Scale
- Current Track Indicator
- (10) Flight Phase
- 3 To/From Indicator
- (11) Course Pointer
- (4) Navigation Source
- 12) Heading Bug
- (5) Aircraft Symbol
- 13) Turn Rate and Heading
- 6 Course Deviation Indicator
- Trend Vector

 14) Current Heading
- (CDI)

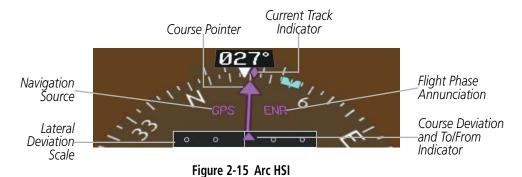

 Retating Compass Cord
- Current Headil
- 7 Rotating Compass Card
- 15) Lubber Line
- (8) OBS Mode Active

Figure 2-14 Horizontal Situation Indicator (360° HSI)

APPENDICES

The Arc HSI is a 140° expanded section of the compass rose. The Arc HSI contains a Course Pointer, combined To/From Indicator and a sliding deviation indicator, and a deviation scale. Upon station passage, the To/From Indicator flips and points to the tail of the aircraft, just like a conventional To/From indicator. Depending on the navigation source, the CDI on the Arc HSI can appear in two different ways, an arrowhead (GPS, VOR, OBS) or a diamond (LOC).

The selected heading is shown to the upper left of the HSI for 3 seconds after being adjusted. The cyan heading bug on the compass rose corresponds to the selected heading. While the HSI is displayed as an arc, if the heading bug is adjusted off the shown portion of the compass rose, the digital reading is displayed.

Adjusting the selected heading:

Turn the **HDG** Knob to set the selected heading.

Press the **HDG** Knob to synchronize the bug to the current heading.

The Selected Course is shown to the upper right of the HSI for 3 seconds after being adjusted. While the HSI is displayed as an arc, the Selected Course is displayed whenever the Course Pointer is not within the 140° currently shown.

Adjusting the Selected Course:

Turn the **CRS** Knob to set the Selected Course.

Press the **CRS** Knob to re-center the CDI and return the course pointer to the bearing of the active waypoint or navigation station.

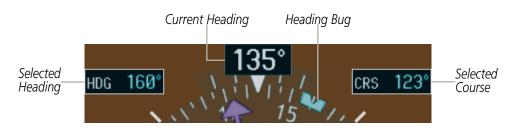


Figure 2-16 Heading and Course Indications (Magnetic)

Navigation angles (track, heading, course, bearing) are corrected to the computed magnetic variation (Mag Var) or referenced to true north (T), set on the AUX - System Setup Page. When an approach referenced to true north has been loaded into the flight plan, the system generates a message to change the navigation angle setting to True at the appropriate time.

Figure 2-17 Heading and Course Indications (True)

Changing the navigation angle true/magnetic setting:

- 1) Use the **FMS** Knob to select the AUX System Setup Page on the MFD.
- 2) Press the **FMS** Knob to activate the cursor.
- 3) Turn the large **FMS** Knob to highlight Nav Angle in the Display Units box.
- **4)** Turn the small **FMS** Knob to highlight the desired setting and press the **ENT** Key.
 - TRUE References angles to true north (T)
 - MAGNETIC Angles corrected to the computed magnetic variation (Mag Var)

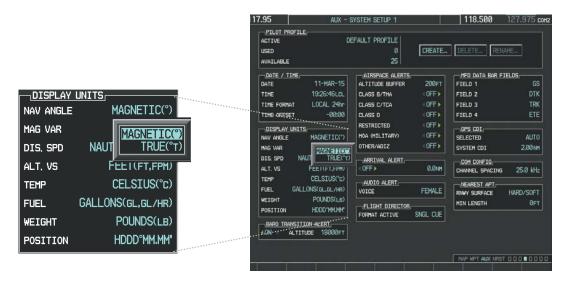


Figure 2-18 Navigation Angle Settings (AUX - System Setup Page)

TURN RATE INDICATOR

The Turn Rate Indicator is located directly above the rotating compass card. Tick marks to the left and right of the lubber line denote half-standard and standard turn rates. A magenta Turn Rate Trend Vector shows the current turn rate. The end of the trend vector gives the heading predicted in 6 seconds, based on the present turn rate. A standard-rate turn is shown on the indicator by the trend vector stopping at the standard turn rate tick mark, corresponding to a predicted heading of 18° from the current heading. At rates greater than 4 deg/sec, an arrowhead appears at the end of the magenta trend vector and the prediction is no longer valid.

Figure 2-19 Turn Rate Indicator and Trend Vector

BEARING POINTERS AND INFORMATION WINDOWS

Two bearing pointers and associated information can be displayed on the HSI for NAV, GPS, and ADF sources by pressing the **PFD** Softkey then a **BRG** or **DME** Softkey. The bearing pointers are cyan and are single-line (BRG1) or double-line (BRG2). A pointer symbol is shown in the information windows to indicate the navigation source. The bearing pointers never override the CDI and are visually separated from the CDI by a white ring. Bearing pointers may be selected but not necessarily visible due to data unavailability.

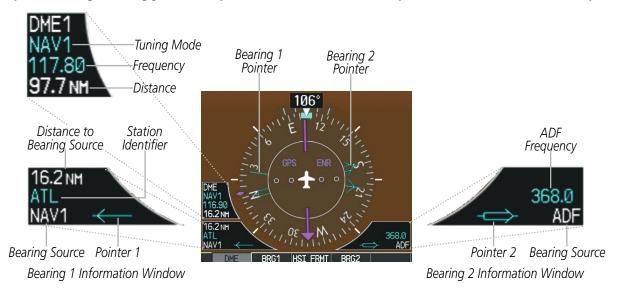


Figure 2-20 HSI with Bearing and Distance Information

When a bearing pointer is displayed, the associated information window is also displayed. The Bearing Information Windows are displayed at the lower sides of the HSI and give the following information:

- Bearing source (NAV, GPS, ADF)
- Pointer icon (BRG1 = single line, BRG2 = double line)
- Station/waypoint identifier (NAV, GPS)
- GPS-derived great circle distance to bearing source

• Frequency (ADF)

When the NAV radio is tuned to an ILS frequency the bearing source and the bearing pointer is removed from the HSI. When NAV1 or NAV2 is the selected bearing source, the frequency is replaced by the station identifier when the station is within range. If GPS is the bearing source, the active waypoint identifier is displayed instead of a frequency.

The bearing pointer is removed from the HSI and NO DATA is displayed in the information window if the NAV radio is not receiving a VOR station or if GPS is the bearing source and an active waypoint is not selected.

Selecting bearing display and changing sources:

- 1) Press the **PFD** Softkey.
- Press either the BRG1 Softkey or BRG2 Softkey to display the desired bearing pointer and information window with a NAV source.
- 3) Press the **BRG1** Softkey or **BRG2** Softkey again to change the bearing source to GPS.
- 4) Press the **BRG1** Softkey or **BRG2** Softkey again to change the bearing source to ADF.
- **5)** To remove the bearing pointer and information window, press the **BRG** Softkey again.

DME INFORMATION WINDOW

The DME Information Window is displayed above the BRG1 Information Window on the 360° HSI and in a box above and along side the Arc HSI. It shows the DME label, tuning mode (NAV1, NAV2, or HOLD), frequency, and distance. When a signal is invalid, the distance is replaced by -.- - NM Refer to the Audio Panel and CNS Section for information on tuning the DMEs.

Displaying the DME Information Window:

- 1) Press the PFD Softkey.
- 2) Press the **DME** Softkey to display the DME Information Window.
- **3)** To remove the DME Information Window, press the **DME** Softkey again.

COURSE DEVIATION INDICATOR (CDI)

NOTE: During a heading change of greater than 105° with respect to the course, the CDI on the Arc HSI switches to the opposite side of the deviation scale and displays reverse sensing.

The Course Deviation Indicator (CDI) moves left or right from the course pointer along a lateral deviation scale to display aircraft position relative to the course. If the course deviation data is not valid, the CDI is not displayed.

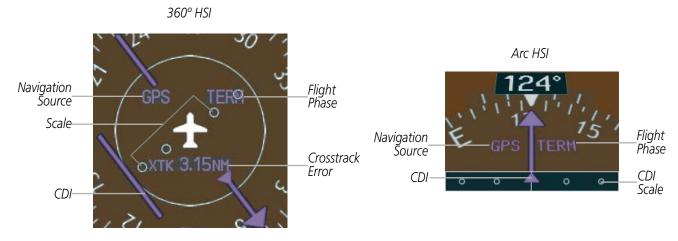
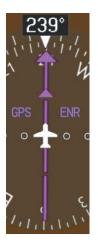



Figure 2-21 Course Deviation Indicator

The CDI can display two sources of navigation, GPS or VOR/LOC. The color indicates the current navigation source, magenta for GPS and green for VOR and LOC. The full scale limits for the CDI are defined by a GPS-derived distance when navigating GPS. When navigating using a VOR or localizer (LOC), the CDI uses the same angular deviation as a mechanical CDI. If the CDI exceeds the maximum deviation on the scale (two dots) while navigating with GPS, the crosstrack error (XTK) is displayed below the white aircraft symbol.

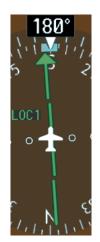


Figure 2-22 Navigation Sources

Changing navigation sources:

- 1) Press the **CDI** Softkey to change from GPS to VOR1 or LOC1. This places the cyan tuning box over the NAV1 standby frequency in the upper left corner of the PFD.
- 2) Press the **CDI** Softkey again to change from VOR1 or LOC1 to VOR2 or LOC2. This places the cyan tuning box over the NAV2 standby frequency.
- **3)** Press the **CDI** Softkey a third time to return to GPS.

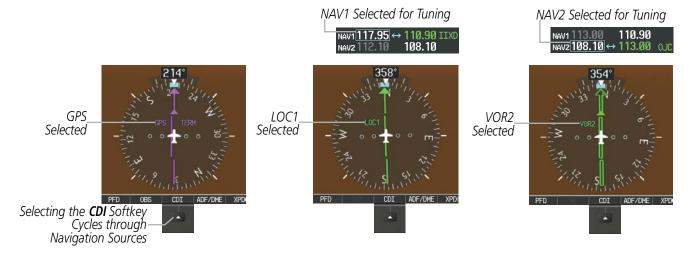


Figure 2-23 Selecting a Navigation Source

The system automatically switches from GPS to LOC navigation source and changes the CDI scaling accordingly when all of the following occur:

- A localizer or ILS approach has been loaded into the active flight plan.
- The final approach fix (FAF) is the active leg, the FAF is less than 15 nm away, and the aircraft is moving toward the FAF.
- A valid localizer frequency has been tuned.
- The GPS CDI deviation is less than 1.2 times full-scale deflection.

GPS steering guidance is still provided after the CDI automatically switches to LOC until LOC capture, up to the Final Approach Fix (FAF) for an ILS approach, or until GPS information becomes invalid. Activating a Vector-to-Final (VTF) also causes the CDI to switch to LOC navigation source. GPS steering guidance is not provided after this switch.

On some ILS approaches where the glideslope intercept point is at or in close proximity to the fix prior to the FAF (see Figure 2-24), it is possible to be above the glideslope when the navigation source automatically switches from GPS to LOC. The probability of this occurring varies based on air temperature.

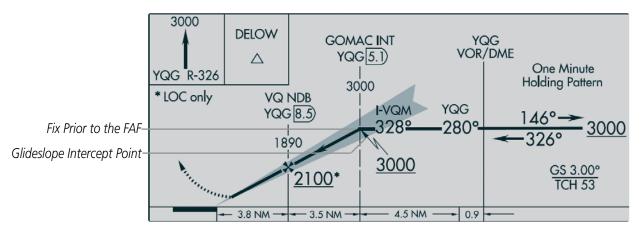


Figure 2-24 ILS Approach with Glideslope Intercept Point at Fix Prior to the FAF

GPS CDI SCALING

When GPS is the selected navigation source, the flight plan legs are sequenced automatically and annunciations appear on the HSI for the flight phase. Flight phase annunciations are normally shown in magenta, but when cautionary conditions exist the color changes to yellow. If the current leg in the flight plan is a heading leg, HDG LEG is annunciated in magenta beneath the aircraft symbol.

The current GPS CDI scale setting is displayed as System CDI on the AUX - System Setup Page and the full-scale deflection setting may also be changed (2.0 nm, 1.0 nm, 0.3 nm, or Auto) from this page. If the selected scaling is smaller than the automatic setting for enroute and terminal phases, the CDI is scaled accordingly and the selected setting is displayed rather than the flight phase annunciation.

Changing the selected GPS CDI setting:

- 1) Use the **FMS** Knob to select the AUX System Setup Page on the MFD.
- 2) Press the **FMS** Knob to activate the cursor.
- 3) Turn the large **FMS** Knob to highlight Selected in the GPS CDI box.
- **4)** Turn the small **FMS** Knob to highlight the desired setting and press the **ENT** Key.
- **5)** To cancel the selection, press the **FMS** Knob or the **CLR** Key.

Figure 2-25 GPS CDI Settings (AUX-System Setup Page)

When set to Auto (default), the GPS CDI scale automatically adjusts to the desired limits based upon the current phase of flight (Figure 2-26, Table 2-1).

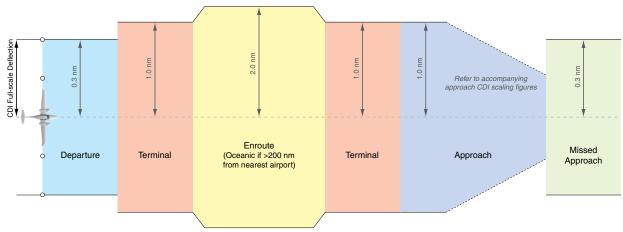
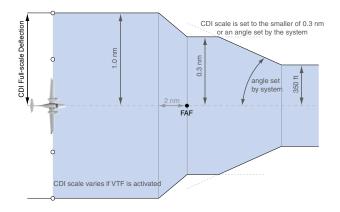



Figure 2-26 Automatic CDI Scaling

- Once a departure procedure is activated, the CDI is scaled for *departure* (0.3 nm).
- The system switches from departure to *terminal* CDI scaling (1.0 nm) under the following conditions:
 - The next leg in the departure procedure is not aligned with the departure runway
 - The next leg in the departure procedure is not a CA, CD, CF, CI, CR, DF, FA, FC, FD, FM, IF, or TF (see Glossary for leg type definitions)
 - After any leg in the departure procedure that is not a CA or FA
- At 30 nm from the departure airport, the *enroute* phase of flight is automatically entered and CDI scaling changes to 2.0 nm over a distance of 1.0 nm, except under the following conditions:

- When navigating with an active departure procedure, the flight phase and CDI scale does not change until the aircraft arrives at the last departure waypoint (if more than 30 nm from the departure airport) or the leg after the last departure waypoint has been activated or a direct-to waypoint is activated.
- If after completing the departure procedure the nearest airport is more than 200 nm away from the aircraft and the approach procedure has not yet commenced, the CDI is scaled for *oceanic* flight (2.0 nm).
- Within 31 nm of the destination airport (*terminal* area), the CDI scale gradually ramps down from 2.0 nm to 1.0 nm over a distance of 1.0 nm; except under the following conditions:
 - Upon reaching the first waypoint of an arrival route that is more than 31 nm from the destination airport, the flight phase changes to terminal and the CDI scale begins to transition down from 2.0 nm to 1.0 nm over a distance of 1.0 nm.
- During *approach*, the CDI scale ramps down even further (Figures 2-27 and 2-28). This transition normally occurs within 2.0 nm of the final approach fix (FAF). The CDI switches to approach scaling automatically once the approach procedure is activated or if Vectors-To-Final (VTF) are selected.
 - If the active waypoint is the FAF, the ground track and the bearing to the FAF must be within 45° of the final approach segment course.
 - If the active waypoint is part of the missed approach procedure, the active leg and the preceding missed approach legs must be aligned with the final approach segment course and the aircraft must not have passed the turn initiation point.

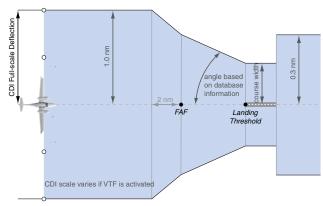


Figure 2-27 Typical LNAV and LNAV+V Approach Service Level CDI Scaling

Figure 2-28 Typical LNAV/VNAV, LP, LP+V and LPV Approach Service Level CDI Scaling

- When a **missed approach** is activated, the CDI scale changes to 0.3 nm.
- The system automatically switches back to *terminal* mode under the following conditions:
 - The next leg in the missed approach procedure is not aligned with the final approach path
 - The next leg in the missed approach procedure is not a CA, CD, CF, CI, CR, DF, FA, FC, FD, FM, IF, or TF
 - After any leg in the missed approach procedure that is not a CA or FA

Flight Phase	Annunciation*	Automatic CDI Full-scale Deflection	
Departure	DPRT	0.3 nm	
Terminal	TERM	1.0 nm	
Enroute	ENR	2.0 nm	
Oceanic	OCN	4.0 nm	
Approach (Non-precision)	LNAV	1.0 nm decreasing to 350 feet depending on variables (see Figure 2-27)	
Approach (Non-precision with Vertical Guidance)	LNAV + V		
Approach (LNAV/VNAV)	L/VNAV		
Approach (LP)	LP	1.0 nm decreasing to a specified course width, then	
Approach (LP+V)	LP+V	0.3 nm, depending on variables (see Figure 2-2	
Approach (LPV)	LPV		
Missed Approach	MAPR	0.3 nm	

^{*} Flight phase annunciations are normally shown in magenta, but when cautionary conditions exist the color changes to yellow.

Table 2-1 Automatic GPS CDI Scaling

OBS MODE

GARMIN

NOTE: VNV is inhibited while automatic waypoint sequencing has been suspended.

Enabling Omni-bearing Selector (OBS) Mode suspends the automatic sequencing of waypoints in a GPS flight plan (GPS must be the selected navigation source), but retains the current Active-to waypoint as the navigation reference even after passing the waypoint. OBS is annunciated to the lower right of the aircraft symbol when OBS Mode is selected.

While OBS is enabled, a course line is drawn through the Active-to waypoint on the moving map. If desired, the course to/from the waypoint can now be adjusted. When OBS Mode is disabled, the GPS flight plan returns to normal operation, with automatic sequencing of waypoints, following the course set in OBS Mode. The flight plan on the moving map retains the modified course line.

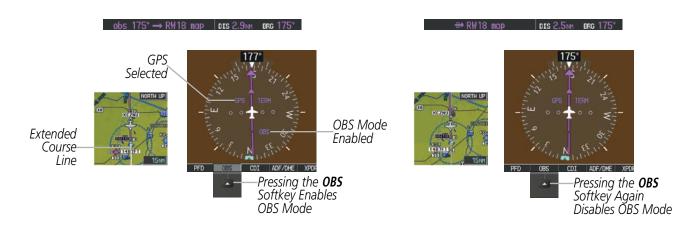


Figure 2-29 Omni-bearing Selector (OBS) Mode

Enabling/disabling OBS Mode while navigating a GPS flight plan:

- 1) Press the **OBS** Softkey to select OBS Mode.
- 2) Turn the **CRS** Knob to select the desired course to/from the waypoint. Press the **CRS** Knob to synchronize the Selected Course with the bearing to the next waypoint.
- **3)** Press the **OBS** Softkey again to return to automatic waypoint sequencing.

As the aircraft crosses the missed approach point (MAP), automatic approach waypoint sequencing is suspended. SUSP appears on the HSI at the lower right of the aircraft symbol. The **OBS** Softkey label changes to indicate the suspension is active as shown in Figure 2-30. Pressing the **SUSP** Softkey deactivates the suspension and resumes automatic sequencing of approach waypoints.

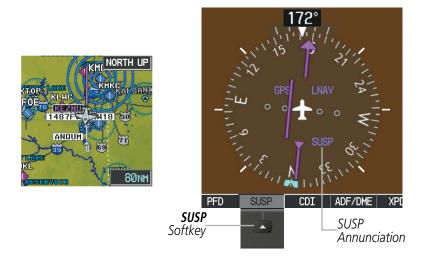


Figure 2-30 Suspending Automatic Waypoint Sequencing

EIS

2.2 SUPPLEMENTAL FLIGHT DATA

NOTE: Pressing the **DFLTS** Softkey turns off metric Altimeter display, the Inset Map and wind data display.

In addition to the flight instruments, the PFD also displays various supplemental information, including temperatures, wind data, and Vertical Navigation (VNV) indications.

OUTSIDE AIR TEMPERATURE

The Outside Air Temperature (OAT) is displayed in degrees Celsius (°C) or Fahrenheit (°F) as selected by the pilot, in the lower left of the PFD under normal display conditions. Temperature is displayed below the true airspeed in reversionary mode.

Normal Display New 108.00 ↔ 117.95 New 1108.00 ↔

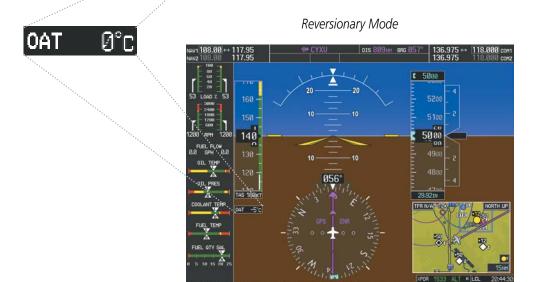


Figure 2-31 Outside Air Temperature

ADDITIONAL FEATURES

Changing temperature display units:

- 1) Select the AUX System Setup Page on the MFD using the **FMS** Knob.
- 2) Press the **FMS** Knob to activate the cursor.
- 3) Turn the large **FMS** Knob to highlight the TEMP field in the Display Units box.
- 4) Turn the small **FMS** Knob to highlight either CELSIUS or FAHRENHEIT and press the **ENT** Key to confirm the selection.
- **5)** To cancel the selection, press the **FMS** Knob or the **CLR** Key.

Figure 2-32 Temperature Selection (AUX-System Setup Page)

WIND DATA

Wind direction and speed in knots can be displayed relative to the aircraft in a window to the upper left of the HSI. When the window is selected for display, but wind information is invalid or unavailable, the window displays NO WIND DATA. Wind data can be displayed in three different ways.

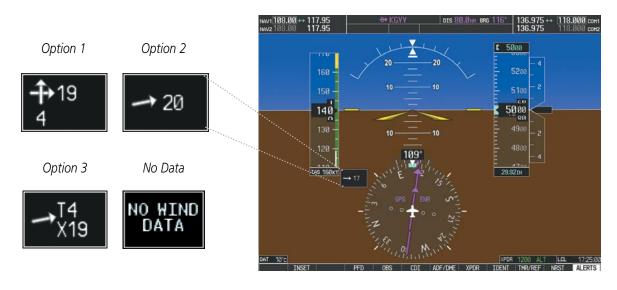


Figure 2-33 Wind Data

Displaying wind data:

- 1) Press the **PFD** Softkey.
- 2) Press the **WIND** Softkey to display wind data below the selected heading.
- 3) Press one of the **OPTN** softkeys to change how wind data is displayed:
 - OPTN 1: Wind direction arrows with numeric headwind or tailwind and crosswind components
 - OPTN 2: Wind direction arrow and numeric speed
 - OPTN 3: Total wind direction arrow with numeric headwind or tailwind and crosswind speed components
- **4)** To remove the window, press the **OFF** Softkey.

APPENDICES

VERTICAL NAVIGATION (VNV) INDICATIONS

When a VNV flight plan has been activated, VNV indications (VNV Target Altitude, RVSI, VDI) appear on the PFD in conjunction with the "TOD within 1 minute" message and "Vertical track" voice alert. See the Flight Management and AFCS sections for details on VNV features. VNV indications are removed from the PFD according to the criteria listed in the table.

Figure 2-34 Vertical Navigation Indications (PFD)

	VNV Indication Removed		
Criteria	Required Vertical Speed (RVSI)	Vertical Deviation (VDI)	VNV Target Altitude*
Aircraft > 1 min before the next TOD due to flight plan change	X	Χ	Χ
VNV cancelled (CNCL VNV Softkey pressed on MFD)	X	Χ	Χ
Distance to active waypoint cannot be computed due to unsupported flight plan leg type (see Flight Management Section)	X	X	Х
Aircraft > 250 feet below active VNV Target Altitude	X	Χ	Χ
Current crosstrack or track angle error has exceeded limit	X	Χ	Χ
Active altitude-constrained waypoint can not be reached within maximum allowed flight path angle and vertical speed	X	X	

Table 2-2 VNV Indication Removal Criteria

2.3 PFD ANNUNCIATIONS AND ALERTING FUNCTIONS

The following annunciations and alerting functions are displayed on the PFD. Refer to Appendix A for more information on alerts and annunciations.

SYSTEM ALERTING

Messages appear in the Alerts Window in the lower right corner of the PFD when a warning, caution, advisory alert, or G1000 message advisory occurs. System alert messages are provided for awareness of G1000 system problems or status and may or may not require pilot action. The Alerts Window allows system alerts to be displayed simultaneously. The **FMS** Knob is used to scroll through the alert messages. The Alerts Window is enabled/disabled by pressing the **ALERTS** Softkey. If the window is already open when a new message is generated, pressing the **ALERTS** Softkey to acknowledge the message turns the softkey gray.

The **ALERTS** Softkey label changes to display the appropriate annunciation when an alert is issued. The annunciation flashes and the appropriate aural alert sounds until acknowledged by pressing the softkey. The softkey then reverts to the **ALERTS** label, and when pressed again opens the Alerts Window to display a descriptive message of the alert.

The Annunciation Window appears to the right of the Vertical Speed Indicator and displays abbreviated annunciation text for aircraft alerts. Warnings appear in red, cautions in yellow, advisory alerts in white, and safe operating annunciations in green. New alerts are displayed at the top of the Annunciation Window, regardless of priority. Once acknowledged, they are sequenced based on priority.

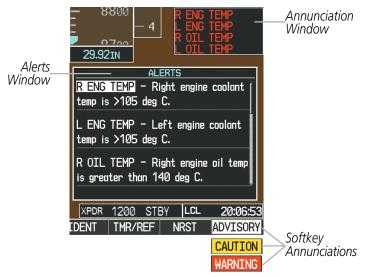


Figure 2-35 G1000 Alerting System

MARKER BEACON ANNUNCIATIONS

Marker Beacon Annunciations are displayed on the PFD to the left of the Selected Altitude. Outer marker reception is indicated in blue, middle in yellow, and inner in white. Refer to the Audio Panel and CNS Section for more information on Marker Beacon Annunciations.

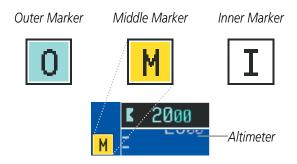


Figure 2-36 Marker Beacon Annunciations

TRAFFIC ANNUNCIATION

Traffic is displayed symbolically on the PFD Inset Map, the MFD Navigation Map Page, and various other MFD page maps. Refer to the Hazard Avoidance Section and Appendix for more details about the Traffic Information Service (TIS) and optional Traffic Advisory Systems (TAS). When a traffic advisory (TA) is detected, the following automatically occur:

- The PFD Inset Map is enabled and displays traffic.
- A flashing black-on-yellow TRAFFIC annunciation appears to the top left of the Attitude Indicator for five seconds and remains displayed until no TAs are detected in the area.
- A single "TRAFFIC" aural alert is heard, unless an optional Traffic Advisory System (TAS) is installed. Refer to the applicable TAS documentation for alerts generated by TAS equipment.

If additional TAs appear, new aural and visual alerts are generated.

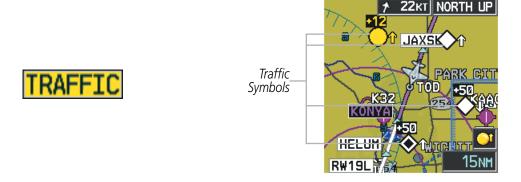


Figure 2-37 Traffic Annunciation and Inset Map with TAS Traffic Displayed

ALTITUDE ALERTING

Altitude Alerting provides the pilot with a visual alert when approaching the Selected Altitude. Whenever the Selected Altitude is changed, the Altitude Alerter is reset. The Altitude Alerter is independent of the Garmin AFCS, but alerting tones and visual indications are only provided when the Garmin AFCS is installed. The following occur when approaching the Selected Altitude:

- Upon passing through 1000 feet of the Selected Altitude an aural tone is heard. The Selected Altitude changes to black text on a cyan background and flashes for five seconds.
- When the aircraft passes within 200 feet of the Selected Altitude, the Selected Altitude changes to cyan text on a black background and flashes for five seconds.
- After reaching the Selected Altitude, if the pilot flies outside the deviation band (±200 feet of the Selected Altitude) an aural tone is heard. The Selected Altitude changes to yellow text on a black background and flashes for five seconds.

Figure 2-38 Altitude Alerting Visual Annunciations

LOW ALTITUDE ANNUNCIATION

NOTE: A Low Altitude Annunciation is available only when SBAS is available. If either the optional Terrain-SVS or TAWS-B systems are installed, this annunciation is not applicable unless the installed terrain system is inhibited, has failed, or is unavailable.

When the Final Approach Fix (FAF) is the active waypoint in a GPS SBAS approach using vertical guidance, a Low Altitude Annunciation may appear if the current aircraft altitude is at least 164 feet below the prescribed altitude at the FAF. A black-on-yellow LOW ALT annunciation appears to the top left of the Altimeter, flashing for several seconds, then remaining displayed until the condition is resolved.

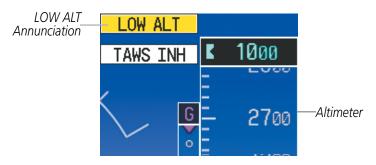


Figure 2-39 Low Altitude on GPS SBAS Approach

MINIMUM DESCENT ALTITUDE/DECISION HEIGHT ALERTING

For altitude awareness, a barometric Minimum Descent Altitude (MDA) or Decision Height (DH) can be set in the Timer/References Window and is reset when the power is cycled. When active, the altitude setting is displayed to the bottom left of the Altimeter. Once the altitude is within the range of the tape, a bug appears at the reference altitude on the Altimeter. The following visual annunciations occur when approaching the MDA/DH:

- When the aircraft altitude descends to within 2500 feet of the MDA/DH setting, the BARO MIN box appears with the altitude in cyan text. The bug appears on the altitude tape in cyan once in range.
- When the aircraft passes through 100 feet of the MDA/DH, the bug and text turn white.
- Once the aircraft reaches MDA/DH, the bug and text turn yellow and the aural alert, "Minimums. Minimums", is heard.

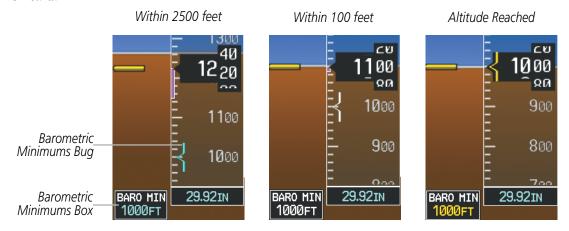


Figure 2-40 Barometric MDA/DH Alerting Visual Annunciations

Setting the barometric Minimum Descent Altitude/Decision Height and bug:

- 1) Press the TMR/REF Softkey.
- 2) Turn the large FMS Knob to highlight the Minimums field.
- **3)** Turn the small **FMS** Knob to select BARO. Off is selected by default. Press the **ENT** Key or turn the large **FMS** Knob to highlight the next field.
- 4) Use the small **FMS** Knob to enter the desired altitude from zero to 16,000 feet.
- 5) To remove the window, press the CLR Key or the TMR/REF Softkey.

Figure 2-41 Barometric MDA/DH

Alerting is inhibited while the aircraft is on the ground and until the aircraft reaches 150 feet above the MDA. If the aircraft proceeds to climb after having reached the MDA, once it reaches 50 feet above the MDA, alerting is disabled.

RADAR ALTIMETER

If an optional radar altimeter is installed, when the radar height (the aircraft altitude above ground level detected by the radar altimeter) is between zero and 2500 feet, the current value is displayed in green to the right of the current aircraft heading (Figure 2-42). Display of radar height becomes more sensitive as the height above ground decreases (Table 2-3).

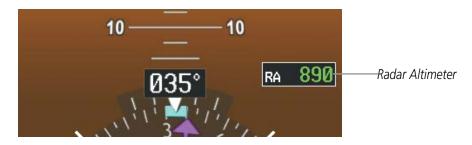


Figure 2-42 Current Radar Height

Radar Height Range	Shown to Nearest
0 to 200 feet	5 feet
200 to 1500 feet	10 feet
1500 to 2500 feet	50 feet

Table 2-3 Radar Altimeter Sensitivity

When the radar altimeter is selected as the altitude source for the minimum descent altitude alerting function (Figure 2-43), the color of the radar height changes to yellow upon reaching at or below the MDA/DH (Figure 2-44).

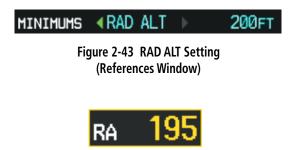


Figure 2-44 RA as Altitude Source for MDA/DH

A ground line (Figure 2-45) appears on the Altimeter to display the aircraft's height relative to the ground. Diagonal lines appear underneath the ground line. If the radar altimeter provides invalid data, the message "RA FAIL" is displayed in yellow in the RA box (Figure 2-46).

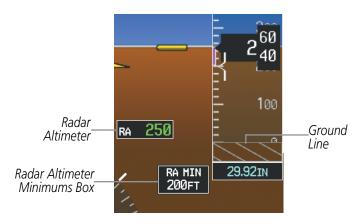


Figure 2-45 Altimeter Displaying the Ground Line (RAD ALT)

Figure 2-46 Radar Altimeter with Invalid Data

2.4 ABNORMAL OPERATIONS

ABNORMAL GPS CONDITIONS

The annunciations listed in the table can appear on the HSI when abnormal GPS conditions occur.

Annunciation	Location	Description
LOI	Lower left of aircraft symbol	Loss of Integrity Monitoring—GPS integrity is insufficient for the current phase of flight
INTEG OK	Lower left of aircraft symbol	Integrity OK–GPS integrity has been restored to within normal limits (annunciation displayed for 5 seconds)
DR	Upper right of aircraft symbol	Dead Reckoning—System is using projected position rather than GPS position to compute navigation data and sequence active flight plan waypoints

Table 2-4 Abnormal GPS Conditions Annunciated on HSI

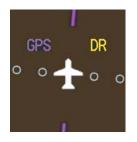


Figure 2-47 Example HSI Annunciations

In Dead Reckoning (DR) Mode the CDI is removed from the display when GPS is the selected navigation source. The following items on the PFD are then shown in yellow:

- Current Track Bug
- Wind Data (calculated based on GPS information)
- Distances in the Bearing Information Windows
- GPS bearing pointers

It is important to note that estimated navigation data supplied by the system in DR Mode may become increasingly unreliable and must not be used as a sole means of navigation. Refer to the Flight Management Section for more information on DR Mode

UNUSUAL ATTITUDES

When the aircraft enters an unusual pitch attitude, red chevrons pointing toward the horizon warn of extreme pitch. The chevrons are displayed on the Attitude Indicator, starting at 50° above and 30° below the horizon line.

Figure 2-48 Pitch Attitude Warnings

If pitch exceeds +30°/-20° or bank exceeds 65°, some information displayed on the PFD is removed. The Altimeter and Airspeed, Attitude, Vertical Speed, and Horizontal Situation indicators remain on the display and the Bearing Information, Alerts, and Annunciation windows can be displayed during such situations. The following information is removed from the PFD and their softkeys are disabled when the aircraft experiences unusual attitudes:

- Traffic Annunciations
- AFCS Annunciations
- Flight Director Command Bars
- Inset Map
- Outside Air Temperature (OAT)
- Wind Data
- Selected Heading Readout
- Selected Course Readout
- Transponder Status Box
- System Time

- PFD Setup Menu
- Windows displayed in the lower right corner of the PFD:
- Timer/References
- Nearest Airports
- Flight Plan
- Alerts Window
- Procedures
- Minimum Descent Altitude/ Decision Height Readout

- Vertical Deviation, Glideslope, and Glidepath Indicators
- Altimeter Barometric Setting
- Selected Altitude
- VNV Target Altitude
- DME Window
- True Airspeed
- Marker Beacon Indicator
- Metric Altitude Display

SECTION 3 ENGINE INDICATION SYSTEM (EIS)

NOTE: Refer to the Airplane Flight Manual (AFM) for limitations.

The G1000 Engine Indication System (EIS) for the Diamond DA62 displays critical engine, electrical, fuel, and other system parameters on the left side of the Multi Function Display (MFD) during normal operations (Figure 3-1).

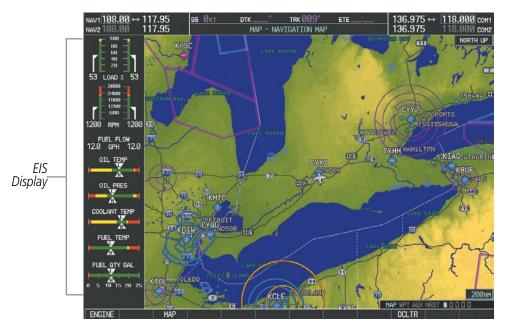


Figure 3-1 Multi Function Display (Normal Operations)

EIS information is presented in three displays, accessed using the **ENGINE** Softkey on the MFD:

- Engine Display Default display, shows all critical engine and fuel indicators
- **System Display** Shows graphic and numeric readouts of critical engine, electrical indicators, and optional deice fluid quantity
- **Fuel Display** Shows numeric readouts of fuel indicators and calculations, and total aircraft time in service The engine load indicator and tachometer are present on all three displays.

The EIS instrument types include vertical slider gauges, horizontal slide bar indicators, and digital readouts. Green bands indicate normal ranges of operation; yellow and red bands indicate caution and warning, respectively. When unsafe operating conditions occur, readouts and labels may change color corresponding to the level of the condition. The pointers (labeled left, L, and right, R) on the horizontal bar indicators appear in white to indicate normal operation and change to yellow or red to indicate caution or warning conditions.

If sensory data to an instrument becomes invalid or unavailable, a red "X" is shown across the instrument. If a readout value is out of range, dashes '---' are shown instead of a readout.

In Reversionary Display mode, the operating display is configured to present PFD symbology with the EIS Display (Figure 3-2). When a G1000 display enters Reversionary Mode, each EIS Display (Engine, System, Fuel) and the softkey functionality remains the same (refer to the System Overview for information about display Reversionary Mode).

Figure 3-2 Primary Flight Display (Reversionary Mode)

The Engine softkeys provide access to the three EIS Displays (Engine, System, Fuel). To return to the Engine Display from the System or Fuel Display, press the **ENGINE** or **BACK** Softkey.

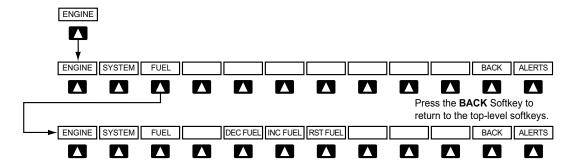


Figure 3-3 EIS Softkeys

ENGINE Displays second-level engine softkeys
 SYSTEM Displays the EIS System Display
 FUEL Displays the EIS Fuel Display

DEC FUEL Decreases displayed fuel remaining in 1-gal increments **INC FUEL** Increases displayed fuel remaining in 1-gal increments

RST FUEL Resets displayed fuel remaining to maximum fuel capacity for aircraft and fuel used to zero

3.1 ENGINE DISPLAY

NOTE: The Fuel Quantity Indicator shows 25 gallons of fuel per side in the main tanks when full; the Fuel Quantity Indicator does not account for fuel in the auxiliary tanks.

The Engine Display is the default EIS display and can be selected by pressing the **ENGINE** or **BACK** Softkey when another EIS display is currently shown. Beneath the vertical slider gauges are readouts for fuel flow and horizontal bar indicators for oil temperature and pressure, coolant temperature, and fuel temperature and quantity.

- 1 Engine Load Indicator (LOAD %)
- Displays current engine loads as percentages on a vertical slider gauge with digital readouts below the gauge

2 Tachometer (RPM)

- Displays propeller speeds in revolutions per minute (rpm) on a vertical slider gauge with digital readouts below the gauge
- Gauge indicators display propeller speed information provided by the FADEC. Digital readouts flash red to indicate an overspeed warning. Displays digital readouts of current fuel flow for each engine in gallons
- (3) Fuel Flow Indicator (FUEL FLOW GPH)

Oil Temperature Indicator

- per hour (gph)

 Displays engine oil temperature ranges
- (OIL TEMP)
- Displays engine oil pressure ranges
- (5) Oil Pressure Indicator (OIL PRES)
- 6 Coolant Temperature Indicator Displays coolant temperature ranges
- (COOLANT TEMP)

 7 Fuel Temperature Indicator
 (FUEL TEMP)
- Displays fuel temperature range; pointers labeled L and R indicate the fuel temperature in each tank
- 8 Fuel Quantity Indicator (FUEL QTY GAL)
- Displays the quantity in gallons (gal) of fuel in the tanks; pointers labeled L and R indicate the fuel quantity in each tank
- Indicator ranges from 0 to 25 gal per side with tick marks every 5 gal; the red range indicates 1 gal of unusable fuel

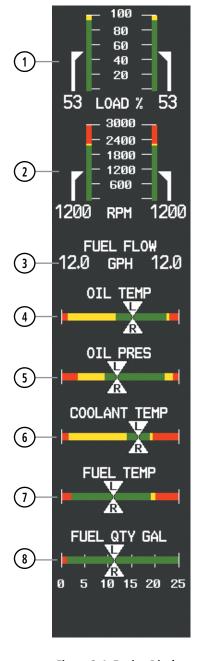


Figure 3-4 Engine Display

GARMIN

(OIL BAR) (9) Deice Fluid Indicator

(Optional)

(DEICE FLUID)

3.2 SYSTEM DISPLAY

The System Display is accessed by pressing the **SYSTEM** Softkey. The instruments presented here, in addition to the engine load indicator and tachometer, are separated into three categories: Electrical (voltmeter and ammeter), Engine (gearbox and coolant temperature), and Oil (temperature and pressure). An optional horizontal bar indicator for deice fluid may be located at the bottom of the display.

Accessing the EIS System Display:

- 1) Press the **ENGINE** Softkey.
- Press the **SYSTEM** Softkey.

3) To return to the default Engine Display, press the ENGINE or BACK Softkey.		
1 Engine Load Indicator (LOAD %)	Displays current engine loads as percentages on a vertical bar gauge with digital readouts below the gauge	
2 Tachometer (RPM)	Displays propeller speeds in revolutions per minute (rpm) on a vertical slider gauge with digital readouts below the gauge	
	Gauge indicators display propeller speed information provided by the FADEC. Digital readouts flash red to indicate an overspeed warning.	
3 Voltmeter (VOLTS)	Displays the primary bus voltage for each side with accompanying digital readouts	
4 Ammeter (AMPS)	Displays each alternator load in amperes (amps) with accompanying digital readouts	
(GEARBOX °C)	Displays the temperature of each gearbox in degrees Celsius (°C)	
6 Coolant Temperature Indicator (COOLANT °C)	Displays the coolant temperature of each side in °C	
7 Oil Temperature Indicator (OIL °C)	Displays oil temperature in °C	
8 Oil Pressure Indicator	Displays oil pressure in bars	

intervals

Displays the quantity of deice fluid; tick marks are located at quarter

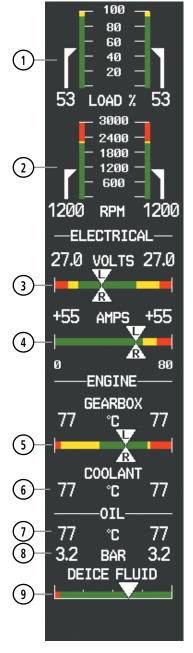


Figure 3-5 System Display

GARMIN

3.3 FUEL DISPLAY

NOTE: Fuel calculations do not use the aircraft fuel quantity indicators and are calculated from the last time the fuel was reset.

NOTE: If optional auxiliary fuel tanks are installed, the fuel remaining can be adjusted up to a maximum of 86 gal; the Fuel Quantity Indicator does not account for fuel in the auxiliary tanks.

The Fuel Display is accessed by pressing the **FUEL** Softkey. Besides the engine load indicator and tachometer, all indications on this display are digital readouts, separated into two categories: Fuel and Fuel Calculations. Total aircraft time in service is at the bottom of the display.

Accessing the EIS Fuel Display:

- 1) Press the **ENGINE** Softkey.
- 2) Press the **FUEL** Softkey.

(TTL TIME IN SVC)

3) To return to the default Engine Display, press the **ENGINE** or **BACK** Softkey.

(1) Engine Load Indicator (LOAD %)	Displays current engine loads as percentages on a vertical bar gauge with digital readouts below the gauge
2 Tachometer (RPM)	Displays propeller speeds in revolutions per minute (rpm) on a vertical slider gauge with digital readouts below the gauge
_	Gauge indicators display propeller speed information provided by the FADEC. Digital readouts flash red to indicate an overspeed warning.
3 Fuel Quantity Indicator (FUEL GAL)	Displays a digital readout of fuel tank quantity in gallons (gal)
4 Fuel Flow Indicator (FUEL GPH)	Displays a digital readout of current fuel flow for each engine in gallons per hour (gph)
5 Fuel Temperature Indicator (FUEL °C)	Displays a digital readout of fuel temperature for each tank in degrees Celsius (°C)
6 Set Fuel Remaining (GAL REM)	Displays current fuel remaining (gal) as set by the pilot and adjusted for fuel burn since last set
7) Calculated Fuel Used (GAL USED)	Displays quantity of fuel used (gal) based on fuel flow since last reset
8 Calculated Endurance (ENDUR)	Displays flight time remaining (HH:MM) based on the calculated fuel remaining
	Displays aircraft range in nautical miles (nm) based on the calculated fuel remaining
10 Total Time in Service	Displays the aircraft's total flight hours (hrs); activated when the aircraft

becomes airborne

Fuel calculations are based on the fuel flow totalizer and the displayed fuel remaining (GAL REM), adjusted by the pilot using the following softkeys:

- **DEC FUEL** Decreases totalizer-based fuel remaining in one-gallon increments
- INC FUEL Increases totalizer-based fuel remaining in one-gallon increments
- **RST FUEL** Resets totalizer-based fuel remaining (GAL REM) relative to the aircraft's fuel capacity and sets the displayed fuel used (GAL USED) to zero

Adjusting the fuel totalizer quantity:

From the Fuel Display, press the **DEC FUEL** or **INC FUEL** Softkey to obtain the desired number of gallons remaining (GAL REM).

Resetting the fuel totalizer:

From the Fuel Display, press the **RST FUEL** Softkey. This resets the displayed fuel remaining (GAL REM) to 50 gallons (or 86 gallons if optional aux fuel tanks are installed). The fuel used (GAL USED) is reset to zero.

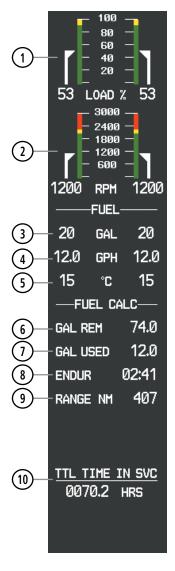


Figure 3-6 Fuel Display

BLANK PAGE

SECTION 4 AUDIO PANEL AND CNS

4.1 OVERVIEW

The Communication/Navigation/Surveillance (CNS) system includes the Audio Panel, communication radios, navigation radios, and Mode S transponder. The System Overview Section provides a block diagram description of the Audio Panel and CNS system interconnection.

CNS operation in Diamond DA62 aircraft is performed by the following Line Replaceable Units (LRUs):

• Primary Flight Display (PFD)

• Audio Panel

• Multifunction Display (MFD)

• Mode S Transponder

• Integrated Avionics Unit (2)

The MFD/PFD controls are used to tune the communication transceivers and navigation radios.

The Audio Panel provides the traditional audio selector functions of microphone and receiver audio selection. The Audio Panel includes an intercom system (ICS) between the pilot, copilot, and passengers, a marker beacon receiver, and a COM clearance recorder. Ambient noise from the aircraft radios is reduced by a feature called Master Avionics Squelch (MASQ). When no audio is detected, MASQ processing further reduces the amount of background noise from the radios.

The Mode S transponder is controlled with softkeys and the **FMS** Knob located on the Primary Flight Display (PFD). The Transponder Data Box is located to the left of the System Time Box. The data box displays the active four-digit code, mode, and reply status (Figure 4-1).

APPENDICES

MFD/PFD CONTROLS AND FREQUENCY DISPLAY

Figure 4-1 MFD/PFD Controls, NAV/COM Frequency Tuning Boxes, and ADF/DME Tuning Window (PFD Shown)

- 1) **NAV VOL/ID Knob** Controls NAV audio volume level. Press to turn the Morse code identifier audio on and off. Volume level is shown in the NAV frequency field as a percentage.
- 2 NAV Frequency Transfer Key Transfers the standby and active NAV frequencies.
- (3) **NAV Knob** Tunes the standby frequencies for the NAV receiver (large knob for MHz; small knob for kHz). Press to move the tuning box (cyan box) and Frequency Transfer Arrow between NAV1 and NAV2.
- **NAV Frequency Box** Displays NAV standby and active frequency fields, volume, and station ID. The frequency of the NAV radio selected for navigation is displayed in green.
- **COM Frequency Box** Displays COM standby and active frequency fields and volume. The selected COM transceiver frequency is displayed in green.
- **6 COM Knob** Tunes the standby frequencies for the COM transceiver (large knob for MHz; small knob for kHz). Press to move the tuning box (cyan box) and Frequency Transfer Arrow between COM1 and COM2.
- (7) **COM Frequency Transfer Key** Transfers the standby and active COM frequencies. Press and hold this key for two seconds to tune the emergency frequency (121.500 MHz) automatically into the active frequency field.
- **8 COM VOL/SQ Knob** Controls COM audio volume level. Press to turn the COM automatic squelch on and off. Volume level is shown in the COM frequency field as a percentage.
- **9 ADF/DME Tuning Window** Displays ADF frequencies, volume setting, and modes, and DME tuning selection. Display by pressing the **ADF/DME** Softkey.
- (10) ENT Key Validates or confirms an ADF frequency or ADF/DME mode and Auto-tune selection.
- (11) **FMS Knob** Flight Management System Knob, used to enter transponder codes, enter ADF frequencies, select ADF/DME modes, and Auto-tune entries when ADF/DME Tuning Window or NRST Window is present. Press the **FMS** Knob to turn the selection cursor on and off. The large knob moves the cursor in the window. The small knob selects individual characters for the highlighted cursor location.
- (12) **Transponder Data Box** Indicates the selected transponder code, operating mode, reply, and ident status for the transponder.

AUDIO PANEL CONTROLS

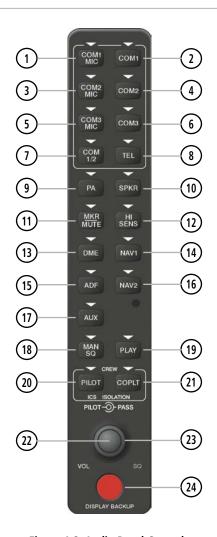
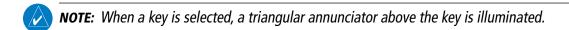



Figure 4-2 Audio Panel Controls

- (1) **COM1 MIC** Selects the #1 transmitter for transmitting. COM1 receive is simultaneously selected when this key is pressed allowing received audio from the #1 COM receiver to be heard. COM2 receive can be added by pressing the **COM2** Key.
- (2) **COM1** When selected, audio from the #1 COM receiver can be heard.
- **COM2 MIC** Selects the #2 transmitter for transmitting. COM2 receive is simultaneously selected when this key is pressed allowing received audio from the #2 COM receiver to be heard. COM1 receive can be added by pressing the **COM1** Key.
- (4) **COM2** When selected, audio from the #2 COM receiver can be heard.
- (5) **COM3 MIC** Not used in DA62 aircraft.

- **6 COM3** Not used in DA62 aircraft.
- **7) COM 1/2** Split COM Key. Allows simultaneous transmission on COM1 and COM2 by the pilot and copilot.
- (8) **TEL** When selected, audio from the satellite telephone can be heard (optional).
- **9 PA** Not used in DA62 aircraft.
- (10) **SPKR** Not used in Diamond DA62 aircraft.
- (1) MKR/MUTE Selects marker beacon receiver audio. Mutes the currently received marker beacon receiver audio. Unmutes automatically when new marker beacon audio is received. Also, stops play of recorded COM audio.
- (12) HI SENS Press to increase marker beacon receiver sensitivity. Press again to return to low sensitivity.
- **DME** Turns optional DME audio on or off.
- (14) NAV1 When selected, audio from the #1 NAV receiver can be heard.
- (15) **ADF** Turns optional ADF receiver audio on or off.
- (16) NAV2 When selected, audio from the #2 NAV receiver can be heard.
- (17) **AUX** Not used in DA62 aircraft.
- (18) MAN SQ Enables manual squelch for the intercom. When the intercom is active, press the **PILOT** Knob to illuminate SQ. Turn the **PILOT/PASS** Knobs to adjust squelch.
- 19 **PLAY** Press once to play the last recorded COM audio. Press again while audio is playing and the previous block of recorded audio is played. Each subsequent press plays each previously recorded block. Pressing the **MKR/MUTE** Key during play of a memory block stops play.
- (20) **PILOT** Selects and deselects the pilot intercom isolation.
- (1) **COPLT** Selects and deselects the copilot intercom isolation.
- **PILOT Knob** Press to switch between volume and squelch control as indicated by illumination of VOL or SQ. Turn to adjust intercom volume or squelch. The **MAN SQ** Key must be selected to allow squelch adjustment.
- **PASS Knob** Turn to adjust Copilot/Passenger intercom volume or squelch. The **MAN SQ** Key must be selected to allow squelch adjustment.
- (24) **DISPLAY BACKUP Button** Manually selects Reversionary Mode.

4.2 COM OPERATION

COM TRANSCEIVER SELECTION AND ACTIVATION

NOTE: When turning on the G1000 for use, the system remembers the last frequencies used and the active COM transceiver state prior to shutdown.

The COM Frequency Box is composed of four fields; the two active frequencies are on the left side and the two standby frequencies are on the right. The COM transceiver is selected for transmitting by pressing the **COM MIC** Keys on the Audio Panel. During reception of audio from the COM radio selected for transmission, audio from the other COM radio is muted.

An active COM frequency displayed in green indicates that the COM transceiver is selected on the Audio Panel (**COM1 MIC** or **COM2 MIC** Key).

Frequencies in the standby field are displayed in either white or gray. The standby frequency in the tuning box is white. The other standby frequency is gray.

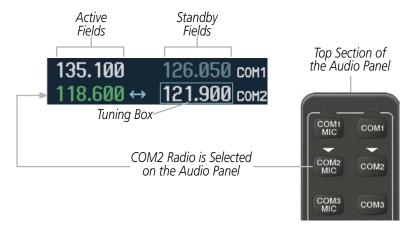


Figure 4-3 Selecting a COM Radio for Transmit

TRANSMIT/RECEIVE INDICATIONS

During COM transmission, a white TX appears by the active COM frequency replacing the Frequency Transfer Arrow. On the Audio Panel, when the active COM is transmitting, the active transceiver **COM MIC** Key Annunciator flashes approximately once per second.

During COM signal reception, a white RX appears by the active COM frequency replacing the Frequency Transfer Arrow. Entertainment audio, if selected, is muted during active COM radio reception. Refer to Additional Audio Panel Functions later in this section, and details on the Data Link Receiver in the Additional Features Section.

Figure 4-4 COM Radio Transmit and Receive Indications

COM TRANSCEIVER MANUAL TUNING

The COM frequency controls and frequency boxes are on the right side of the MFD and PFD.

Manually tuning a COM frequency:

- 1) Turn the **COM** Knob to tune the desired frequency in the COM Tuning Box (large knob for MHz; small knob for kHz).
- 2) Press the **Frequency Transfer** Key to transfer the frequency to the active field.
- **3)** Adjust the volume level with the COM **VOL/SQ** Knob.
- **4)** Press the COM **VOL/SQ** Knob to turn automatic squelch on and off.

Figure 4-5 COM Frequency Tuning

SELECTING THE RADIO TO BE TUNED

Press the small **COM** Knob to transfer the frequency tuning box and Frequency Transfer Arrow between the upper and lower radio frequency fields.

Figure 4-6 Switching COM Tuning Boxes

QUICK-TUNING AND ACTIVATING 121.500 MHZ

Pressing and holding the COM **Frequency Transfer** Key for two seconds automatically loads the emergency COM frequency (121.500 MHz) in the active field of the COM radio selected for tuning (the one with the transfer arrow). In the example shown, pressing the Audio Panel **COM2 MIC** Key activates the transceiver.

Figure 4-7 Quickly Tuning 121.500 MHz

AUTO-TUNING THE COM FREQUENCY

COM frequencies can be automatically tuned from the following:

• Nearest Airports Window (PFD)

• NRST – Nearest Frequencies Page (ARTCC, FSS, WX)

• WPT – Airport Information Page

• NRST – Nearest Airspaces Page

• NRST – Nearest Airports Page

AUTO-TUNING FROM THE PFD

COM frequencies for the nearest airports can be automatically tuned from the Nearest Airports Window on the PFD. When the desired frequency is entered, it becomes a standby frequency. Pressing the **Frequency Transfer** Key places this frequency into the COM Active Frequency Field.

Auto-tuning a COM frequency for a nearby airport from the PFD:

- 1) Press the **NRST** Softkey on the PFD to open the Nearest Airports Window. A list of 25 nearest airport identifiers and COM frequencies is displayed.
- **2)** Turn the **FMS** Knob to scroll through the list and highlight the desired COM frequency.
- **3)** Press the **ENT** Key to load the COM frequency into the COM Standby Tuning Box.
- **4)** Press the **Frequency Transfer** Key to transfer the frequency to the COM Active Frequency Field.

Press the **NRST** Softkey to Open the Nearest 'Airports Window

Figure 4-8 Nearest Airports Window (PFD)

AUTO-TUNING FROM THE MFD

Frequencies can be automatically loaded into the COM Frequency Box from pages in the NRST or WPT page group by highlighting the frequency and pressing the **ENT** Key (Figures 4-9, 4-10, and 4-11).

Auto-tuning a COM frequency from the WPT and NRST Pages:

- 1) From any page that the COM frequency can be auto-tuned, activate the cursor by pressing the **FMS** Knob or the appropriate softkey.
- **2)** Turn the **FMS** Knob to place the cursor on the desired COM frequency (Figure 4-11).
- 3) Press the **ENT** Key to load the COM frequency into the standby field of the selected COM radio.
- **4)** Press the **Frequency Transfer** Key to transfer the frequency to the COM Active Frequency Field.

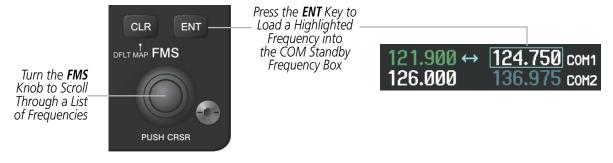
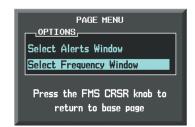


Figure 4-9 Frequency Auto-Tuning from the MFD

Or:


- 1) Press the **MENU** Key to display the page menu.
- 2) Turn the large **FMS** Knob to scroll through the menu options.
- **3)** Press the **ENT** Key to place the cursor on the desired selection.
- **4)** Scroll through the frequency selections with the **FMS** Knob or the **ENT** Key.
- **5)** Press the **ENT** Key to load the COM frequency into the standby field of the selected COM radio.
- **6)** Press the **Frequency Transfer** Key to transfer the frequency to the COM Active Frequency Field.

Nearest Airports Menu

Nearest Frequencies Menu

Nearest Airspaces Menu

Figure 4-10 Nearest Pages Menus

On the WPT - Airport Information Page, the cursor can be placed on the frequency field by pressing the FMS Knob and scrolling through the list. The frequency is transferred to the COM Standby Field with the ENT Key.

Figure 4-11 WPT – Airport Information Page

APPENDICES

COM frequencies can also be auto-tuned from the NRST – Nearest Airspaces, NRST – Nearest Frequencies, and NRST – Nearest Airports Pages on the MFD in a similar manner using the appropriate softkeys or **MENU** Key, the **FMS** Knob, and the **ENT** Key.

Figure 4-12 NRST – Nearest Airspaces, NRST – Nearest Airports, and NRST – Nearest Frequencies Pages

FREQUENCY SPACING

The G1000 COM radios can tune either 25-kHz spacing (118.000 to 136.975 MHz) or 8.33-kHz spacing (118.000 to 136.990 MHz) for 760-channel or 3040-channel configuration. When 8.33-kHz channel spacing is selected, all of the 25-kHz channel spacing frequencies are also available in the complete 3040-channel list.

COM channel spacing is set on the System Setup Page of the AUX Page Group.

Figure 4-13 COM Channel Spacing

Changing COM frequency channel spacing:

- 1) Select the AUX System Setup Page.
- 2) Press the **FMS** Knob to activate the flashing cursor.
- 3) Turn the large **FMS** Knob to highlight the Channel Spacing Field in the COM Configuration Box.
- **4)** Turn the small **FMS** Knob to select the desired channel spacing.
- **5)** Press the **ENT** Key to complete the channel spacing selection.

While the COM CONFIG Window is selected, the G1000 softkeys are blank.

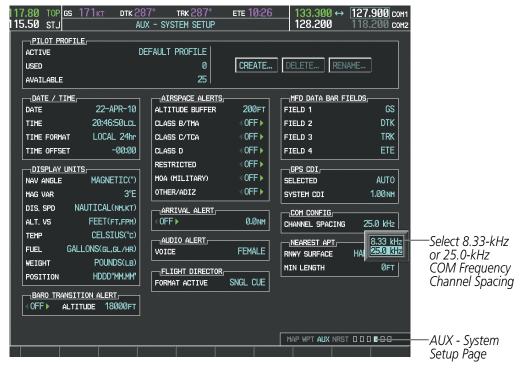


Figure 4-14 AUX – System Setup Page

AUTOMATIC SQUELCH

Automatic Squelch quiets unwanted static noise when no audio signal is received, while still providing good sensitivity to weak COM signals. To disable Automatic Squelch, press the **VOL/SQ** Knob. When Automatic Squelch is disabled, COM audio reception is always on. Continuous static noise is heard over the headsets and speaker, if selected. Pressing the **VOL/SQ** Knob again enables Automatic Squelch.

Press the COM **VOL**/ **SQ** Knob to turn off Automatic Squelch.— Press again to restore Automatic Squelch.

Figure 4-15 Overriding Automatic Squelch

VOLUME

COM radio volume level can be adjusted from 0 to 100% using the **VOL/SQ** Knob. Turning the knob clockwise increases volume, turning the knob counterclockwise decreases volume. When adjusting volume, the level is displayed in place of the standby frequencies. Volume level indication remains for two seconds after the change.

COM Volume Level Remains for Two Seconds

Figure 4-16 COM Volume Level

4.3 NAV OPERATION

NAV RADIO SELECTION AND ACTIVATION

The NAV Frequency Box is composed of four fields; two standby fields and two active fields. The active frequencies are on the right side and the standby frequencies are on the left.

A NAV radio is selected for navigation by pressing the **CDI** Softkey located on the PFD. The active NAV frequency selected for navigation is displayed in green. Pressing the **CDI** Softkey once selects NAV1 as the navigation radio. Pressing the **CDI** Softkey a second time selects NAV2 as the navigation radio. Pressing the **CDI** Softkey a third time activates GPS mode. Pressing the **CDI** Softkey again cycles back to NAV1.

While cycling through the **CDI** Softkey selections, the NAV Tuning Box and the Frequency Transfer Arrow are placed in the active NAV Frequency Field and the active NAV frequency color changes to green.

The three navigation modes that can be cycled through are:

- VOR1 (or LOC1) If NAV1 is selected, a green single line arrow (not shown) labeled either VOR1 or LOC1 is displayed on the HSI and the active NAV1 frequency is displayed in green.
- VOR2 (or LOC2) If NAV2 is selected, a green double line arrow (shown) labeled either VOR2 or LOC2 is displayed on the HSI and the active NAV2 frequency is displayed in green.
- GPS If GPS Mode is selected, a magenta single line arrow (not shown) appears on the HSI and neither NAV radio is selected. Both active NAV frequencies are then displayed in white.

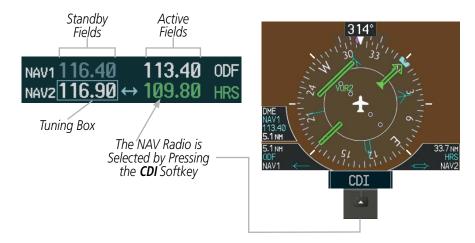


Figure 4-17 Selecting a NAV Radio for Navigation

See the Flight Instruments Section for selecting the DME and Bearing Information windows and using VOR or ADF as the source for the bearing pointer.

NAV radios are selected for listening by pressing the corresponding keys on the Audio Panel. Pressing the **NAV1**, **NAV2**, **ADF**, or **DME** Key selects and deselects the navigation radio source. Selected audio can be heard over the headset and the speaker (if selected). All radios can be selected individually or simultaneously.

Figure 4-18 Selecting a NAV Radio Receiver

NAV RECEIVER MANUAL TUNING

The NAV frequency controls and frequency boxes are on the left side of the MFD and PFD.

Manually tuning a NAV frequency:

- 1) Turn the **NAV** Knob to tune the desired frequency in the NAV Tuning Box.
- 2) Press the **Frequency Transfer** Key to transfer the frequency to the NAV Active Frequency Field.
- 3) Adjust the volume level with the NAV VOL/ID Knob.
- 4) Press the NAV VOL/ID Knob to turn the Morse code identifier audio on and off.

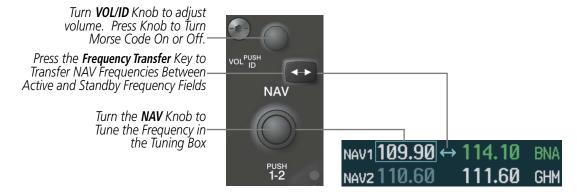


Figure 4-19 NAV Frequency Tuning

SELECTING THE RADIO TO BE TUNED

Press the small **NAV** Knob to transfer the frequency tuning box and Frequency Transfer Arrow between the upper and lower radio frequency fields.

Figure 4-20 Switching NAV Tuning Boxes

VOR/LOC ID

When the Morse code Identifier audio is on for a NAV radio, a white ID appears to the left of the active NAV frequency.

In the example shown, in order to listen to either station identifier, press the **NAV1** or **NAV2** Key on the Audio Panel. Pressing the **VOL/ID** Knob turns off the Morse code audio only in the radio with the NAV Tuning Box. To turn off both NAV IDs, transfer the NAV Tuning Box between NAV1 and NAV2 with the small **NAV** Knob and press the **VOL/ID** Knob again to turn the Morse code off in the other radio.

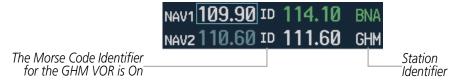


Figure 4-21 NAV Radio ID Indication

VOLUME

NAV Radio volume level can be adjusted from 0 to 100% using the **VOL/ID** Knob. Turning the knob clockwise increases volume, counterclockwise decreases volume.

When adjusting, the level is displayed in place of the standby frequencies. Volume level indication remains for two seconds after the change.

Figure 4-22 NAV Volume Levels

AUTO-TUNING A NAV FREQUENCY FROM THE MFD

NAV frequencies can be selected and loaded from the following MFD pages:

- WPT Airport Information
- WPT VOR Information
- NRST Nearest Airports

- NRST Nearest VOR
- NRST Nearest Frequencies (FSS, WX)
- NRST Nearest Airspaces

The MFD provides auto-tuning of NAV frequencies from waypoint and nearest pages. During enroute navigation, the NAV frequency is entered automatically into the NAV standby frequency field. During approach activation the NAV frequency is entered automatically into the NAV active frequency field.

Frequencies can be automatically loaded into the NAV Frequency Box from pages in the NRST or WPT page group by highlighting the frequency and pressing the **ENT** Key (Figures 4-23, 4-24, and 4-25).

Auto-tuning a NAV frequency from the WPT and NRST Pages:

- 1) From any page that the NAV frequency can be auto-tuned, activate the cursor by pressing the **FMS** Knob or the appropriate softkey.
- 2) Turn the **FMS** Knob to place the cursor on the desired NAV identifier or NAV frequency.
- 3) On the Nearest VOR and Nearest Airports pages, press the **FREQ** Softkey to place the cursor on the NAV frequency (Figure 4-25).
- **4)** Press the **ENT** Key to load the NAV frequency into the standby field of the selected NAV radio.
- **5)** Press the **Frequency Transfer** Key to transfer the frequency to the NAV Active Frequency Field.

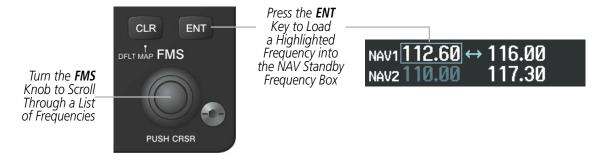


Figure 4-23 NAV Frequency Auto-Tuning from the MFD

Or:

-) When on the NRST pages, press the **MENU** Key to display the page menu.
- **2)** Turn the large **FMS** Knob to scroll through the menu options.
- **3)** Press the **ENT** Key to place the cursor in the desired window.
- **4)** Scroll through the frequency selections with the **FMS** Knob or the **ENT** Key.
- 5) Press the ENT Key to load the NAV frequency into the standby field of the selected NAV radio.
- **6)** Press the **Frequency Transfer** Key to transfer the frequency to the NAV Active Frequency Field.

Nearest Airports Menu

Nearest VOR Menu

Nearest Frequencies Menu

Nearest Airspaces Menu

Figure 4-24 Nearest Pages Menus

APPENDICES

In the example shown, the VOR list is selected with the **VOR** Softkey or from the page menu. The **FMS** Knob or **ENT** Key is used to scroll through the list. The cursor is placed on the frequency with the **FREQ** Softkey and loaded into the NAV Tuning Box with the **ENT** Key.



Figure 4-25 Loading the NAV Frequency from the NRST – Nearest VOR Page

While enroute, NAV frequencies can also be auto-tuned from the NRST – Nearest Airports, WPT – Airport Information, WPT – VOR Information, and NRST – Nearest Frequencies Pages on the MFD in a similar manner using the appropriate softkeys or **MENU** Key, the **FMS** Knob, and the **ENT** Key.

Figure 4-26 NRST – Nearest Frequencies, WPT – VOR Information, WPT – Airport Information, and NRST – Nearest Airports Pages

AUTO-TUNING NAV FREQUENCIES ON APPROACH ACTIVATION

NOTE: The primary NAV frequency is auto-tuned upon loading a VOR or ILS/Localizer approach.

NOTE: When an ILS/LOC approach has been activated while navigating by GPS, the system automatically switches to LOC as the final approach course is intercepted (within 15 nm of the FAF). See the Flight Management Section for details.

NAV frequencies are automatically loaded into the NAV Frequency Box on approach activation.

When loading or activating a VOR or ILS/LOC approach, the approach frequency is automatically transferred to a NAV frequency field as follows:

- If the current CDI navigation source is GPS, the approach frequency is transferred to the NAV1 active frequency field. The frequency that was previously in the NAV1 active frequency field is transferred to standby.
- If the current CDI navigation source is GPS, and if the approach frequency is already loaded into the NAV1 standby frequency field, the standby frequency is transferred to active.
- If the current CDI navigation source is NAV1 or NAV2, the approach frequency is transferred to the standby frequency fields of the selected CDI NAV radio.

MARKER BEACON RECEIVER

NOTE: The marker beacon indicators operate independently of marker beacon audio and cannot be turned off.

The marker beacon receiver is used as part of the ILS. The marker beacon receiver is always on and detects any marker beacon signals within the reception range of the aircraft.

The receiver detects the three marker tones – outer, middle, and inner – and provides the marker beacon annunciations located to the left of the Altimeter on the PFD.

Figure 4-27 Marker Beacon Annunciations on the PFD

Figure 4-28 Marker Beacon Keys

The Audio Panel provides three different states of marker beacon operation; On, Muted, and Deselected. Pressing the **MKR/MUTE** Key selects and deselects marker beacon audio. The key annunciator indicates when marker beacon audio is selected. Pressing the **MKR/MUTE** Key mutes the audio but does not affect the marker annunciations (Figure 4-27).

Turning Marker Beacon Audio On

With the MKR/MUTE annunciator off, press the **MKR/MUTE** Key to enable marker beacon audio.

Muting Marker Beacon Audio

During marker beacon audio reception, press the **MKR/MUTE** Key to mute the audio. The MKR/MUTE annunciator remains lit, but the current marker tone is silenced. Audio muting deactivates automatically and marker beacon audio is heard when the next marker beacon signal is received.

Deselecting Marker Beacon Audio

To deselect marker beacon audio, press the **MKR/MUTE** Key twice during marker beacon reception (once to mute, once more to deselect) or once if a marker beacon signal is not detected.

Pressing the **HI SENS** Key switches between high and low marker beacon receiver sensitivity. The HI SENS function (annunciator illuminated) is used to provide an earlier indication when nearing a marker during an approach. The LO SENS function (annunciator extinguished) results in a narrower marker dwell while over a station.

ADF/DME TUNING

NOTE: When another auxiliary window is turned on, the ADF/DME Tuning Window is replaced on the PFD.

See the Flight Instruments Section for displaying the DME and bearing information windows (ADF) and using the ADF as the source for the bearing pointer.

The G1000 system tunes the ADF receiver (optional) and DME transceiver (optional). The ADF is tuned by entering the frequency in the ADF standby frequency field of the ADF/DME Tuning Window. (The softkey may be labeled **ADF/DME**, **ADF**, or **DME**, depending on installed equipment.)

The UHF DME frequency is tuned by pairing with a VHF NAV frequency. DME frequency pairing is automatic and only the VHF NAV frequency is shown.

The following ADF/DME information is displayed in the ADF/DME Tuning Window:

- Active and standby ADF frequencies
- ADF receiver mode
- ADF receiver volume
- DME tuning mode (DME transceiver pairing)

When the ADF/DME Tuning Window is displayed, the selection cursor is placed over the standby ADF frequency field.

Turning the large **FMS** Knob moves the selection cursor through the various fields (standby ADF frequency, ADF receiver mode, ADF radio volume, and DME tuning mode). Pressing the **FMS** Knob activates/deactivates the selection cursor in the ADF/DME Tuning Window. The ADF frequency is entered using the **FMS** Knob and the **ENT** Key.

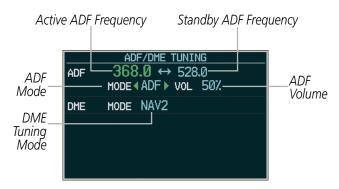


Figure 4-29 ADF/DME Tuning Window

ADF TUNING

ADF frequencies in the 190.0-kHz to 1799.5-kHz range are entered in the standby ADF frequency field of the ADF/DME Tuning Window. The G1000 System does not tune the ADF emergency frequency, 2182.0-kHz.

Tuning an ADF frequency:

- 1) Press the ADF/DME Softkey to display the ADF/DME Tuning Window.
- **2)** Turn the large **FMS** Knob to place the selection cursor over the standby ADF frequency field.
- 3) Turn the small **FMS** Knob to begin data entry and change each digit.
- **4)** Turn the large **FMS** Knob to move the cursor to the next digit position.
- **5)** Press the **ENT** Key to complete data entry for the standby frequency.

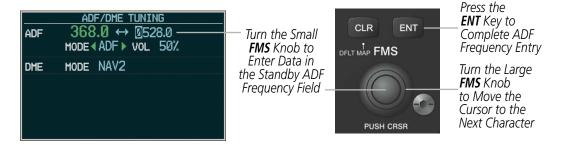


Figure 4-30 Entering ADF Standby Frequencies

Pressing the **CLR** Key before completing frequency entry cancels the frequency change and reverts back to the previously entered frequency.

Pressing the **CLR** Key when the cursor is flashing, clears the frequency and replaces the standby field with 0000.0.

Transferring the active and standby ADF frequencies:

- 1) Turn the large **FMS** Knob to place the selection cursor over the standby ADF frequency field.
- **2)** Press the **ENT** Key to complete the frequency transfer.

Figure 4-31 Transferring ADF Frequencies

SELECTING ADF RECEIVER MODE

The following modes can be selected: (In all modes NDB audio can be heard by selecting the **ADF** Key on the Audio Panel.)

- ANT (Antenna) The ADF bearing pointer parks on the HSI at 90 degrees. Best mode for listening to NDB audio.
- ADF (Automatic Direction Finder) The ADF pointer points to the relative bearing of the NDB station.
- ADF/BFO (ADF/Beat Frequency Oscillator) The ADF pointer points to the relative bearing of the NDB station and an audible tone confirms signal reception. This mode allows identification of the interrupted carrier beacon stations used in various parts of the world.
- ANT/BFO (Antenna/Beat Frequency Oscillator) The ADF bearing pointer parks on the HSI at 90 degrees while an audible tone is provided when a signal is received. This mode also allows identification of the interrupted carrier beacon stations and confirms signal reception.

Selecting an ADF receiver mode:

- 1) Turn the large **FMS** Knob to place the selection cursor over the ADF mode field.
- 2) Turn the small **FMS** Knob to select the desired ADF receiver mode.

Figure 4-32 Selecting ADF Receiver Mode

ADF receiver volume level can be adjusted in the tuning window from 0 to 100%. The default volume level is set to 50%. The ADF volume level is the same for both Audio Panels.

Adjusting ADF receiver volume:

- 1) Turn the large **FMS** Knob to place the selection cursor over the ADF volume field.
- 2) Turn the small **FMS** Knob to adjust volume as desired.

Figure 4-33 Adjusting ADF Receiver Volume

DME TUNING

NOTE: When turning on the G1000 for use, the system remembers the last frequency used for DME tuning and the NAV1, NAV2, or HOLD state prior to shutdown.

The DME transceiver is tuned by selecting NAV1, NAV2, or HOLD in the ADF/DME Tuning Window.

Figure 4-34 ADF/DME Tuning Window, DME Modes

The following DME transceiver pairing can be selected:

- NAV1 Pairs the DME frequency from the selected NAV1 frequency.
- NAV2 Pairs the DME frequency from the selected NAV2 frequency.
- HOLD When in the HOLD position, the DME frequency remains paired with the last selected NAV frequency.

Selecting DME transceiver pairing:

- 1) Press the **ADF/DME** Softkey to display the ADF/DME Tuning Window.
- 2) Turn the small **FMS** Knob to select the DME tuning mode.
- **3)** Press the **ENT** Key to complete the selection.

Pressing the **CLR** Key or **FMS** Knob while in the process of DME pairing cancels the data entry and reverts back to the previously selected DME tuning state. Pressing the **FMS** Knob activates/deactivates the cursor in the ADF/DME Tuning Window.

4.4 GTX 33/GTX 33 ES MODE S TRANSPONDER

The GTX 33 Mode S Transponder provides Mode A, Mode C, and Mode S interrogation and reply capabilities. Selective addressing or Mode Select (Mode S) capability includes the following features:

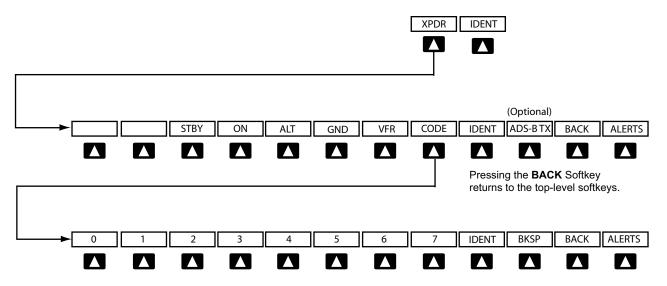
- Level-2 reply data link capability (used to exchange information between aircraft and ATC facilities)
- Surveillance identifier capability
- Flight ID (Flight Identification) reporting The Mode S Transponder reports aircraft identification as either the aircraft registration or a unique Flight ID.
- Altitude reporting
- Airborne status determination
- Transponder capability reporting
- Mode S Enhanced Surveillance (EHS) requirements
- Acquisition squitter Acquisition squitter, or short squitter, is the transponder 24-bit identification address. The transmission is sent periodically, regardless of the presence of interrogations. The purpose of acquisition squitter is to enable Mode S ground stations and aircraft equipped with a Traffic Avoidance System (TAS) to recognize the presence of Mode S-equipped aircraft for selective interrogation.
- Extended squitter If equipped with an extended squitter, the extended squitter is transmitted periodically and contains information such as altitude (barometric and GPS), GPS position, and aircraft identification. The purpose of extended squitter is to provide aircraft position and identification to ADS-B Ground-Based Transceivers (GBTs) and other aircraft.

The Hazard Avoidance Section provides more details on traffic avoidance systems.

TRANSPONDER CONTROLS

Transponder function is displayed on three levels of softkeys on the PFD: Top-level, Mode Selection, and Code Selection. When the top-level **XPDR** Softkey is pressed, the Mode Selection softkeys appear: **STBY**, **ON**, **ALT**, **GND**, **VFR**, **CODE**, **IDENT**, **ADS-B TX**, **BACK**.

When the **CODE** Softkey is pressed, the number softkeys appear: **0**, **1**, **2**, **3**, **4**, **5**, **6**, **7**, **IDENT**, **BKSP**, **BACK**. The digits 8 and 9 are not used for code entry. Pressing the numbered softkeys in sequence enters the transponder code. If an error is made, the code selection cursor can be moved back to the left one digit with each press of the **BKSP** Softkey.


Pressing the **BACK** Softkey during code selection reverts to the Mode Selection Softkeys. Pressing the **BACK** Softkey during mode selection reverts to the top-level softkeys.

The code can also be entered with the **FMS** Knob on the PFD. Code entry must be completed with either the softkeys or the **FMS** Knob, but not a combination of both.

Pressing the **IDENT** Softkey while in Mode or Code Selection initiates the ident function and reverts to the top-level softkeys.

After 45 seconds of transponder softkey inactivity, the system reverts back to the top-level softkeys.

Pressing the BACK Softkey returns to the mode selection softkeys.

Figure 4-35 Transponder Softkeys (PFD)

TRANSPONDER MODE SELECTION

Mode selection can be automatic (Ground and Altitude Modes) or manual (Standby, ON, and Altitude Modes). The **STBY**, **ON**, and **ALT** Softkeys can be accessed by pressing the **XPDR** Softkey.

Selecting a transponder mode:

- 1) Press the **XPDR** Softkey to display the Transponder Mode Selection Softkeys.
- 2) Press the desired softkey to activate the transponder mode.

GROUND MODE

Ground Mode is normally selected automatically when the aircraft is on the ground. The transponder powers up in the last mode it was in when shut down. Ground Mode can be overridden by pressing any one of the Mode Selection Softkeys. A green GND indication and transponder code appear in the mode field of the Transponder Data Box. In Ground Mode, the transponder does not allow Mode A and Mode C replies, but it does permit acquisition squitter and replies to discretely addressed Mode S interrogations.

When Standby Mode has been selected on the ground, the transponder can be returned to Ground Mode by pressing the **GND** Softkey.

Figure 4-36 Ground Mode

APPENDICES

118

STANDBY MODE (MANUAL)

NOTE: In Standby Mode, the IDENT function is inoperative.

Standby Mode can be selected at any time by pressing the **STBY** Softkey. In Standby, the transponder does not reply to interrogations, but new codes can be entered. When Standby is selected, a white STBY indication and transponder code appear in the mode field of the Transponder Data Box. In all other modes, these fields appear in green.

Figure 4-37 Standby Mode

MANUAL ON MODE

ON Mode can be selected at any time by pressing the **ON** Softkey. ON Mode generates Mode A and Mode S replies as well as transmission of acquisition and extended squitters, including ADS-B out (if equipped). Mode C altitude reporting is inhibited. In ON Mode, a green ON indication and transponder code appear in the mode field of the Transponder Data Box.

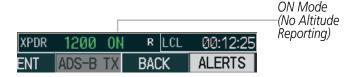


Figure 4-38 ON Mode

ALTITUDE MODE (AUTOMATIC OR MANUAL)

Altitude Mode is automatically selected when the aircraft becomes airborne. Altitude Mode may also be selected manually by pressing the **ALT** Softkey. Altitude Mode generates Mode A, Mode C, and Mode S replies as well as transmissions of acquisition and extended squitters including ADS-B out (if equipped).

If Altitude Mode is selected, a green ALT indication and transponder code appear in the mode field of the Transponder Data Box, and all transponder replies requesting altitude information are provided with pressure altitude information.

Figure 4-39 Altitude Mode

REPLY STATUS

When the transponder sends replies to interrogations, a white R indication appears momentarily in the reply status field of the Transponder Data Box.

Figure 4-40 Reply Indication

ADS-BTX (OPTIONAL)

If equipped with a GTX 33 with an extended squitter, the transmission of extended squitters containing ADS-B out information is enabled/disabled by pressing the **ADS-B TX** Softkey. ADS-B transmission defaults to enabled at each power cycle. Do not disable ADS-B transmission unless requested by ATC.

Even with the ADS-B TX enabled, transmission of extended squitters containing ADS-B out information will vary based on transponder mode.

Figure 4-40 Altitude Mode

ENTERING A TRANSPONDER CODE

Entering a transponder code with softkeys:

- 1) Press the **XPDR** Softkey to display the Transponder Mode Selection Softkeys.
- 2) Press the **CODE** Softkey to display the Transponder Code Selection Softkeys, for digit entry.
- 3) Press the digit softkeys to enter the code in the code field. When entering the code, the next softkey in sequence must be pressed within 10 seconds, or the entry is cancelled and restored to the previous code. Pressing the BKSP Softkey moves the code selection cursor to the previous digit. Five seconds after the fourth digit has been entered, the transponder code becomes active.

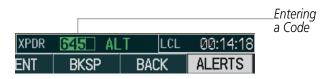


Figure 4-41 Entering a Code

Entering a transponder code with the PFD FMS Knob:

- 1) Press the **XPDR** and the **CODE** Softkeys as in the previous procedure to enable code entry.
- 2) Turn the small **FMS** Knob on the PFD to enter the first two code digits.
- 3) Turn the large FMS Knob to move the cursor to the next code field.
- **4)** Enter the last two code digits with the small **FMS** Knob.
- **5)** Press the **ENT** Key to complete code digit entry.

Pressing the **CLR** Key or small **FMS** Knob before code entry is complete cancels code entry and restores the previous code. Waiting for 10 seconds after code entry is finished activates the code automatically.

Figure 4-42 Entering a Code with the FMS Knob

GARMIN

VFR CODE

The VFR code can be entered either manually or by pressing the **XPDR** Softkey, then the **VFR** Softkey. When the **VFR** Softkey is pressed, the pre-programmed VFR code is automatically displayed in the code field of the Transponder Data Box. Pressing the **VFR** Softkey again restores the previous identification code.

The pre-programmed VFR Code is set at the factory to 1200. If a VFR code change is required, contact a Garmin-authorized service center for configuration.

Figure 4-43 VFR Code

IDENT FUNCTION

NOTE: In Standby Mode, the **IDENT** Softkey is inoperative.

Pressing the **IDENT** Softkey sends a distinct identity indication to Air Traffic Control (ATC). The indication distinguishes the identing transponder from all the others on the air traffic controller's screen. The **IDENT** Softkey appears on all levels of transponder softkeys. When the **IDENT** Softkey is pressed, a green IDNT indication is displayed in the mode field of the Transponder Data Box for a duration of 18 seconds.

After the **IDENT** Softkey is pressed while in Mode or Code Selection, the system reverts to the top-level softkeys.

Figure 4-44 IDENT Softkey and Indication

FLIGHT ID REPORTING

NOTE: If the Flight ID is required but the system is not configured for it, contact a Garmin-authorized service center for configuration.

When the Flight ID must be entered before flight operation, the identifier is placed in the Timer/References Window on the PFD. The Flight ID is not to exceed seven characters. No space is needed when entering Flight ID. When a Flight ID contains a space, the system automatically removes it upon completion of Flight ID entry.

Entering a Flight ID:

- 1) Press the TMR/REF Softkey to display the Timer/References Window.
- 2) Press the **FMS** Knob to activate the selection cursor, if not already activated.
- **3)** Turn the large **FMS** Knob to scroll down to the Flight ID.
- **4)** Turn the small **FMS** Knob to enter the desired Flight ID.
- **5)** Press the **ENT** Key to complete Flight ID entry.

If an error is made during Flight ID entry, pressing the **CLR** Key returns to the original Flight ID entry. While entering a Flight ID, turning the **FMS** Knob counterclockwise moves the cursor back one space for each detent of rotation. If an incorrect Flight ID is discovered after the unit begins operation, reenter the correct Flight ID using the same procedure.

Figure 4-45 Timer/References Window, Entering Flight ID

4.5 ADDITIONAL AUDIO PANEL FUNCTIONS

POWER-UP

The Audio Panel performs a self-test during power-up. During the self-test all Audio Panel annunciator lights illuminate for approximately two seconds. Once the self-test is completed, most of the settings are restored to those in use before the unit was last turned off.

MONO/STEREO HEADSETS

Stereo headsets are recommended for use in this aircraft.

Using a monaural headset in a stereo jack shorts the right headset channel output to ground. While this does not damage the Audio Panel, a person listening on a monaural headset hears only the left channel in both ears. If a monaural headset is used at one of the passenger positions, any other passenger using a stereo headset hears audio in the left ear only.

INTERCOM

The Audio Panel includes a four-position intercom system (ICS) for the pilot, copilot and up to two passengers. The intercom provides Pilot and Copilot isolation from the passengers and aircraft radios.

Figure 4-46 Intercom Controls

PILOT KEY Annunciator	COPLT KEY Annunciator	Pilot Hears	Copilot Hears	Passenger Hears
OFF	OFF	Selected radios, aural alerts, pilot, copilot, passengers	Selected radios, aural alerts, pilot, copilot, passengers	Selected radios, aural alerts, pilot, copilot, passengers
ON	OFF	Selected radios, aural alerts, pilot	Copilot, passengers	Copilot, passengers
OFF	ON	Selected radios, aural alerts, pilot; passengers	Copilot	Selected radios, aural alerts, pilot, passengers
ON	ON	Selected radios, aural alerts, pilot, copilot	Selected radios, aural alerts, pilot, copilot	Passengers

Table 4-1 ICS Isolation Modes

Pilot isolation is selected when the PILOT Annunciator is illuminated. During Pilot isolation, the pilot can hear the selected radios and aural alerts and warnings. The copilot and passengers can communicate with each other. The copilot is isolated from aural alerts and warnings.

Copilot isolation is selected when the COPLT Annunciator is illuminated. The copilot is isolated from the selected radios, aural alerts, and warnings, and everyone else. The pilot and passengers can hear the selected radios, aural alerts, and communicate with each other.

When both the PILOT and COPLT Annunciators are illuminated, the pilot and copilot can hear the selected radios, aural alerts, and communicate with each other. The passengers are isolated from the pilot and copilot but can communicate with each other.

When both the PILOT and COPLT Annunciators are extinguished, everyone hears the selected radios, aural alerts, and is able to communicate with everyone else.

INTERCOM VOLUME AND SQUELCH

The **PILOT/PASS** Knob controls volume or manual squelch adjustment for the pilot and copilot/passenger. The small knob controls the pilot volume and squelch. The large knob controls the copilot/passenger volume and squelch. The VOL and SQ annunciations at the bottom of the unit indicate which function the knob is controlling. Pressing the **PILOT/PASS** Knob switches between volume and squelch control as indicated by the VOL or SQ annunciation being illuminated.

The **MAN SQ** Key allows either automatic or manual control of the squelch setting.

- When the MAN SQ Annunciator is extinguished (Automatic Squelch is on), the **PILOT/PASS** Knob controls only the volume (pressing the **PILOT/PASS** Knob has no effect on the VOL/SQ selection).
- When the MAN SQ Annunciator is illuminated (Manual Squelch), the PILOT/PASS Knob controls
 either volume or squelch (selected by pressing the PILOT/PASS Knob and indicated by the VOL or SQ
 annunciation).



Figure 4-47 Volume/Squelch Control

CLEARANCE RECORDER AND PLAYER

The Audio Panel contains a digital clearance recorder that records up to 2.5 minutes of the selected COM radio signal. Recorded COM audio is stored in separate memory blocks. Once 2.5 minutes of recording time have been reached, the recorder begins recording over the stored memory blocks, starting from the oldest block.

The **PLAY** Key controls the play function. Pressing the **PLAY** Key once plays the latest recorded memory block. The PLAY Annunciator flashes to indicate when play is in progress. The PLAY Annunciator turns off after the present memory block has finished playing.

Pressing the **MKR/MUTE** Key during play of a memory block stops play. If a COM input signal is detected during play of a recorded memory block, play is halted.

Pressing the **PLAY** Key while audio is playing begins playing the previously recorded memory block. Each subsequent press of the **PLAY** Key selects the previously recorded memory block.

Powering off the unit automatically clears all recorded blocks.

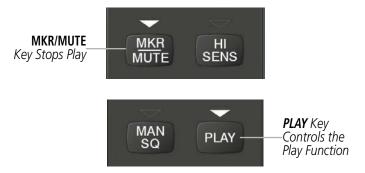


Figure 4-48 Marker Mute and Play Keys

SPLIT COM

NOTE: Split COM performance is affected by the distance between the COM antennas and the separation of the tuned frequencies. If the selected COM1 and COM2 frequencies are too close together, interference may be heard during transmission on the other radio.

During Split COM operation, both the pilot and the copilot can transmit simultaneously over separate radios. The pilot can still monitor NAV1, NAV2, ADF, DME, and MKR Audio as selected, but the copilot is only able to monitor COM2.

Pressing the **COM 1/2** Key selects Split COM operation. The COM 1/2 Annunciator is illuminated indicating Split COM operation. COM1 and COM2 frequencies are displayed in green indicating that both transceivers are active. Split COM operation is cancelled by pressing the **COM 1/2** Key again, at which time the annunciator is extinguished.

When Split COM operation is selected, COM1 is used by the pilot and COM2 is used by the copilot. The COM1 MIC Annunciator flashes when the pilot's microphone PTT is pressed. The COM2 MIC Annunciator flashes when the copilot's microphone PTT is pressed.

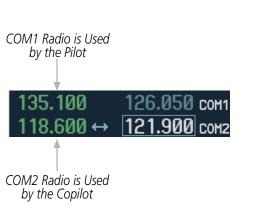


Figure 4-49 Split COM Operation

ENTERTAINMENT INPUTS

XM RADIO ENTERTAINMENT

XM Radio audio from the Data Link Receiver may be heard by the pilot and passengers simultaneously (optional: requires subscription to XM Radio Service). Refer to the Additional Features Section for more details on the Data Link Receiver.

4.6 AUDIO PANEL PREFLIGHT PROCEDURE

NOTE: If the pilot and/or copilot are using headsets that have a high/low switch or volume control knob, verify that the switch is in the high position and the volume control on the headsets are at maximum volume setting. On single-pilot flights, verify that all other headsets are not connected to avoid excess noise in the audio system.

NOTE: When the **MAN SQ** Key is pressed, the ICS squelch can be set manually by the pilot and copilot. If manual squelch is set to full open (SQ annunciated and the knobs turned counterclockwise) background noise is heard in the ICS system as well as during COM transmissions.

After powering up the G1000 System, the following steps aid in maximizing the use of the Audio Panel as well as preventing pilot and copilot induced issues. These preflight procedures should be performed each time a pilot boards the aircraft to insure awareness of all audio levels in the Audio Panel and radios.

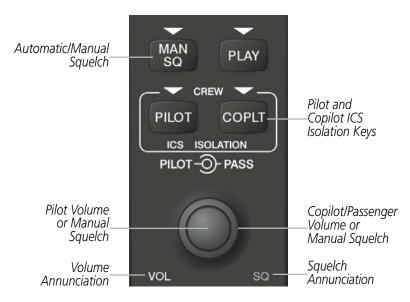


Figure 4-50 Audio Panel Controls

Setting the Audio Panel during preflight:

- 1) Verify that the PILOT and COPLT Annunciators are extinguished.
- 2) Verify manual squelch is set to full open.
- **3)** Turn the **PILOT/PASS** Knobs clockwise two full turns. This sets the intercom level to max volume (least amount of attenuation).
- 4) Adjust radio volume levels (COM, NAV) to a suitable level.
- 5) Adjust the **PILOT/PASS** Knob volume to the desired intercom level.
- 6) Reset squelch to automatic, or adjust to the appropriate level manually.

Once this procedure has been completed, the pilot and copilot can change settings, keeping in mind the notes above.

4.7 ABNORMAL OPERATION

Abnormal operation of the G1000 includes equipment failures of the G1000 components and failure of associated equipment, including switches and external devices.

STUCK MICROPHONE

If the push-to-talk (PTT) Key becomes stuck, the COM transmitter stops transmitting after 35 seconds of continuous operation. An alert appears on the PFD to advise the pilot of a stuck microphone.

The **COM1 MIC** or **COM2 MIC** Key Annunciator on the Audio Panel flashes as long as the PTT Key remains stuck.

Figure 4-51 Stuck Microphone Alert

COM TUNING FAILURE

In case of a COM system tuning failure, the emergency frequency (121.500 MHz) is automatically tuned in the radio in which the tuning failure occurred. Depending on the failure mode, a red X may appear on the frequency display.

Figure 4-52 COM Tuning Failure

AUDIO PANEL FAIL-SAFE OPERATION

If there is a failure of the Audio Panel, a fail-safe circuit connects the pilot's headset and microphone directly to the COM1 transceiver. Audio is not available on the speaker.

REVERSIONARY MODE

The red **DISPLAY BACKUP** Button selects the Reversionary Mode. See the System Overview Section for more information on Reversionary Mode.

Figure 4-53 Display Backup Button

APPENDICES

BLANK PAGE

SECTION 5 FLIGHT MANAGEMENT

5.1 INTRODUCTION

The G1000 is an integrated flight, engine, communication, navigation and surveillance system. This section of the Pilot's Guide explains flight management using the G1000.

The most prominent part of the G1000 are the two full color displays: a Primary Flight Display (PFD) and a Multi Function Display (MFD). The information to successfully navigate the aircraft using the GPS sensors is displayed on the PFD and the MFD. See examples in the Figure 5-1 and Figure 5-2. Detailed descriptions of flight management functions are discussed later in this section.

A brief description of the flight management data on the PFD and MFD follows.

Navigation mode indicates which sensor is providing the course data (e.g., GPS, VOR) and the flight plan phase (e.g., Departure (DPRT), Terminal (TERM), Enroute (ENR), Oceanic (OCN), RNAV Approach (LNAV, LNAV+V, L/VNAV, LP, LP+V, or LPV), or Missed Approach (MAPR)).

The Inset Map is a small version of the MFD Navigation Map and can be displayed in the lower left corner of the PFD. When the system is in reversionary mode, the Inset Map is displayed in the lower right corner. The Inset Map is displayed by pressing the **INSET** Softkey. Selecting the **INSET** Softkey again, then selecting the **OFF** Softkey removes the Inset Map.

The Navigation Map displays aviation data (e.g., airports, VORs, airways, airspaces), geographic data (e.g., cities, lakes, highways, borders), topographic data (map shading indicating elevation), and hazard data (e.g., traffic, terrain, weather). The amount of displayed data can be reduced by selecting the **DCLTR** Softkey. The Navigation Map can be oriented four different ways: North Up (NORTH UP), Track Up (TRK UP), Desired Track Up (DTK UP), or Heading Up (HDG UP).

An aircraft icon is placed on the Navigation Map at the location corresponding to the calculated present position. The aircraft position and the flight plan legs are accurately based on GPS calculations. The basemap upon which these are placed are from a source with less resolution, therefore the relative position of the aircraft to map features is not exact. The leg of the active flight plan currently being flown is shown as a magenta line on the navigation map. The other legs are shown in white.

There are 28 different map ranges available, from 500 feet to 2000 nm. The current range is indicated in the lower right corner of the map and represents the top-to-bottom distance covered by the map. To change the map range on any map, turn the **Joystick** counter-clockwise to zoom in (-, decreasing), or clockwise to zoom out (+, increasing).

The Direct-to Window, the Flight Plan Window, the Procedures Window, and the Nearest Airports Window can be displayed in the lower right corner of the PFD. Details of these windows are discussed in detail later in the section.

APPENDICES

Figure 5-1 GPS Navigation Information on the PFD

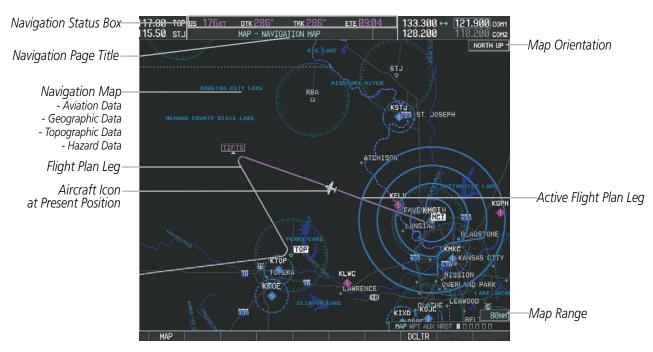


Figure 5-2 GPS Navigation Information on the MFD Navigation Page

NAVIGATION STATUS BOX

The Navigation Status Box located at the top of the PFD contains two fields displaying the following information:

- Active flight plan leg (e.g., 'D-> KICT' or 'KIXD -> KCOS') **or** flight plan annunciations (e.g., 'Turn right to 021° in 8 seconds')
- Distance (DIS) and Bearing (BRG) to the next waypoint **or** flight plan annunciations (e.g., 'TOD within 1 minute')

The symbols used in the PFD status bar are:

Symbol	Description	Symbol	Description
\rightarrow	Active Leg	Ø	Left Holding Pattern
	Direct-to	vtf	Vector to Final
	Right Procedure Turn	¢	Right DME Arc
\triangle	Left Procedure Turn	1	Left DME Arc
Ü	Right Holding Pattern		

The Navigation Status Box located at the top of the MFD contains four data fields, each displaying one of the following items:

BRG	Bearing
DIS	Distance
DTK	Desired Track
END	Endurance
ENR	ETE to Final Destination
ESA	Enroute Safe Altitude
ETA	Estimated Time of Arrival
ETE	Estimated Time Enroute
FOB	Fuel on Board
FOD	Fuel over Destination

GS	Ground Speed	
ISA	ISA Relative Temperature	
LDG	ETA at Final Destination	
MSA	Minimum Safe Altitude	
TAS	True Air Speed	
TKE	Track Angle Error	
TRK	Track	
VSR	Vertical Speed Required	
XTK	Crosstrack Error	

GS 176kt DTK 286° TRK 286° ETE Ø9:04

MFD Navigation Status Box

The navigation information displayed in the four data fields can be selected on the MFD Data Bar Fields Box on the AUX - System Setup Page. The default selections (in order left to right) are GS, DTK, TRK, and ETE.

Changing a field in the MFD Navigation Status Box:

- 1) Select the System Setup Page.
- 2) Press the **FMS** Knob momentarily to activate the flashing cursor.
- 3) Turn the large **FMS** Knob to highlight the desired field number in the MFD Data Bar Fields Box.
- **4)** Turn the small **FMS** Knob to display and scroll through the data options list.
- **5)** Select the desired data.
- **6)** Press the **ENT** Key. Pressing the **DFLTS** Softkey returns all fields to the default setting.

5.2 USING MAP DISPLAYS

Map displays are used extensively in the G1000 to provide situational awareness in flight. Most G1000 maps can display the following information:

- Airports, NAVAIDs, airspaces, airways, land data (highways, cities, lakes, rivers, borders, etc.) with names
- Map range
- •Wind direction and speed
- Map orientation
- Icons for enabled map features
- Aircraft icon (representing present position)
- Nav range ring
- Fuel range ring

- Map Pointer information (distance and bearing to pointer, location of pointer, name, and other pertinent information)
- Flight plan legs
- User waypoints
- Track vector
- Topography scale
- Topography data
- Obstacle data

The information in this section applies to the following maps unless otherwise noted:

- All Map Group Pages (MAP)
- All Waypoint Group Pages (WPT)
- AUX Trip Planning
- All Nearest Group Pages (NRST)

- Flight Plan Pages (FPL)
- Direct-to Window
- PFD Inset Map
- Procedure Loading Pages

MAP ORIENTATION

Maps are shown in one of four different orientation options, allowing flexibility in determining aircraft position relative to other items on the map (north up) or for determining where map items are relative to where the aircraft is going (track up, desired track up, or heading up). The map orientation is shown in the upper right corner of the map.

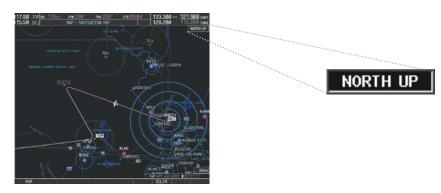


Figure 5-3 Map Orientation

- North up (NORTH UP) aligns the top of the map display to north (default setting).
- Track up (TRK UP) aligns the top of the map display to the current ground track.
- \bullet Desired track up (DTK UP) aligns the top of the map display to the desired course.
- Heading up (HDG UP) aligns the top of the map display to the current aircraft heading.

NOTE: When panning or reviewing active flight plan legs in a non-North Up orientation, the map does not show the map orientation nor the wind direction and speed.

NOTE: Map orientation can only be changed on the Navigation Map Page. Any other displays that show navigation data reflect the orientation selected for the Navigation Map Page.

Changing the Navigation Map orientation:

1) With the Navigation Map Page displayed, press the **MENU** Key. The cursor flashes on the 'Map Setup' option.

Figure 5-4 Navigation Map Page Menu Window

- 2) Press the ENT Key to display the Map Setup Window.
- **3)** Turn the large **FMS** Knob, or press the **ENT** Key once, to select the 'ORIENTATION' field.

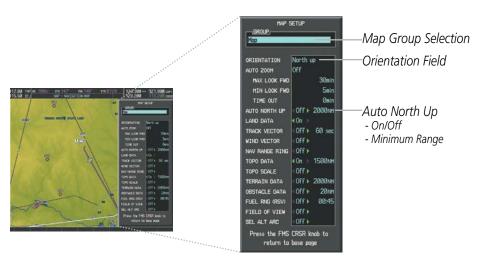


Figure 5-5 Map Setup Menu Window - Map Group

- **4)** Turn the small **FMS** Knob to select the desired orientation.
- **5)** Press the **ENT** Key to select the new orientation.
- **6)** Press the **FMS** Knob to return to the base page.

The map can be configured to switch automatically to a north up orientation when the map range reaches a minimum range.

Enabling/disabling Auto North Up and selecting the minimum switching range:

- 1) Press the **MENU** Key with the Navigation Map Page displayed. The cursor flashes on the 'Map Setup' option.
- 2) Press the ENT Key. The Map Setup Menu is displayed.
- 3) Select the 'Map' group.
- 4) Press the ENT Key.
- 5) Highlight the 'AUTO NORTH UP' field.
- 6) Select 'On' or 'Off' using the small **FMS** Knob.
- 7) Press the **ENT** Key to accept the selected option. The flashing cursor highlights the range field.
- 8) Use the small **FMS** Knob to select the desired range.
- 9) Press the ENT Key to accept the selected option.
- 10) Press the FMS Knob to return to the Navigation Map Page.

MAP RANGE

There are 28 different map ranges available, from 500 feet to 2000 nm. The current range is indicated in the lower right corner of the map and represents the top-to-bottom distance covered by the map. When the map range is decreased to a point that exceeds the capability of the G1000 to accurately represent the map, a magnifying glass icon is shown to the left of the map range. To change the map range turn the **Joystick** counter-clockwise to decrease the range, or clockwise to increase the range.

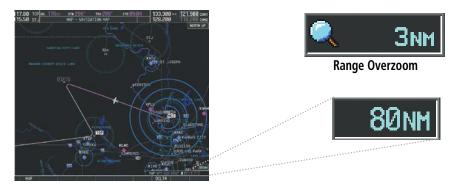


Figure 5-6 Map Range

AUTO ZOOM

Auto zoom allows the G1000 to change the map display range to the smallest range clearly showing the active waypoint. Auto zoom can be overridden by adjusting the range with the Joystick, and remains until the active waypoint changes, a terrain or traffic alert occurs, the aircraft takes off, or the manual override times out (timer set on Map Setup Window).

If a terrain caution or warning occurs, all navigation maps automatically adjust to the smallest map range clearly showing the potential impact points If a new traffic advisory alert occurs, any map page capable of

displaying traffic advisory alerts automatically adjusts to the smallest map range clearly showing the traffic advisory. When terrain or traffic alerts clear, the map returns to the previous auto zoom range based on the active waypoint.

The auto zoom function can be turned on or off independently for the PFDs and MFD. Control of the ranges at which the auto zoom occurs is done by setting the minimum and maximum 'look forward' times (set on the Map Setup Window for the Map Group). These settings determines the minimum and maximum distance to display based upon the aircraft's ground speed.

- Waypoints that are long distances apart cause the map range to increase to a point where many details on the map are decluttered. If this is not acceptable, lower the maximum look ahead time to a value that limits the auto zoom to an acceptable range.
- Waypoints that are very short distances apart cause the map range to decrease to a point where situational awareness may not be what is desired. Increase the minimum look ahead time to a value that limits the auto zoom to a minimum range that provides acceptable situational awareness.
- Flight plans that have a combination of long and short legs cause the range to increase and decrease as waypoints sequence. To avoid this, auto zoom can be disabled or the maximum/minimum times can be adjusted.
- The 'time out' time (configurable on the Map Setup Page for the Map Group) determines how long auto zoom is overridden by a manual adjustment of the range knob. At the expiration of this time, the auto zoom range is restored. Setting the 'time out' value to zero causes the manual override to never time out.
- When the maximum 'look forward' time is set to zero, the upper limit becomes the maximum range available (2000 nm).
- When the minimum 'look forward' time is set to zero, the lower limit becomes 1.5 nm.

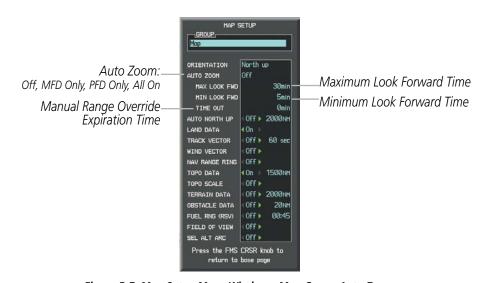


Figure 5-7 Map Setup Menu Window - Map Group, Auto Zoom

Configuring automatic zoom:

- 1) Press the **MENU** Key with the Navigation Map Page displayed. The cursor flashes on the 'Map Setup' option.
- **2)** Press the **ENT** Key. The Map Setup Menu is displayed.
- **3)** Select the 'Map' group.

- **4)** Press the **ENT** Key.
- 5) Highlight the 'AUTO ZOOM' field.
- 6) Select 'Off', 'MFD Only', 'PFD Only', or 'ALL On'.
- 7) Press the **ENT** Key to accept the selected option. The flashing cursor highlights the 'MAX LOOK FWD' field. Times are from zero to 999 minutes.
- 8) Use the **FMS** Knobs to set the time. Press the **ENT** Key.
- 9) Repeat step 8 for 'MIN LOOK FWD' (zero to 99 minutes) and 'TIME OUT' (zero to 99 minutes).
- **10)** Press the **FMS** Knob to return to the Navigation Map Page.

MAP PANNING

Map panning allows the pilot to:

- View parts of the map outside the displayed range without adjusting the map range
- Highlight and select locations on the map
- Review information for a selected airport, NAVAID or user waypoint
- Designate locations for use in flight planning
- View airspace and airway information

When the panning function is selected by pressing the **Joystick**, the Map Pointer flashes on the map display. A window also appears at the top of the map display showing the latitude/longitude position of the pointer, the bearing and distance to the pointer from the aircraft's present position, and the elevation of the land at the position of the pointer.

Map Pointer Information

Figure 5-8 Navigation Map - Map Pointer Activated

NOTE: The map is normally centered on the aircraft's position. If the map has been panned and there has been no pointer movement for about 60 seconds, the map reverts back to centered on the aircraft position and the flashing pointer is removed.

When the Map Pointer is placed on an object, the name of the object is highlighted (even if the name was not originally displayed on the map). When any map feature or object is selected on the map display, pertinent information is displayed.

Figure 5-9 Navigation Map - Map Pointer on Point of Interest

APPENDICES

When the Map Pointer crosses an airspace boundary, the boundary is highlighted and airspace information is shown at the top of the display. The information includes the name and class of airspace, the ceiling in feet above Mean Sea Level (MSL), and the floor in feet MSL.

Figure 5-10 Navigation Map - Map Pointer on Airspace

Panning the map:

- 1) Press the **Joystick** to display the Map Pointer.
- 2) Move the **Joystick** to move the Map Pointer around the map.
- 3) Press the **Joystick** to remove the Map Pointer and recenter the map on the aircraft's current position.

Reviewing information for an airport, NAVAID, or user waypoint:

- 1) Place the Map Pointer on a waypoint.
- 2) Press the ENT Key to display the Waypoint Information Page for the selected waypoint.
- 3) Press the **GO BACK** Softkey, the **CLR** Key, or the **ENT** Key to exit the Waypoint Information Page and return to the Navigation Map showing the selected waypoint.

Figure 5-11 Navigation Map - Information Window - NAVAID

APPENDICES

Viewing airspace information for a special-use or controlled airspace:

- 1) Place the Map Pointer on an open area within the boundaries of an airspace.
- 2) Press the ENT Key to display an options menu.
- 3) 'Review Airspaces' should already be highlighted, if not select it. Press the **ENT** Key to display the Airspace Information Page for the selected airspace.
- 4) Press the CLR or ENT Key to exit the Airspace Information Page.

Figure 5-12 Navigation Map - Information Window - Airspace

MEASURING BEARING AND DISTANCE

Distance and bearing from the aircraft's present position to any point on the viewable navigation map may be calculated using the 'Measure Bearing and Distance' selection from Navigation Map page menu. The bearing and distance tool displays a dashed Measurement Line and a Measure Pointer to aid in graphically identifying points with which to measure. Lat/Long, distance and elevation data for the Measure Pointer is provided in a window at the top of the navigation map.

Measuring bearing and distance between any two points:

- 1) Press the **MENU** Key (with the Navigation Map Page displayed).
- 2) Highlight the 'Measure Bearing/Distance' field.
- 3) Press the **ENT** Key. A Measure Pointer is displayed on the map at the aircraft's present position.
- 4) Move the **Joystick** to place the reference pointer at the desired location. The bearing and distance are displayed at the top of the map. Elevation at the current pointer position is also displayed. Pressing the **ENT** Key changes the starting point for measuring.
- **5)** To exit the Measure Bearing/Distance option, press the **Joystick**; or select 'Stop Measuring' from the Page Menu and press the **ENT** Key.

Figure 5-13 Navigation Map - Measuring Bearing and Distance

TOPOGRAPHY

All navigation maps can display various shades of topography colors representing land elevation, similar to aviation sectional charts. Topographic data can be displayed or removed as described in the following procedures. Topographic data can also be displayed on the selectable profile map at the bottom of the navigation map.

Displaying/removing Profile View

- 1) From the Navigation Map Page, press the MAP Softkey.
- 2) Press the **PROFILE** Softkey to enable or disable Profile View.

Or:

- 1) Press the **MENU** Key.
- Select 'Show Profile View' or 'Hide Profile View' and press the ENT Key.

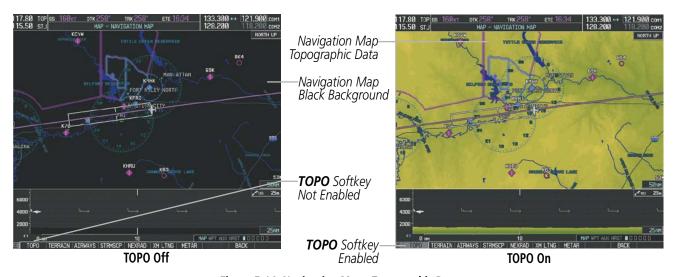


Figure 5-14 Navigation Map - Topographic Data

Displaying/removing topographic data on all pages displaying navigation maps:

- 1) Press the **MAP** Softkey (the **INSET** Softkey for the PFD Inset Map).
- **2)** Press the **TOPO** Softkey.
- **3)** Press the **TOPO** Softkey again to remove topographic data from the Navigation Map. When topographic data is removed from the page, all navigation data is presented on a black background.

Displaying/removing topographic data (TOPO DATA) using the Navigation Map Page Menu:

- 1) Press the **MENU** Key with the Navigation Map Page displayed. The cursor flashes on the 'Map Setup' option.
- 2) Press the ENT Key. The Map Setup Menu is displayed.
- **3)** Select the 'Map' group.
- 4) Press the ENT Key.
- 5) Highlight the 'TOPO DATA' field.

- 6) Select 'On' or 'Off'.
- 7) Press the **FMS** Knob to return to the Navigation Map Page.

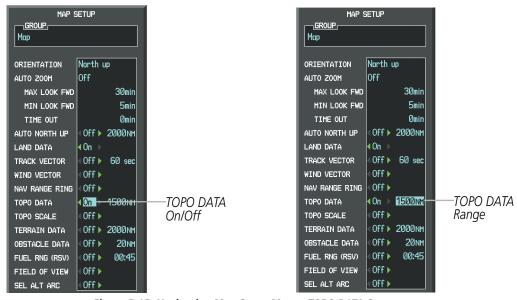


Figure 5-15 Navigation Map Setup Menu - TOPO DATA Setup

The topographic data range is the maximum map range on which topographic data is displayed.

NOTE: Since the PFD Inset Map is much smaller than the MFD navigation maps, items are removed on the PFD Inset Map two range levels smaller than the range selected in the Map Setup pages (e.g., a setting of 100 nm removes the item at ranges above 100 nm on MFD navigation maps, while the PFD Inset Map removes the same item at 50 nm).

Selecting a topographical data range (TOPO DATA):

- 1) Press the **MENU** Key with the Navigation Map Page displayed. The cursor flashes on the 'Map Setup' option.
- 2) Press the **ENT** Key. The Map Setup Menu is displayed.
- **3)** Select the 'Map' group.
- **4)** Press the **ENT** Key.
- **5)** Highlight the 'TOPO DATA' range field. TOPO ranges are from 500 ft to 2000 nm.
- **6)** To change the TOPO range setting, turn the small **FMS** Knob to display the range list.
- **7)** Select the desired range using the small **FMS** Knob.
- **8)** Press the **ENT** Key.
- **9)** Press the **FMS** Knob to return to the Navigation Map Page.

In addition, the Navigation Map can display a topographic scale (located in the lower right hand side of the map) showing a scale of the terrain elevation and current elevation values.

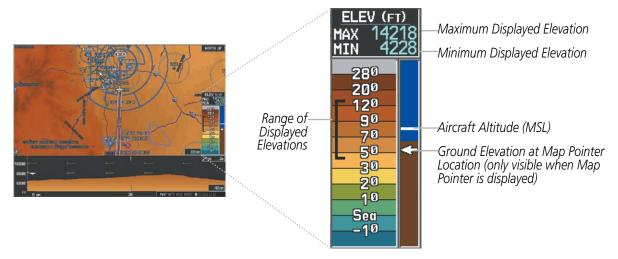


Figure 5-16 Navigation Map - TOPO SCALE

Displaying/removing the topographic scale (TOPO SCALE):

- 1) Press the **MENU** Key with the Navigation Map Page displayed. The cursor flashes on the 'Map Setup' option.
- 2) Press the ENT Key. The Map Setup Menu is displayed.
- **3)** Select the 'Map' group and select the **ENT** Key.
- 4) Highlight the 'TOPO SCALE' field.
- 5) Select 'On' or 'Off'.
- 6) Press the FMS Knob to return to the Navigation Map Page.

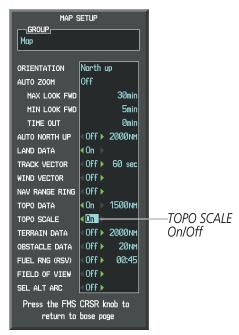


Figure 5-17 Navigation Map Setup Menu - TOPO SCALE Setup

MAP SYMBOLS

This section discusses the types of land and aviation symbols that can be displayed. Each listed type of symbol can be turned on or off, and the maximum range to display each symbol can be set. The decluttering of the symbols from the map using the **DCLTR** Softkey is also discussed.

LAND SYMBOLS

The following items are configured on the land menu:

Land Symbols (Text label size can be None, Small, Medium (Med), or Large (Lrg))	Symbol	Default Range (nm)	Maximum Range (nm)
Latitude/Longitude (LAT/LON)		Off	2000
Highways and Roads			
Interstate Highway (FREEWAY)	\tilde{\	300	800
International Highway (FREEWAY)		300	800
US Highway (NATIONAL HWY)	Ü	30	80
State Highway (LOCAL HWY)		15	30
Local Road (LOCAL ROAD)	N/A	8	15
Railroads (RAILROAD)	*********	15	30
LARGE CITY (> 200,000)	•	800	1500
MEDIUM CITY (> 50,000)	0	100	200
SMALL CITY (> 5,000)	•	20	50
States and Provinces (STATE/PROV)	ST/PRV BORDER	800	1500
Rivers and Lakes (RIVER/LAKE)	~~	200	500
USER WAYPOINT		150	300

Table 5-1 Land Symbol Information

APPENDICES

AVIATION SYMBOLS

The following items are configured on the aviation menu:

Aviation Symbols (Text label size can be None, Small, Medium (Med), or Large (Lrg))	Symbol	Default Range (nm)	Maximum Range (nm)
Active Flight Plan Leg (ACTIVE FPL)		2000	2000
Non-active Flight Plan Leg (ACTIVE FPL)		2000	2000
Active Flight Plan Waypoint (ACTIVE FPL WPT)	See Airports, NAVAIDs	2000	2000
Large Airports (LARGE APT) (Longest Runway ≥ 8100 ft)		250	500
Medium Airports (MEDIUM APT) (8100 ft > Longest Runway ≥ 5000 ft)		150	300
Small Airports (SMALL APT) (Longest Runway < 5000 ft) (Medium Airport if it has a tower frequency)	# QO	50	100
Taxiways (SAFETAXI)	See Additional Features	3	20
Runway Extension (RWY EXTENSION)	N/A	Off	100
Intersection (INT WAYPOINT)		15	30
Non-directional Beacon (NDB WAYPOINT)	©	15	30
VOR (VOR WAYPOINT)	● 20 10 40	150	300
Class B Airspace/TMA (CLASS B/TMA)		200	500
Class C Airspace/TCA (CLASS C/TCA)		200	500
Class D Airspace (CLASS D)		150	300
Restricted Area (RESTRICTED)		200	500
Military Operations Area [MOA(MILITARY)]		200	500
Other/Air Defense Interdiction Zone (OTHER/ADIZ)		200	500
Temporary Flight Restriction (TFR)		500	2000

Table 5-2 Aviation Symbol Information

SYMBOL SETUP

All pages with maps can display land symbols (roads, lakes, borders, etc). Land symbols can be removed totally (turned off).

Displaying/removing all land symbols:

- 1) Press the **MENU** Key with the Navigation Map Page displayed. The Page Menu is displayed and the cursor flashes on the 'Map Setup' option.
- 2) Press the ENT Key. The Map Setup Group Menu is displayed and the cursor flashes on the 'Map' option.
- 3) Highlight the 'LAND DATA' field.
- 4) Select 'On' or 'Off'.
- **5)** Press the **FMS** Knob to return to the Navigation Map Page.

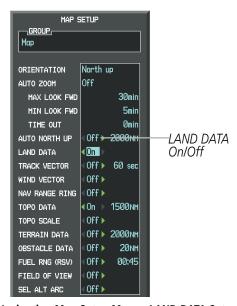


Figure 5-18 Navigation Map Setup Menu - LAND DATA Setup

The label size (TEXT) sets the size at which labels appear on the display (none, small, medium, and large). The range (RNG) sets the maximum range at which items appear on the display.

Selecting a 'Land' or 'Aviation' group item text size and range:

- 1) Press the **MENU** Key with the Navigation Map Page displayed. The cursor flashes on the 'Map Setup' option.
- 2) Press the ENT Key. The Map Setup Menu is displayed.
- **3)** Select the 'Land' or 'Aviation' group.
- **4)** Press the **ENT** Key. The cursor flashes on the first field.
- **5)** Select the desired land option.
- **6)** Select the desired text size.
- **7)** Press the **ENT** Key to accept the selected size.

- **8)** Select the desired range.
- 9) Press the ENT Key to accept the selected range.
- **10)** Press the **FMS** Knob to return to the Navigation Map Page.

Figure 5-19 Navigation Map Setup Menu - LAND GROUP Setup

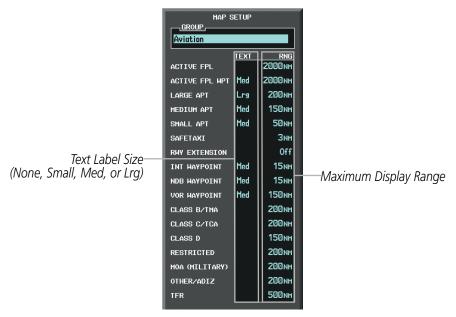


Figure 5-20 Navigation Map Setup Menu - AVIATION GROUP Setup


NOTE: Since the PFD Inset Map is much smaller than the MFD navigation maps, items are removed on the PFD Inset Map two range levels smaller than the range selected in the Map Setup pages (e.g., a setting of 100 nm removes the item at ranges above 100 nm on MFD navigation maps, while the PFD Inset Map removes the same item at 50 nm).

APPENDICES

MAP DECLUTTER

The declutter feature allows the pilot to progressively step through four levels of removing map information. The declutter level is displayed in the **DCLTR** Softkey and next to the Declutter Menu Option.

Navigation Map Page Menu

Figure 5-21 Navigation Map - Declutter Level Indications

Decluttering the map:

Select the **DCLTR** Softkey with the Navigation Map Page displayed. The current declutter level is shown. With each softkey selection, another level of map information is removed.

Or:

- 1) Press the **MENU** Key with the Navigation Map Page displayed.
- 2) Select 'Declutter'. The current declutter level is shown.
- 3) Press the ENT Key.

Decluttering the PFD Inset Map:

- 1) Press the **INSET** Softkey.
- 2) Select the **DCLTR** Softkey. The current declutter level is shown. With each selection, another level of map information is removed.

Table 5-3 lists the items that are decluttered at each map detail level. The 'X' represents map items decluttered for each level of detail.

Item	Declutter-1	Declutter-2	Declutter-3
Data Link Radar Precipitation			Х
Data Link Lightning			Х
Graphical METARs			Х
Airports			Х
Safe Taxi			Х
Runway Labels			Х
TFRs			Х
Restricted			Χ
MOA (Military)			Х
User Waypoints		Χ	Х
Latitude/Longitude Grid		Χ	Χ
NAVAIDs (does not declutter if used to define airway)		Χ	Х
Intersections (does not declutter if used to define airway)		Χ	Χ
Class B Airspaces/TMA		Χ	Х
Class C Airspaces/TCA		Χ	Х
Class D Airspaces		Χ	Χ
Other Airspaces/ADIZ		Χ	Х
Obstacles		Χ	Х
Cities	Χ	Χ	Χ
Roads	Χ	Χ	Х
Railroads	Х	Χ	Χ
State/Province Boundaries	Х	Х	Х

Table 5-3 Navigation Map Items Decluttered for each Detail Level

AIRWAYS

This airways discussion is based upon the North American airway structure. The airway structure in places other than North America vary by location, etc. and are not discussed in this book. Low Altitude Airways (or Victor Airways) primarily serve smaller piston-engine, propeller-driven airplanes on shorter routes and at lower altitudes. Airways are eight nautical miles wide and start 1,200 feet above ground level (AGL) and extend up to 18,000 feet mean sea level (MSL). Low Altitude Airways are designated with a "V" before the airway number (hence the name "Victor Airways") since they run primarily between VORs.

High Altitude Airways (or Jet Routes) primarily serve airliners, jets, turboprops, and turbocharged piston aircraft operating above 18,000 feet MSL. Jet Routes start at 18,000 feet MSL and extend upward to 45,000 feet MSL (altitudes above 18,000 feet are called "flight levels" and are described as FL450 for 45,000 feet MSL). Jet Routes are designated with a "J" before the route number.

Low Altitude Airways are drawn in gray (the same shade used for roads). High Altitude Airways are drawn in green. When both types of airways are displayed, High Altitude Airways are drawn on top of Low Altitude Airways.

When airways are selected for display on the map, the airway waypoints (VORs, NDBs and Intersections) are also displayed.

Figure 5-22 Airways on MFD Navigation Page

Airways may be displayed on the map at the pilot's discretion using either a combination of **AIRWAYS** Softkey presses, or menu selections using the **MENU** Key from the Navigation Map Page. The Airway range can also be programmed to only display Airways on the MFD when the map range is at or below a specific number.

Displaying/removing airways:

- 1) Select the MAP Softkey.
- 2) Select the **AIRWAYS** Softkey. Both High and Low Altitude Airways are displayed (AIRWY ON).
- 3) Select the softkey again to display Low Altitude Airways only (AIRWY LO).
- 4) Select the softkey again to display High Altitude Airways only (AIRWY HI).
- 5) Select the softkey again to remove High Altitude Airways. No airways are displayed (AIRWAYS).

Or:

- 1) Press the **MENU** Key with the Navigation Map Page displayed. The cursor flashes on the 'Map Setup' option.
- 2) Press the ENT Key. The Map Setup Menu is displayed.
- **3)** Turn the small **FMS** Knob to select the 'Airways' group, and press the **ENT** Key.
- **4)** Turn the large **FMS** Knob to highlight the 'AIRWAYS' field.
- 5) Turn the FMS Knob to select 'Off', 'All', 'LO Only', or 'HI Only', and press the ENT Key.
- **6)** Press the **FMS** Knob to return to the Navigation Map Page.

Figure 5-23 Navigation Map Setup Menu - AIRWAYS Setup

The airway range is the maximum map range on which airways are displayed.

Selecting an airway range (LOW ALT AIRWAY or HI ALT AIRWAY):

- 1) Press the **MENU** Key with the Navigation Map Page displayed. The cursor flashes on the 'Map Setup' option.
- 2) Press the ENT Key. The Map Setup Menu is displayed.
- **3)** Turn the small **FMS** Knob to select the 'Airways' group and press the **ENT** Key.
- 4) Highlight the 'LOW ALT AIRWAY' or 'HI ALT AIRWAY' range field.
- 5) To change the range setting, turn the small **FMS** Knob to display the range list.
- **6)** Select the desired range using the small **FMS** Knob.
- **7)** Press the **ENT** Key.
- **8)** Press the **FMS** Knob to return to the Navigation Map Page.

The following range items are configurable on the airways menu:

Airway Type	Symbol	Default Range (nm)	Maximum Range (nm)
Low Altitude Airway (LOW ALT AIRWAY)	V4	200	500
High Altitude Airway (HI ALT AIRWAY)	J24	300	500

Table 5-4 Airway Range Information

TRACK VECTOR

The Navigation Map can display a track vector that is useful in minimizing track angle error. The track vector is a solid cyan line segment extended to a predicted location. The track vector look-ahead time is selectable (30 sec, 60 sec (default), 2 min, 5 min, 10 min, 20 min) and determines the length of the track vector. The track vector shows up to 90 degrees of a turn for the 30 and 60 second time settings.

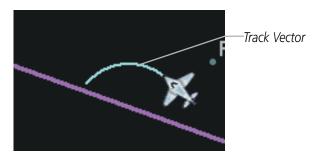


Figure 5-24 Navigation Map -Track Vector

Displaying/removing the track vector:

- 1) Press the **MENU** Key with the Navigation Map Page displayed. The cursor flashes on the 'Map Setup' option.
- 2) Press the ENT Key. The Map Setup Menu is displayed.
- 3) Select the 'Map' group.
- **4)** Press the **ENT** Key.
- 5) Highlight the 'TRACK VECTOR' field.
- 6) Select 'On' or 'Off'. Press the **ENT** Key to accept the selected option. The flashing cursor highlights the look ahead time field. Use the **FMS** Knob to select the desired time. Press the **ENT** Key.
- **7)** Press the **FMS** Knob to return to the Navigation Map Page.

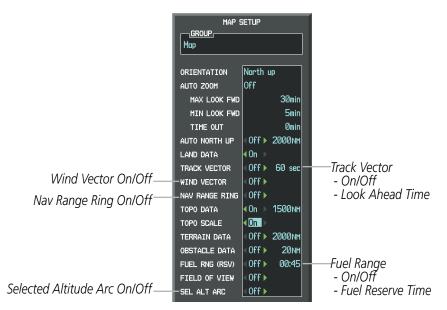


Figure 5-25 Navigation Map Setup Menu -TRACK VECTOR, WIND VECTOR, NAV RANGE RING, FUEL RANGE RING, SELECTED ALTITUDE ARC Setup

WIND VECTOR

The map displays a wind vector arrow in the upper right-hand portion of the screen. Wind vector information is displayed as a white arrow pointing in the direction in which the wind is moving for wind speeds greater than or equal to 1 kt.

Figure 5-26 Navigation Map - Wind Vector

NOTE: The wind vector is not displayed until the aircraft is moving. It is not displayed on the Waypoint Information pages.

Displaying/removing the wind vector:

- 1) Press the **MENU** Key with the Navigation Map Page displayed. The cursor flashes on the 'Map Setup' option.
- 2) Press the ENT Key. The Map Setup Menu is displayed.
- **3)** Select the 'Map' group.
- **4)** Press the **ENT** Key.
- 5) Highlight the 'WIND VECTOR' field.
- Select 'On' or 'Off'.
- 7) Press the **FMS** Knob to return to the Navigation Map Page.

NAV RANGE RING

The Nav Range Ring shows the direction of travel (ground track) on a rotating compass card. The range is determined by the map range. The range is 1/4 of the map range (e.g., 37.5 nm on a 150 nm map).

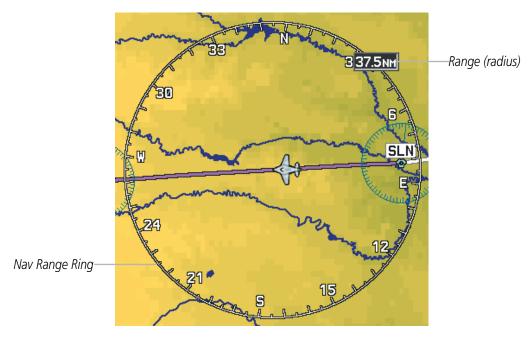


Figure 5-27 Navigation Map - Nav Range Ring

NOTE: The Nav Range Ring is not displayed on the Waypoint Information pages, Nearest pages, or Direct-to Window map.

Displaying/removing the Nav Range Ring:

- 1) Press the **MENU** Key with the Navigation Map Page displayed. The cursor flashes on the 'Map Setup' option.
- 2) Press the ENT Key. The Map Setup Menu is displayed.
- **3)** Select the 'Map' group.
- 4) Press the ENT Key.
- **5)** Highlight the 'NAV RANGE RING' field.
- 6) Select 'On' or 'Off'.
- **7)** Press the **FMS** Knob to return to the Navigation Map Page.

NOTE: The Nav Range Ring is referenced to either magnetic or true north, based on the selection on the AUX - System Setup Page.

FUEL RANGE RING

The map can display a fuel range ring which shows the remaining flight distance. A dashed green circle indicates the selected range to reserve fuel. A solid green circle indicates the total endurance range. If only reserve fuel remains, the range is indicated by a solid yellow circle.

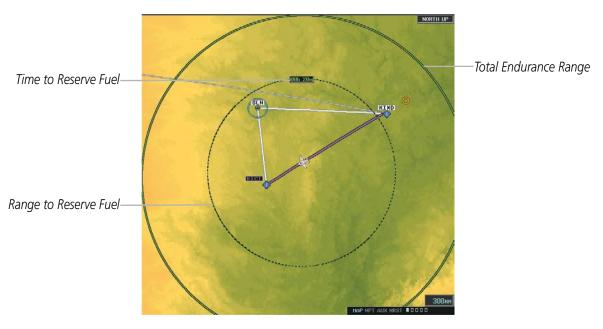


Figure 5-28 Navigation Map - Fuel Range Ring

Displaying/removing the fuel range ring and selecting a fuel range time:

- 1) Press the **MENU** Key with the Navigation Map Page displayed. The cursor flashes on the 'Map Setup' option.
- **2)** Press the **ENT** Key. The Map Setup Menu is displayed.
- 3) Select the 'Map' group.
- 4) Press the ENT Key.
- 5) Highlight the 'FUEL RNG (RSV)' field.
- 6) Select 'On' or 'Off'.
- 7) Highlight the fuel reserve time field. This time should be set to the amount of flight time equal to the amount of fuel reserve desired.
- **8)** To change the reserve fuel time, enter a time (00:00 to 23:59; hours:minutes). The default setting is 00:45 minutes.
- 9) Press the ENT Key.
- **10)** Press the **FMS** Knob to return to the Navigation Map Page.

FIELD OF VIEW (SVT)

The map can display the boundaries of the PFD Synthetic Vision Technology (SVT) lateral field of view. The field of view is shown as two dashed lines forming a V shape in front of the aircraft symbol on the map. This is only available if SVT is installed on the aircraft.

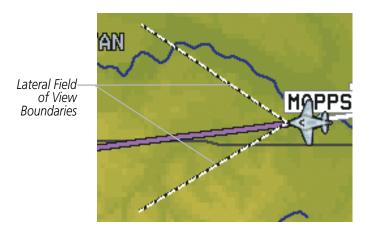


Figure 5-29 Navigation Map - Field of View

Displaying/removing the field of view:

- 1) Press the **MENU** Key with the Navigation Map Page displayed. The cursor flashes on the 'Map Setup' option.
- 2) Press the ENT Key. The Map Setup Menu is displayed.
- 3) Select the 'Map' group.
- **4)** Press the **ENT** Key.
- 5) Highlight the 'FIELD OF VIEW' field.
- 6) Select 'On' or 'Off'.
- **7)** Press the **ENT** Key.
- 8) Press the **FMS** Knob to return to the Navigation Map Page.

APPENDICES

SELECTED ALTITUDE INTERCEPT ARC

The map can display the location along the current track where the aircraft will intercept the selected altitude. The location will be shown as a cyan arc when the aircraft is actually climbing or descending.

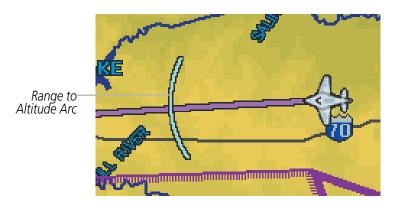


Figure 5-30 Navigation Map - Range to Altitude Arc

Displaying/removing the selected altitude intercept arc:

- 1) Press the **MENU** Key with the Navigation Map Page displayed. The cursor flashes on the 'Map Setup' option.
- 2) Press the ENT Key. The Map Setup Menu is displayed.
- **3)** Select the 'Map' group.
- 4) Press the ENT Key.
- 5) Highlight the 'SEL ALT ARC' field.
- 6) Select 'On' or 'Off'.
- 7) Press the **FMS** Knob to return to the Navigation Map Page.

5.3 WAYPOINTS

Waypoints are predetermined geographical positions (internal database) or pilot-entered positions, and are used for all phases of flight planning and navigation.

Communication and navigation frequencies can be tuned "automatically" from various Waypoint Information (WPT) pages, Nearest (NRST) pages, and the Nearest Airports Window (on PFD). This auto-tuning feature simplifies frequency entry over manual tuning. Refer to the Audio Panel and CNS section for details on autotuning.

Waypoints can be selected by entering the ICAO identifier, entering the name of the facility, or by entering the city name. See the System Overview section for detailed instructions on entering data in the G1000. As a waypoint identifier, facility name, or location is entered, the G1000's Spell'N'FindTM feature scrolls through the database, displaying those waypoints matching the characters which have been entered to that point. A direct-to navigation leg to the selected waypoint can be initiated by pressing the **Direct-to** Key on any of the waypoint pages.

Figure 5-31 Waypoint Information Window

If duplicate entries exist for the entered facility name or location, additional entries may be viewed by continuing to turn the small **FMS** Knob during the selection process. If duplicate entries exist for an identifier, a Duplicate Waypoints Window is displayed when the **ENT** Key is pressed.

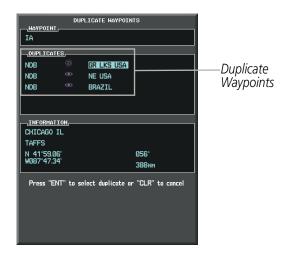


Figure 5-32 Waypoint Information Window - Duplicate Identifier

AIRPORTS

NOTE: 'North Up' orientation on the Airport Information Page cannot be changed; the pilot needs to be aware of proper orientation if the Navigation Map orientation is different from the Airport Information Page Map.

The Airport Information Page is the first page in WPT group and allows the pilot to view airport information, load frequencies (COM, NAV, and lighting), review runways, and review instrument procedures that may be involved in the flight plan. See the Audio Panel and CNS Section for more information on loading frequencies (auto-tuning). After engine startup, the Airport Information Page defaults to the airport where the aircraft is located. After a flight plan has been loaded, it defaults to the destination airport. On a flight plan with multiple airports, it defaults to the airport which is the current active waypoint.

In addition to displaying a map of the currently selected airport and surrounding area, the Airport Information Page displays airport information in three boxes labeled 'AIRPORT', 'RUNWAYS', and 'FREQUENCIES'. For airports with multiple runways, information for each runway is available. This information is viewed on the Airport Information Page by pressing the INFO softkey until **INFO-1** is displayed.



Figure 5-33 Airport Information Page

The following descriptions and abbreviations are used on the Airport Information Page:

- Usage type: Public, Military, Private, or Heliport
- Runway surface type: Hard, Turf, Sealed, Gravel, Dirt, Soft, Unknown, or Water
- Runway lighting type: No Lights, Part Time, Full Time, Unknown, or PCL Freq (for pilot-controlled lighting)
- COM Availability: TX (transmit only), RX (receive only), PT (part time), i (additional information available)

GARMIN

APPENDICES

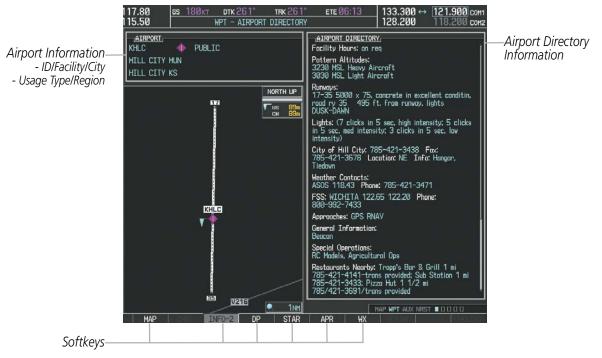


Figure 5-34 Airport Directory Page Example

The airort directory information is viewed on the Airport Directory Page by pressing the INFO softkey until **INFO-2** is displayed. The following are types of airport directory information shown (if available) on the Airport Directory Page:

- **Airport**: Identifier, Site Number, Name, City, State
- Phones: Phone/Fax Numbers
- Hours: Facility Hours, Light Hours, Tower Hours, Beacon Hours
- **Location**: Sectional, Magnetic Variation
- **Frequencies**: Type/Frequency
- **Transportation**: Ground Transportation Type Available
- Approach: Approach Facility Name, Frequency, Frequency Parameter

- Traffic Pattern Altitudes (TPA): Aircraft Class/Altitude
- **Weather**: Service Type, Frequency, Phone Number
- **Flight Service Station (FSS)**: FSS Name, Phone Numbers
- Instrument Approaches:
 Published Approach,
 Frequency
- NAVAIDS: Type, Identifier, Frequency, Radial, Distance
- **Noise**: Noise Abatement Procedures
- Charts: Low Altitude Chart Number

- Runway: Headings, Length, Width, Obstructions, Surface
- Obstructions: General Airport Obstructions
- Special Operations at Airport
- **Services Available**: Category, Specific Service
- Notes: Airport Notes
- **Pilot Controlled Lighting**: High/Med/Low Clicks/Second
- **FBO**: Type, Frequencies, Services, Fees, Fuel, Credit Cards, Phone/Fax Numbers

Selecting an airport for review by identifier, facility name, or location:

- **1)** From the Airport Information Page, press the **FMS** Knob.
- 2) Use the **FMS** Knobs and enter an identifier, facility name, or location.
- **3)** Press the **ENT** Key.
- **4)** Press the **FMS** Knob to remove the cursor.

Selecting a runway:

- 1) With the Airport Information Page displayed, press the **FMS** Knob to activate the cursor.
- 2) Turn the large **FMS** Knob to place the cursor in the 'RUNWAYS' Box, on the runway designator.
- 3) Turn the small **FMS** Knob to display the desired runway (if more than one) for the selected airport.
- **4)** To remove the flashing cursor, press the **FMS** Knob.

Viewing a destination airport:

From the Airport Information Page press the **MENU** Key. Select 'View Destination Airport'. The Destination Airport is displayed.

The Airport Frequencies Box uses the descriptions and abbreviations listed in the following table:

Communication Frequencies			Navigation Frequencies
Approach *	Control	Pre-Taxi	ILS
Arrival *	CTA *	Radar	LOC
ASOS	Departure *	Ramp	
ATIS	Gate	Terminal *	
AWOS	Ground	TMA *	
Center	Helicopter	Tower	
Class B *	Multicom	TRSA *	
Class C *	Other	Unicom	
Clearance			
* May include Additional Information			

Table 5-5 Airport Frequency Abbreviations

A departure, arrival, or approach can be loaded using the softkeys on the Airport Information Page. See the Procedures section for details. METARs or TAFs applicable to the selected airport can be selected for display (see the Hazard Avoidance section for details about weather).

The G1000 provides a **NRST** Softkey on the PFD, which gives the pilot quick access to nearest airport information (very useful if an immediate landing is required). The Nearest Airports Window displays a list of up to the 25 nearest airports (three entries can be displayed at one time). If there are more than three they are displayed in a scrollable list. If there are no nearest airports available, "NONE WITHIN 200NM" is displayed.

NRST Softkey

APPENDICES

Figure 5-35 Nearest Airports Window on PFD

Pressing the **ENT** Key displays the PFD Airport Information Window for the highlighted airport. Pressing the **ENT** Key again returns to the Nearest Airports Window with the cursor on the next airport in the list. Continued presses of the **ENT** Key sequences through the information pages for all airports in the Nearest Airports list.

Figure 5-36 Airport Information Window on PFD

The Nearest Airports Page on the MFD is first in the group of NRST pages because of its potential use in the event of an in-flight emergency. In addition to displaying a map of the currently selected airport and surrounding area, the page displays nearest airport information in five boxes labeled 'NEAREST AIRPORTS', 'INFORMATION', 'RUNWAYS', 'FREQUENCIES', and 'APPROACHES'.

The selected airport is indicated by a white arrow, and a dashed white line is drawn on the navigation map from the aircraft position to the nearest airport. Up to five nearest airports, one runway, up to five frequencies, and up to five approaches are visible at one time. If there are more than can be shown, each list can be scrolled.

GARMIN.

If there are no items for display in a boxed area, text indicating that fact is displayed. The currently selected airport remains in the list until it is unselected.

Figure 5-37 Nearest Airport Page

Viewing information for a nearest airport on the PFD:

- 1) Press the **NRST** Softkey to display the Nearest Airports Window. Press the **FMS** Knob to activate the cursor.
- 2) Highlight the airport identifier with the **FMS** Knob and press the **ENT** Key to display the Airport Information Window.
- 3) To return to the Nearest Airports Window press the **ENT** Key (with the cursor on 'BACK') or press the **CLR** Key. The cursor is now on the next airport in the nearest airports list. (Repeatedly pressing the **ENT** Key moves through the airport list, alternating between the Nearest Airports Window and the Airport Information Window.)
- 4) Press the **CLR** Key or the **NRST** Softkey to close the PFD Nearest Airports Window.

Viewing information for a nearest airport on the MFD:

- 1) Turn the large **FMS** Knob to select the NRST page group.
- 2) Turn the small **FMS** Knob to select the Nearest Airports Page (it is the first page of the group, so it may already be selected). If there are no Nearest Airports available, "NONE WITHIN 200 NM" is displayed.
- 3) Press the **APT** Softkey; or press the **FMS** Knob; or press the **MENU** Key, highlight 'Select Airport Window' and press the **ENT** Key. The cursor is placed in the 'NEAREST AIRPORTS' Box. The first airport in the nearest airports list is highlighted.
- 4) Turn the **FMS** Knob to highlight the desired airport. (Pressing the **ENT** Key also moves to the next airport.)
- **5)** Press the **FMS** Knob to remove the flashing cursor.

Viewing runway information for a specific airport:

- 1) With the Nearest Airports Page displayed, press the **RNWY** Softkey; or press the **MENU** Key, highlight 'Select Runway Window'; and press the **ENT** Key. The cursor is placed in the 'RUNWAYS' Box.
- 2) Turn the small **FMS** Knob to select the desired runway.
- Press the FMS Knob to remove the flashing cursor.

See the Audio Panel and CNS Section for frequency selection and the Procedures section for approaches.

The Nearest Airports Box on the System Setup Page defines the minimum runway length and surface type used when determining the 25 nearest airports to display on the MFD Nearest Airports Page. A minimum runway length and/or surface type can be entered to prevent airports with small runways or runways that are not appropriately surfaced from being displayed. Default settings are 0 feet (or meters) for runway length and "HARD/SOFT" for runway surface type.

Selecting nearest airport surface matching criteria:

- Use the FMS Knob to select the System Setup Page.
- 2) Press the **FMS** Knob momentarily to activate the flashing cursor.
- Turn the large FMS Knob to highlight the runway surface field in the Nearest Airports Box.
- **4)** Turn the small **FMS** Knob to select the desired runway option (ANY, HARD ONLY, HARD/SOFT, WATER).
- **5)** Press the **ENT** Key.
- **6)** Press the **FMS** Knob to remove the flashing cursor.

Selecting nearest airport minimum runway length matching criteria:

- 1) Use the **FMS** Knob to select the System Setup Page.
- 2) Press the **FMS** Knob momentarily to activate the flashing cursor.
- 3) Turn the large **FMS** Knob to highlight the minimum length field in the Nearest Airport Box.
- 4) Use the **FMS** Knob to enter the minimum runway length (zero to 25,000 feet) and press the **ENT** Key.
- **5)** Press the **FMS** Knob to remove the flashing cursor.



Figure 5-38 System Setup Page - Nearest Airport Selection Criteria

GARMIN

INTERSECTIONS

NOTE: The VOR displayed on the Intersection Information Page is the nearest VOR, not necessarily the VOR used to define the intersection.

The Intersection Information Page is used to view information about intersections. In addition to displaying a map of the currently selected intersection and surrounding area, the Intersection Information Page displays intersection information in three boxes labeled 'INTERSECTION', 'INFORMATION', and 'NEAREST VOR'.

Figure 5-39 Intersection Information Page

Selecting an intersection:

- 1) With the Intersection Information Page displayed, enter an identifier in the Intersection Box.
- 2) Press the ENT Key.
- **3)** Press the **FMS** Knob to remove the flashing cursor.

Or:

- 1) With the Nearest Intersections Page displayed, press the **FMS** Knob.
- 2) Press the ENT Key or turn either FMS Knob to select an identifier in the Nearest Intersection Box.
- **3)** Press the **FMS** Knob to remove the flashing cursor.

The Nearest Intersections Page can be used to quickly find an intersection close to the flight path. In addition to displaying a map of the surrounding area, the page displays information for up to 25 nearest intersections in three boxes labeled 'NEAREST INT', 'INFORMATION', and 'REFERENCE VOR'.

The selected intersection is indicated by a white arrow. Up to eleven intersections are visible at a time. If there are more than can be shown, the list can be scrolled. If there are no items for display, text indicating that fact is displayed.

NOTE: The list only includes waypoints that are within 200 nm.

Figure 5-40 Nearest Intersections Page

NDBs

The NDB Information Page is used to view information about NDBs. In addition to displaying a map of the currently selected NDB and surrounding area, the page displays NDB information in four boxes labeled 'NDB', 'INFORMATION', 'FREQUENCY', and 'NEAREST AIRPORT'.

Figure 5-41 NDB Information Page

NOTE: Compass locator (LOM, LMM): a low power, low or medium frequency radio beacon installed in conjunction with the instrument landing system. When LOM is used, the locator is at the Outer Marker; when LMM is used, the locator is at the Middle Marker.

Selecting an NDB:

- 1) With the NDB Information Page displayed, enter an identifier, the name of the NDB, or the city in which it's located in the NDB Box.
- **2)** Press the **ENT** Key.
- **3)** Press the **FMS** Knob to remove the flashing cursor.

Or:

- 1) With the Nearest NDB Page displayed, press the **FMS** Knob.
- 2) Press the **ENT** Key or turn either **FMS** Knob to select an identifier in the Nearest NDB Box.
- **3)** Press the **FMS** Knob to remove the flashing cursor.

The Nearest NDB Page can be used to quickly find a NDB close to the flight path. In addition to displaying a map of the surrounding area, the page displays information for up to 25 nearest NDBs in three boxes labeled 'NEAREST NDB', 'INFORMATION', and 'FREQUENCY'.

A white arrow before the NDB identifier indicates the selected NDB. Up to eleven NDBs are visible at a time. If there are more than can be shown, each list can be scrolled. The list only includes waypoints that are within 200nm. If there are no NDBs in the list, text indicating that there are no nearest NDBs is displayed. If there are no nearest NDBs in the list, the information and frequency fields are dashed.

Figure 5-42 Nearest NDB Page

VORs

The VOR Information Page can be used to view information about VOR and ILS signals (since ILS signals can be received on a NAV receiver), or to quickly auto-tune a VOR or ILS frequency. Localizer information cannot be viewed on the VOR Information Page. If a VOR station is combined with a TACAN station it is listed as a VORTAC on the VOR Information Page and if it includes only DME, it is displayed as VOR-DME.

In addition to displaying a map of the currently selected VOR and surrounding area, the VOR Information Page displays VOR information in four boxes labeled 'VOR', 'INFORMATION', 'FREQUENCY', and 'NEAREST AIRPORT'.

Figure 5-43 VOR Information Page

The VOR classes used in the VOR information box are: LOW ALTITUDE, HIGH ALTITUDE, and TERMINAL.

Selecting a VOR:

- 1) With the VOR Information Page displayed, enter an identifier, the name of the VOR, or the city in which it's located in the VOR Box.
- **2)** Press the **ENT** Key.
- **3)** Press the **FMS** Knob to remove the flashing cursor.

Or:

- 1) With the Nearest VOR Page displayed, press the **FMS** Knob or press the **VOR** Softkey.
- 2) Press the **ENT** Key or turn either **FMS** Knob to select an identifier in the Nearest VOR Box.
- 3) Press the **FMS** Knob to remove the flashing cursor.

Or:

- 1) With the Nearest VOR Page displayed, press the **MENU** Key.
- 2) Highlight 'Select VOR Window', and press the ENT Key.
- 3) Press the ENT Key or turn either FMS Knob to select an identifier in the Nearest VOR Box.
- **4)** Press the **FMS** Knob to remove the flashing cursor.

The Nearest VOR Page can be used to quickly find a VOR station close to the aircraft. Also, a NAV frequency from a selected VOR station can be loaded from the Nearest VOR Page. In addition to displaying a map of the surrounding area, the Nearest VOR Page displays information for up to 25 nearest VOR stations in three boxes labeled 'NEAREST VOR', 'INFORMATION', and 'FREQUENCY'. The list only includes waypoints that are within 200 nm.

A white arrow before the VOR identifier indicates the selected VOR. Up to eleven VORs are visible at a time. If there are more than can be shown, each list can be scrolled. If there are no VORs in the list, text indicating that there are no nearest VORs is displayed. If there are no nearest VORs in the list, the information is dashed.

Figure 5-44 Nearest VOR Page

USER WAYPOINTS

The G1000 can create and store up to 1,000 user-defined waypoints. User waypoints can be created from any map page (except PFD Inset Map, AUX-Trip Planning Page, or Procedure Pages) by selecting a position on the map using the **Joystick**, or from the User Waypoint Information Page by referencing a bearing/distance from an existing waypoint, bearings from two existing waypoints, or latitude and longitude. Once a waypoint has been created, it can be renamed, deleted, or moved. Temporary user waypoints are erased upon system power down.

Figure 5-45 User Waypoint Information Page

Selecting a User Waypoint:

- 1) With the User Waypoint Information Page displayed, enter the name of the User Waypoint, or scroll to the desired waypoint in the User Waypoint List using the large **FMS** Knob.
- 2) Press the ENT Key.
- **3)** Press the **FMS** Knob to remove the flashing cursor.

Or:

- 1) With the Nearest User Waypoints Page displayed, press the **FMS** Knob.
- 2) Press the **ENT** Key or turn either **FMS** Knob to select an identifier in the Nearest USR Box.
- **3)** Press the **FMS** Knob to remove the flashing cursor.

176

Figure 5-46 Nearest User Waypoint Page

CREATING USER WAYPOINTS

User waypoints can be created from the User Waypoint Information Page in the following ways:

Creating user waypoints from the User Waypoint Information Page:

- 1) Select the **NEW** Softkey, **or** press the **MENU** Key and select 'Create New User Waypoint'.
- **2)** Enter a user waypoint name (up to six characters).
- 3) Press the **ENT** Key. The current aircraft position is the default location of the new waypoint.
- **4)** If desired, define the type and location of the waypoint in one of the following ways:
 - **a)** Select "RAD/RAD" using the small **FMS** Knob, press the **ENT** Key, and enter the two reference waypoint identifiers and radials into the REFERENCE WAYPOINTS window using the **FMS** Knobs.

Or:

b) Select "RAD/DIS" using the small **FMS** Knob, press the **ENT** Key, and enter the reference waypoint identifier, the radial, and the distance into the REFERENCE WAYPOINTS window using the **FMS** Knobs.

Or:

- c) Select "LAT/LON" using the small **FMS** Knob, press the **ENT** Key, and enter the latitude and longitude into the INFORMATION window using the **FMS** Knobs.
- **5)** Press the **ENT** Key to accept the new waypoint.
- **6)** If desired, change the storage method of the waypoint to "TEMPORARY" or "NORMAL" by moving the cursor to "TEMPORARY" and selecting the **ENT** Key to check or uncheck the box.
- **7)** Press the **FMS** Knob to remove the flashing cursor.

Or:

- 1) Press the **FMS** Knob to activate the cursor.
- **2)** Enter a user waypoint name (up to six characters).
- **3)** Press the **ENT** Key. The message 'Are you sure you want to create the new User Waypoint AAAAAA?' is displayed.
- **4)** With 'YES' highlighted, press the **ENT** Key.
- 5) If desired, define the type and location of the waypoint in one of the following ways:
 - a) Select "RAD/RAD" using the small **FMS** Knob, press the **ENT** Key, and enter the two reference waypoint identifiers and radials into the REFERENCE WAYPOINTS window using the **FMS** Knobs.

Or:

b) Select "RAD/DIS" using the small **FMS** Knob, press the **ENT** Key, and enter the reference waypoint identifier, the radial, and the distance into the REFERENCE WAYPOINTS window using the **FMS** Knobs.

Or:

- c) Select "LAT/LON" using the small **FMS** Knob, press the **ENT** Key, and enter the latitude and longitude into the INFORMATION window using the **FMS** Knobs.
- **6)** Press the **ENT** Key to accept the new waypoint.
- 7) If desired, change the storage method of the waypoint to "TEMPORARY" or "NORMAL" by moving the cursor to "TEMPORARY" and selecting the **ENT** Key to check or uncheck the box.
- **8)** Press the **FMS** Knob to remove the flashing cursor.

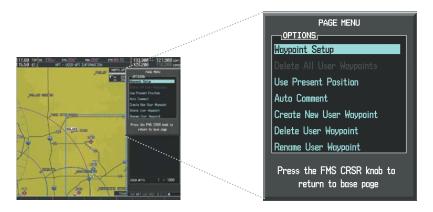


Figure 5-47 User Waypoint Information Page Menu

Creating user waypoints from map pages:

- 1) Press the **Joystick** to activate the panning function and pan to the map location of the desired user waypoint.
- 2) Press the **ENT** Key. The User Waypoint Information Page is displayed with the captured position.

NOTE: If the pointer has highlighted a map database feature, one of three things happens upon pressing the **ENT** Key: 1) information about the selected feature is displayed instead of initiating a new waypoint, 2) a menu pops up allowing a choice between 'Review Airspaces' or 'Create User Waypoint', or 3) a new waypoint is initiated with the default name being the selected map item.

- Enter a user waypoint name (up to six characters).
- 4) Press the **ENT** Key to accept the selected name. The first reference waypoint box is highlighted.
- 5) If desired, define the type and location of the waypoint in one of the following ways:
 - **a)** Select "RAD/RAD" using the small **FMS** Knob, press the **ENT** Key, and enter the two reference waypoint identifiers and radials into the REFERENCE WAYPOINTS window using the **FMS** Knobs.

Or:

b) Select "RAD/DIS" using the small **FMS** Knob, press the **ENT** Key, and enter the reference waypoint identifier, the radial, and the distance into the REFERENCE WAYPOINTS window using the **FMS** Knobs.

Or:

- c) Select "LAT/LON" using the small **FMS** Knob, press the **ENT** Key, and enter the latitude and longitude into the INFORMATION window using the **FMS** Knobs.
- **6)** Press the **ENT** Key to accept the new waypoint.
- 7) If desired, change the storage method of the waypoint to "TEMPORARY" or "NORMAL" by moving the cursor to "TEMPORARY" and selecting the **ENT** Key to check or uncheck the box.
- **8)** Press the **FMS** Knob to remove the flashing cursor.
- **9)** Press the **GO BACK** Softkey to return to the map page.

EDITING USER WAYPOINTS

Editing a user waypoint comment or location:

- 1) With the User Waypoint Information Page displayed, press the **FMS** Knob to activate the cursor.
- 2) Select a user waypoint in the User Waypoint List, if required, and press the ENT Key.
- **3)** Move the cursor to the desired field.
- 4) Turn the small **FMS** Knob to make any changes.
- **5)** Press the **ENT** Key to accept the changes.
- **6)** Press the **FMS** Knob to remove the flashing cursor.

Renaming user waypoints:

- 1) Highlight a user waypoint in the User Waypoint List. Press the **RENAME** Softkey, or press the **MENU** Key and select 'Rename User Waypoint'.
- **2)** Enter a new name.
- 3) Press the **ENT** Key. The message 'Do you want to rename the user waypoint AAAAAA to BBBBBB?' is displayed.
- 4) With 'YES' highlighted, press the ENT Key.
- **5)** Press the **FMS** Knob to remove the flashing cursor.

Changing the location of an existing waypoint to the aircraft present position:

- 1) Enter a waypoint name or select the waypoint in the User Waypoint List, then press the **ENT** Key.
- **2)** Press the **MENU** Key.
- 3) Select 'Use Present Position'.
- **4)** Press the **ENT** Key twice. The new waypoint's location is saved.
- **5)** Press the **FMS** Knob to remove the flashing cursor.

A system generated comment for a user waypoint incorporates the reference waypoint identifier, bearing, and distance. If a system generated comment has been edited, a new comment can be generated.

Resetting the comment field to the system generated comment:

- 1) Enter a waypoint name or select the waypoint in the User Waypoint List, then press the **ENT** Key.
- **2)** Press the **MENU** Key.
- 3) Select 'Auto Comment'.
- 4) Press the **ENT** Key. The generated comment is based on the reference point used to define the waypoint.

The default type of user waypoint (normal or temporary) can be changed using the user waypoint information page menu. Temporary user waypoints are automatically deleted upon the next power cycle.

Changing the user waypoint storage duration default setting:

- 1) With the User Waypoint Information Page displayed, press the **MENU** Key.
- 2) Move the cursor to select 'Waypoint Setup', and press the ENT Key.
- **3)** Select 'NORMAL' or 'TEMPORARY' as desired, and press the **ENT** Key.
- 4) Press the **FMS** Knob to remove the flashing cursor and return to the User Waypoint Information Page.

DELETING USER WAYPOINTS

Deleting a single user waypoint:

- 1) Highlight a User Waypoint in the User Waypoint List, or enter a waypoint in the User Waypoint field.
- 2) Press the **DELETE** Softkey or press the **CLR** Key. 'Yes' is highlighted in the confirmation window.
- 3) Press the ENT Key.
- **4)** Press the **FMS** Knob to remove the flashing cursor.

Or:

- 1) Highlight a User Waypoint in the User Waypoint List, or enter a waypoint in the User Waypoint field.
- 2) Press the **MENU** Key.
- 3) Select 'Delete User Waypoint'.
- **4)** Press the **ENT** Key twice to confirm the selection.
- **5)** Press the **FMS** Knob to remove the flashing cursor.

NOTE: The option to 'Delete All User Waypoints' is not available while the aircraft is in flight.

Deleting all user waypoints:

- 1) Highlight a User Waypoint in the User Waypoint List.
- 2) Press the **MENU** Key.
- 3) Select 'Delete All User Waypoints'.
- **4)** Press the **ENT** Key twice to confirm the selection.
- **5)** Press the **FMS** Knob to remove the flashing cursor.

5.4 AIRSPACES

The G1000 can display the following types of airspaces: Class B/TMA, Class C/TCA, Class D, Restricted, MOA (Military), Other Airspace, Air Defense Interdiction Zone (ADIZ), and Temporary Flight Restriction (TFR).

Figure 5-48 Airspaces

The Nearest Airspaces Page, Airspace Alerts Window, and Airspace Alerts on the PFD provide additional information about airspaces and the location of the aircraft in relationship to them.

The Airspace Alerts Box allows the pilot to turn the controlled/special-use airspace message alerts on or off. This does not affect the alerts listed on the Nearest Airspaces Page or the airspace boundaries depicted on the Navigation Map Page. It simply turns on/off the warning provided when the aircraft is approaching or near an airspace.

An altitude buffer is also provided which "expands" the vertical range above or below an airspace. For example, if the buffer is set at 500 feet, and the aircraft is more than 500 feet above/below an airspace, an alert message is not generated, but if the aircraft is less than 500 feet above/below an airspace and projected to enter it, the pilot is notified with an alert message. The default setting for the altitude buffer is 200 feet.

Changing the altitude buffer distance setting:

- 1) Use the FMS Knob to select the AUX System Setup Page.
- 2) Press the **FMS** Knob momentarily to activate the flashing cursor.
- 3) Turn the large **FMS** Knob to highlight the altitude buffer field in the Airspace Alerts Box.
- **4)** Use the **FMS** Knob to enter an altitude buffer value and press the **ENT** Key.
- **5)** Press the **FMS** Knob to remove the flashing cursor.

Turning an airspace alert on or off:

- 1) Use the **FMS** Knob to select the AUX System Setup Page.
- **2)** Press the **FMS** Knob momentarily to activate the flashing cursor.
- 3) Turn the large **FMS** Knob to highlight the desired field in the Airspace Alerts Box.
- 4) Turn the small **FMS** Knob clockwise to turn the airspace alert ON or counterclockwise to turn the alert OFF.
- **5)** Press the **FMS** Knob to remove the flashing cursor.

Figure 5-49 System Setup Page - Airspace Alerts

Map ranges for the airspace boundaries are selected from the Aviation Group in the Map Setup Menu. See Table 5-2 for the default and maximum ranges for each type of airspace and the symbol used to define the airspace area.

DFLTS Softkey

The Nearest Airspaces Page can be used to quickly find airspaces close to the flight path. In addition, a selected frequency associated with the airspace can be loaded from the Nearest Airspaces Page. In addition to displaying a map of airspace boundaries and surrounding area, the Nearest Airspaces Page displays airspace information in four boxes labeled 'AIRSPACE ALERTS', 'AIRSPACE, AGENCY', 'VERTICAL LIMITS', and 'FREQUENCIES'.

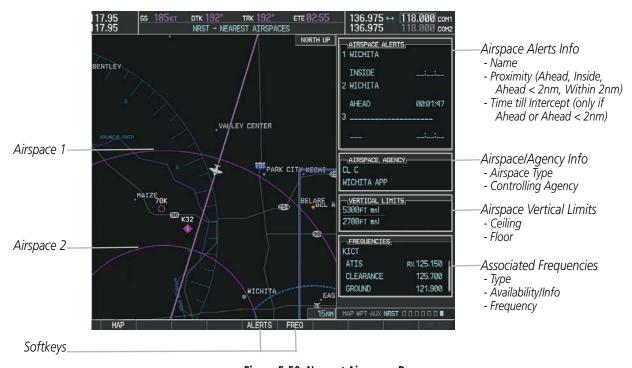


Figure 5-50 Nearest Airspaces Page

Airspace alerts and associated frequencies are shown in scrollable lists on the Nearest Airspaces Page. The **ALERTS** and **FREQ** softkeys place the cursor in the respective list. The **FREQ** Softkey is enabled only if one or more frequencies exist for a selected airspace.

Selecting and viewing an airspace alert with its associated information:

- 1) Select the Nearest Airspaces Page.
- 2) Press the **ALERTS** Softkey; or press the **FMS** Knob; or press the **MENU** Key, highlight 'Select Alerts Window', and press the **ENT** Key. The cursor is placed in the 'AIRSPACE ALERTS' Box.
- **3)** Select the desired airspace.
- **4)** Press the **FMS** Knob to remove the flashing cursor.

Pressing the PFD **ALERTS** Softkey displays the message window on the PFD. The following airspace alerts are displayed in the message window:

Message	Comments
INSIDE ARSPC – Inside airspace.	The aircraft is inside the airspace.
ARSPC AHEAD – Airspace ahead –	Special use airspace is ahead of aircraft. The aircraft penetrates the airspace within 10
less than 10 minutes.	minutes.
ARSPC NEAR – Airspace near and ahead.	Special use airspace is near and ahead of the aircraft position.
ARSPC NEAR — Airspace near — less than 2 nm.	Special use airspace is within 2 nm of the aircraft position.

Table 5-6 PFD Airspace Alert Messages

5.5 DIRECT-TO-NAVIGATION

The Direct-to method of navigation, initiated by pressing the **Direct-to** Key on either the MFD or PFD, is quicker to use than a flight plan when the desire is to navigate to a single point such as a nearby airport.

Once a direct-to is activated, the G1000 establishes a point-to-point course line from the present position to the selected direct-to destination. Course guidance is provided until the direct-to is replaced with a new direct-to or flight plan, or cancelled.

A vertical navigation (VNV) direct-to creates a descent path (and provides guidance to stay on the path) from the current altitude to a selected altitude at the direct-to waypoint. Vertical navigation is based on barometric altitudes, not on GPS altitude, and is used for cruise and descent phases of flight.

The Direct-to Window allows selection and activation of direct-to navigation. The Direct-to Window displays selected direct-to waypoint data on the PFD and the MFD.

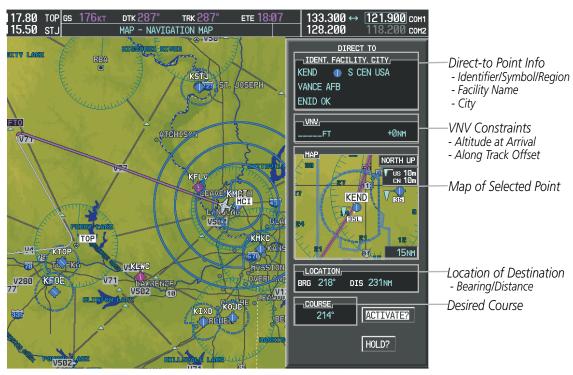


Figure 5-51 Direct-to Window - MFD

Figure 5-52 Direct-to Window - PFD

Any waypoint can be entered as a direct-to destination from the Direct-to Window.

Entering a waypoint identifier, facility name, or city as a direct-to destination:

- 1) Press the **Direct-to** Key. The Direct-to Window is displayed (with the active flight plan wayoint as the default selection or a blank waypoint field if no flight plan is active).
- 2) Turn the small FMS Knob clockwise to begin entering a waypoint identifier (turning it counter-clockwise brings up the waypoint selection submenu press the CLR Key to remove it), or turn the large FMS Knob to select the facility name, or city field and turn the small FMS Knob to begin entering a facility name or city. If duplicate entries exist for the entered facility or city name, additional entries can be viewed by turning the small FMS Knob during the selection process.
- **3)** Press the **ENT** Key. The 'Activate?' field is highlighted.
- 4) Press the ENT Key to activate the direct-to.

Any waypoint contained in the active flight plan can be selected as a direct-to waypoint from the Direct-to Window, the Active Flight Plan Page, or the Active Flight Plan Window.

Figure 5-53 Waypoint Submenu

Waypoint Submenu

- Flight Plan Waypoints
- Nearest Airports
- Recent Waypoints
- User Waypoints
- Airway Waypoints (only available when active leg is part of an airway)

Selecting an active flight plan waypoint as a direct-to destination:

- **1)** While navigating an active flight plan, press the **Direct-to** Key. The Direct-to Window is displayed with the active flight plan waypoint as the default selection.
- 2) Turn the small **FMS** Knob counter-clockwise to display a list of flight plan waypoints (the FPL list is populated only when navigating a flight plan).
- **3)** Select the desired waypoint.
- **4)** Press the **ENT** Key. The cursor is now displayed on 'ACTIVATE?'.
- **5)** Press the **ENT** Key again to activate the direct-to.

Or:

- 1) Select the Active Flight Plan Page on the MFD, or the Active Flight Plan Window on the PFD.
- 2) Select the desired waypoint.
- 3) Press the **Direct-to** Key.
- **4)** Press the **ENT** Key. The cursor is now displayed on 'ACTIVATE?'.
- **5)** Press the **ENT** Key again to activate the direct-to.

Any NRST, RECENT, USER, or AIRWAY waypoints can be selected as a direct-to destination in the Direct-to Window.

Selecting a NRST, RECENT, USER, or AIRWAY waypoint as a direct-to destination:

- 1) Press the **Direct-to** Key. The Direct-to Window is displayed (with the active flight plan destination as the default selection or a blank destination if no flight plan is active).
- 2) Turn the small **FMS** Knob counter-clockwise to display a list of FPL waypoints (the FPL list is populated only when navigating a flight plan, and the AIRWAY list is available only when the active leg is part of an airway).
- 3) Turn the small FMS Knob clockwise to display the NRST, RECENT, USER, or AIRWAY waypoints.
- **4)** Turn the large **FMS** Knob clockwise to select the desired waypoint.
- **5)** Press the **ENT** Key. The cursor is now displayed on 'ACTIVATE?'.
- **6)** Press the **ENT** Key again to activate the direct-to.

The Direct-to Window can be displayed from any page and allows selection and activation of direct-to navigation. If the direct-to is initiated from any page except the WPT pages, the default waypoint is the active flight plan waypoint (if a flight plan is active) or a blank waypoint field. Direct-to requests on any WPT page defaults to the displayed waypoint.

Selecting any waypoint as a direct-to destination:

- 1) Select the page or window containing the desired waypoint type and select the desired waypoint.
- 2) Press the **Direct-to** Key to display the Direct-to Window with the selected waypoint as the direct-to destination.
- **3)** Press the **ENT** Key. The cursor is now displayed on 'ACTIVATE?'.
- 4) Press ENT again to activate the direct-to.

Selecting a nearby airport as a direct-to destination:

- 1) Select the **NRST** Softkey on the PFD; or turn the **FMS** Knob to display the Nearest Airports Page and press the **FMS** Knob.
- 2) Select the desired airport (the nearest one is already selected).
- 3) Press the Direct-to Key.
- **4)** Press the **ENT** Key. The cursor is now displayed on 'ACTIVATE?'.
- **5)** Press the **ENT** Key again to activate the direct-to.

Direct-to destinations may also be selected by using the pointer on the navigation map pages. If no airport, NAVAID, or user waypoint exists at the desired location, a temporary waypoint named 'MAPWPT' is automatically created at the location of the map arrow.

Selecting a waypoint as a direct-to destination using the pointer:

- 1) From a navigation map page, press the **Joystick** to display the pointer.
- 2) Move the **Joystick** to place the pointer at the desired destination location.
- 3) If the pointer is placed on an existing airport, NAVAID, or user waypoint, the waypoint name is highlighted.

- **4)** Press the **Direct-to** Key to display the Direct-to Window with the selected point entered as the direct-to destination.
- **5)** Press the **ENT** Key. The cursor is now displayed on 'ACTIVATE?'.
- **6)** Press the **ENT** Key again to activate the direct-to.

Cancelling a Direct-to:

- 1) Press the **Direct-to** Key to display the Direct-to Window.
- 2) Press the **MENU** Key.
- **3)** With 'Cancel Direct-To NAV' highlighted, press the **ENT** Key. If a flight plan is still active, the G1000 resumes navigating the flight plan along the closest leg.

Figure 5-54 Direct-to Window - Cancelling Direct-to Navigation

When navigating a direct-to, the G1000 sets a direct great circle course to the selected destination. The course to a destination can also be manually selected using the course field ('COURSE') on the Direct-to Window.

Selecting a manual direct-to course:

- 1) Press the **Direct-to** Key. The Direct-to Window is displayed with the destination field highlighted.
- 2) Highlight the course field.
- **3)** Enter the desired course.
- **4)** Press the **ENT** Key. The cursor is now displayed on 'ACTIVATE?'.
- **5)** Press the **ENT** Key again to activate the direct-to.

Reselecting the direct course from the current position:

- 1) Press the **Direct-to** Key. The Direct-to Window is displayed with the destination field highlighted.
- **2)** Press the **ENT** Key. The cursor is now displayed on 'ACTIVATE?'.
- **3)** Press the **ENT** Key again to activate the direct-to.

Page Menu

Constraints

- Člear Vertical Navigation

A direct-to with altitude constraints creates a descent path (and provides guidance to stay on the path) from the aircraft's current altitude to the altitude of the direct-to waypoint. The altitude is reached at the waypoint, or at the specified distance along the flight path if an offset distance has been entered. All VNV altitudes prior to the direct-to destination are removed from the active flight plan upon successful activation of a direct-to destination that is part of the active flight plan. All VNV altitudes following the direct-to waypoint are retained. See the section on Vertical Navigation for more information regarding the use and purpose of VNV altitudes and offset distances.

Entering a VNV altitude and along-track offset for the waypoint:

- 1) Press the **Direct-to** Key to display the Direct-to Window.
- 2) Turn the large **FMS** Knob to place the cursor over the 'VNV' altitude field.
- **3)** Enter the desired altitude.
- **4)** Press the **ENT** Key. The option to select MSL or AGL is now displayed.
- 5) Turn the small **FMS** Knob to select 'MSL' or 'AGL'.
- **6)** Press the **ENT** Key. The cursor is now flashing in the VNV offset distance field.
- **7)** Enter the desired along-track distance before the waypoint.
- **8)** Press the **ENT** Key. The 'Activate?' field is highlighted.
- **9)** Press the **ENT** Key to activate.

Removing a VNV altitude constraint:

- 1) Press the **Direct-to** Key to display the Direct-to Window.
- **2)** Press the **MENU** Key.
- 3) With 'Clear Vertical Constraints' highlighted, press the ENT Key.

Figure 5-55 Direct-to Window - Clearing Vertical Constraints

5.6 FLIGHT PLANNING

Flight planning on the G1000 consists of building a flight plan by entering waypoints one at a time, adding waypoints along airways, and inserting departures, airways, arrivals, or approaches as needed. The G1000 allows flight planning information to be entered from either the MFD or PFD. The flight plan is displayed on maps using different line widths, colors, and types, based on the type of leg and the segment of the flight plan currently being flown (departure, enroute, arrival, approach, or missed approach).

Flight Plan Leg Type	Symbol
Active non-heading Leg (TOPO On)	
Active non-heading Leg (TOPO Off)	
Active heading Leg (TOPO On)	
Active heading Leg (TOPO Off)	
Non-heading Leg in the current flight segment (TOPO On)	
Non-heading Leg in the current flight segment (TOPO Off)	
Heading Leg not in the current flight segment (TOPO On)	
Heading Leg not in the current flight segment (TOPO Off)	
Non-heading Leg not in the current flight segment (TOPO On)	
Non-heading Leg not in the current flight segment (TOPO Off)	
Turn Anticipation Arc (TOPO On/TOPO Off)	

Table 5-7 Flight Plan Leg Symbols

Up to 99 flight plans with up to 99 waypoints each can be created and stored in memory. One flight plan can be activated at a time and becomes the active flight plan. The active flight plan is erased when the system is turned off and overwritten when another flight plan is activated. When storing flight plans with an approach, departure, or arrival, the G1000 uses the waypoint information from the current database to define the waypoints. If the database is changed or updated, the G1000 automatically updates the information if the procedure has not been modified. If an approach, departure, or arrival procedure is no longer available, the procedure is deleted from the affected stored flight plan(s), and an alert is displayed (see Miscellaneous Messages in Appendix A) advising that one or more stored flight plans need to be edited.

Whenever an approach, departure, or arrival procedure is loaded into the active flight plan, a set of approach, departure, or arrival waypoints is inserted into the flight plan along with a header line describing the instrument procedure the pilot selected. The original enroute portion of the flight plan remains active (unless an instrument procedure is activated) when the procedure is loaded.

When the database is updated, the airways need to be reloaded also. Each airway segment is reloaded from the database given the entry waypoint, the airway identifier and the exit waypoint. This reloads the sequence of waypoints between the entry and exit waypoints (the sequence may change when the database is updated). The update of an airway can fail during this process. If that happens, the airway waypoints are changed to regular (non-airway) flight plan waypoints, and an alert is displayed (see Miscellaneous Messages in Appendix A).

The following could cause the airway update to fail:

- Airway identifier, entry waypoint or exit waypoint not found in the new database.
- Airway entry/exit waypoint is not an acceptable waypoint for the airway either the waypoint is no longer on the airway, or there is a new directional restriction that prevents it being used.
- Loading the new airway sequence would exceed the capacity of the flight plan.

FLIGHT PLAN CREATION

There are three methods to create or modify a flight plan:

- Active Flight Plan Page on the MFD (create/modify the active flight plan)
- Active Flight Plan Window on the PFD (create/modify the active flight plan)
- Flight Plan Catalog Page on the MFD (create/modify a stored flight plan)

Figure 5-56 Active Flight Plan Page

Figure 5-57 Active Flight Plan Window on PFD

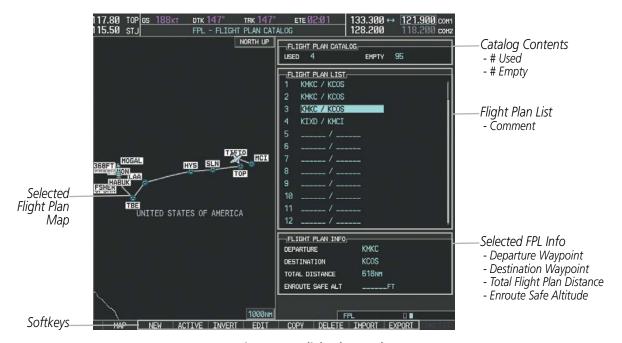


Figure 5-58 Flight Plan Catalog Page

The active flight plan is listed on the active Flight Plan Page on the MFD, and in the Active Flight Plan Window on the PFD. It is the flight plan to which the G1000 is currently providing guidance, and is shown on the navigation maps. Stored flight plans are listed on the Flight Plan Catalog Page, and are available for activation (becomes the active flight plan).

NOTE: The system supports AFCS lateral guidance for all leg types (using NAV or FMS APPR mode). The system does not support course deviation for any heading leg types (VA, VD, VI, VM, or VR).

Creating an active flight plan:

- 1) Press the FPL Key.
- 2) Press the **FMS** Knob to activate the cursor (only on MFD).
- 3) Turn the small **FMS** Knob to display the Waypoint Information Window. (Turning it clockwise displays a blank Waypoint Information Window, turning it counter-clockwise displays the Waypoint Information Window with a waypoint selection submenu allowing selection of active flight plan, nearest, recent, user, or airway waypoints).
- **4)** Enter the identifier, facility, or city name of the departure waypoint or select a waypoint from the submenu of waypoints and press the **ENT** Key. The active flight plan is modified as each waypoint is entered.
- **5)** Repeat step numbers 3 and 4 to enter each additional flight plan waypoint.
- **6)** When all waypoints have been entered, press the **FMS** Knob to remove the cursor.

Creating a stored flight plan:

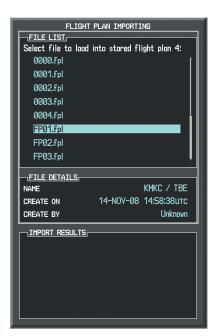
- 1) Press the **FPL** Key.
- **2)** Turn the small **FMS** Knob clockwise to display the Flight Plan Catalog Page.
- 3) Select the **NEW** Softkey; or press the **MENU** Key, highlight 'Create New Flight Plan', and press the **ENT** Key to display a blank flight plan for the first empty storage location.
- 4) Turn the small **FMS** Knob to display the Waypoint Information Window. (Turning it clockwise displays a blank Waypoint Information Window, turning it counter-clockwise displays the Waypoint Information Window with a waypoint selection submenu allowing selection of active flight plan, nearest, recent, user, or airway waypoints).
- **5)** Enter the identifier, facility, or city name of the departure waypoint or select a waypoint from the submenu of waypoints and press the **ENT** Key.
- **6)** Repeat step numbers 4 and 5 to enter each additional flight plan waypoint.
- 7) When all waypoints have been entered, press the **FMS** Knob to return to the Flight Plan Catalog Page. The new flight plan is now in the list.

NDEX

Flight plans can be imported from an SD Card or exported to an SD Card from the Stored Flight Plan Page.

Importing a Flight Plan from an SD Card

- 1) Insert the SD card containing the flight plan in the top card slot on the MFD.
- 2) Press the FPL Key to display the Active Flight Plan Page on the MFD.
- 3) Turn the small FMS Knob to select the Flight Plan Catalog Page.
- 4) Press the **FMS** Knob to activate the cursor.
- **5)** Turn either **FMS** Knob to highlight an empty or existing flight plan.
- 6) Press the **IMPORT** Softkey; or press the **MENU** Key, select "Import Flight Plan", and press the **ENT** Key. If an empty slot is selected, a list of the available flight plans on the SD card will be displayed.


Or:

If an existing flight plan is selected, an "Overwrite existing flight plan? OK or CANCEL" prompt is displayed. Press the **ENT** Key to choose to overwrite the selected flight plan and see the list of available flight plans on the SD card. If overwriting the existing flight plan is not desired, select "CANCEL" using the **FMS** Knob, press the **ENT** Key, select another flight plan slot, and press the **IMPORT** Softkey again.

- 7) Turn the small **FMS** Knob to highlight the desired flight plan for importing.
- 8) Press the ENT Key to initiate the import.
- **9)** Press the **ENT** Key again to confirm the import.

Import/Export Softkeys

List of Flight Plans to Import & Details for the Selected File

Figure 5-59 Flight Plan Import

Import Successful

NOTE: If the imported flight plan contains a waypoint with a name that duplicates the name of a waypoint already stored on the system, the system compares the coordinates of the imported waypoint with those of the existing waypoint. If the coordinates are different, the imported waypoint is automatically renamed by adding characters to the end of the name.

Exporting a Flight Plan to an SD Card

- 1) Insert the SD card into the top card slot on the MFD.
- **2)** Press the **FPL** Key to display the Active Flight Plan Page on the MFD.
- **3)** Turn the small **FMS** Knob to select the Flight Plan Catalog Page.
- 4) Press the **FMS** Knob to activate the cursor.
- **5)** Turn the large **FMS** Knob to highlight the flight plan to be exported.
- **6)** Press the **EXPORT** Softkey; or press the **MENU** Key, select "Export Flight Plan".
- 7) If desired, change the name for the exported file by turning the large **FMS** Knob to the left to highlight the name, then use the small and large **FMS** knobs to enter the new name, and press the **ENT** Key.
- **8)** Press the **ENT** Key to initiate the export.
- **9)** Press the **ENT** Key to confirm the export.

NOTE: The exported flight plan will not contain any procedures or airways.

Import/Export Softkeys

Stored Flight Plan to be Exported & Exported Flight Plan Name

Figure 5-60 Flight Plan Export

Export Successful

ADDING WAYPOINTS TO AN EXISTING FLIGHT PLAN

Waypoints can be added to the active flight plan or any stored flight plan. Choose the flight plan, select the desired point of insertion, enter the waypoint, and it is added in front of the selected waypoint. Flight plans are limited to 99 waypoints (including waypoints within airways and procedures). If the number of waypoints in the flight plan exceeds 99, the message "Flight plan is full. Remove unnecessary waypoints." appears and the new waypoint(s) are not added to the flight plan.

-Stored Flight Plan Selected

- Memory Slot
- Comment
- Procedure Identifier
- Waypoint Identifier
- Airway Identifier
- Desired Track to Waypoint
- Distance to Waypoint
- Waypoint Altitude Constraint

Figure 5-61 Stored Flight Plan Page

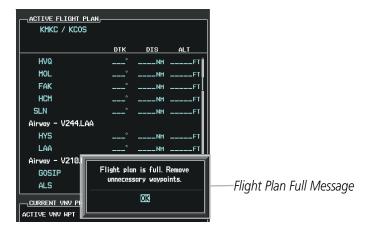


Figure 5-62 Active Flight Plan Page - FPL Full

Adding a waypoint to a stored flight plan:

- 1) On the Flight Plan Catalog Page, press the **FMS** Knob to activate the cursor.
- 2) Highlight the desired flight plan.
- 3) Press the EDIT Softkey; or press the ENT Key, turn the large FMS Knob clockwise to select "EDIT" and press the ENT Key. The Stored Flight Plan Page is displayed.
- **4)** Select the point in the flight plan to add the new waypoint. The new waypoint is placed directly in front of the highlighted waypoint.
- 5) Turn the small **FMS** Knob to display the Waypoint Information Window. (Turning it clockwise displays a blank Waypoint Information Window, turning it counter-clockwise displays the Waypoint Information Window with a waypoint selection submenu allowing selection of active flight plan, nearest, recent, user, or airway waypoints).
- **6)** Enter the identifier, facility, or city name of the waypoint or select a waypoint from the submenu of waypoints and press the **ENT** Key. The new waypoint now exists in the flight plan.

NOTE: If the identifier entered in the Waypoint Information Window has duplicates, a Duplicate Waypoint Window is displayed. Use the FMS Knob to select the correct waypoint.

Figure 5-63 Duplicate Waypoints Window

Adding a waypoint to the active flight plan:

- 1) Press the **FPL** Key.
- 2) Press the **FMS** Knob to activate the cursor (not required on the PFD).
- 3) Select the point in the flight plan before which to add the new waypoint. The new waypoint is placed directly in front of the highlighted waypoint.
- **4)** Turn the small **FMS** Knob to display the Waypoint Information Window. (Turning it clockwise displays a blank Waypoint Information Window, turning it counter-clockwise displays the Waypoint Information Window with a waypoint selection submenu allowing selection of active flight plan, nearest, recent, or airway waypoints).
- **5)** Enter the identifier, facility, or city name of the waypoint or select a waypoint from the submenu of waypoints and press the **ENT** Key. The active flight plan is modified as each waypoint is entered.

Creating and adding user waypoints to the active flight plan:

- 1) Press the **Joystick** to activate the panning function on the Active Flight Plan Page and pan to the map location of the desired user waypoint.
- 2) Select the **LD WPT** Softkey; or press the **MENU** Key, select 'Load Waypoint', and press the **ENT** Key. The user waypoint is created with a name of USRxxx (using the next available in sequence) and is added to the end of the active flight plan.

ADDING AIRWAYS TO A FLIGHT PLAN

Airways can be added to the active flight plan or any stored flight plan. Choose a flight plan (add the desired airway entry point if not already in the flight plan), select the waypoint after the desired airway entry point, select the airway, and it is added in front of the selected waypoint. An airway can only be loaded if there is a waypoint in the flight plan that is part of the desired airway and is not part of an arrival or approach procedure. The G1000 also anticipates the desired airway and exit point based on loaded flight plan waypoints.

Figure 5-64 Select Airway Page - Selecting Airway

Adding an airway to a flight plan:

- 1) Press the **FPL** Key.
- 2) Press the **FMS** Knob to activate the cursor (not required on the PFD).
- 3) Turn the large **FMS** Knob to highlight the waypoint after the desired airway entry point. If this waypoint is not a valid airway entry point, a valid entry point should be entered at this time.
- 4) Turn the small **FMS** Knob one click clockwise and select the **LD AIRWY** Softkey, or press the **MENU** Key and select "Load Airway". The Select Airway Page is displayed. The **LD AIRWY** Softkey or the "Load Airway" menu item is available only when a valid airway entry waypoint has been chosen (the waypoint ahead of the cursor position).

- 5) Turn the **FMS** Knob to select the desired airway from the list, and press the **ENT** Key. Low altitude airways are shown first in the list, followed by "all" altitude airways, and then high altitude airways.
- **6)** Turn the **FMS** Knob to select the desired airway exit point from the list, and press the **ENT** Key. 'LOAD?' is highlighted.
- 7) Press the **ENT** Key. The system returns to editing the flight plan with the new airway inserted.

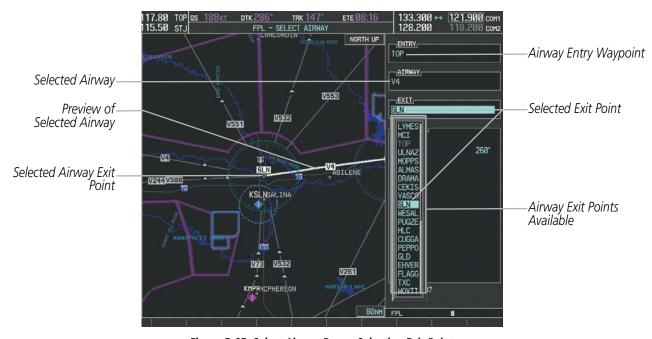


Figure 5-65 Select Airway Page - Selecting Exit Point

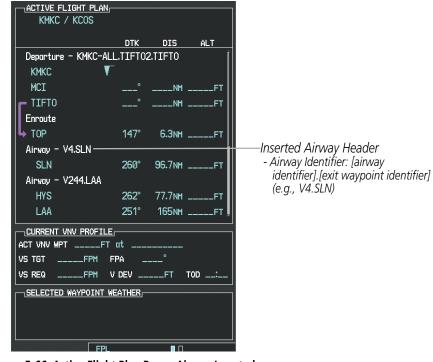


Figure 5-66 Active Flight Plan Page - Airway Inserted

RESTRICTIONS ON ADDING AIRWAYS

Some airways have directional restrictions on all or part of the route. Airway "A2" in Europe has a directional restriction over the whole route such that it can be flown only in the direction MTD-ABB-BNE-DEVAL.

Airway "UR975" in North Africa has more complicated directional restrictions within the list of airway waypoints AMANO, VAKOR, LIBRO, NELDA, DIRKA, GZO, KOSET, and SARKI:

- Starting from AMANO, the airway can be flown only to LIBRO.
- Starting from SARKI, the airway can be flown only to LIBRO.
- Between NELDA and GZO, the airway can be flown in either direction.

In the US, airways that are "one-way" for specified hours of operation are not uncommon. These airways are always bidirectional in the G1000 database.

The system only allows correct airway sequences to be inserted. If the pilot subsequently inverts the flight plan, the system inverts the airway waypoint sequence and removes the airway header.

ADDING PROCEDURES TO A STORED FLIGHT PLAN

The G1000 allows the pilot to insert pre-defined instrument procedures from the navigation database into a flight plan. The procedures are designed to facilitate routing of traffic leaving an airport (departure), arriving at an airport (arrival), and landing at an airport (approach). See the procedures section for more details.

Figure 5-67 Stored Flight Plan Page

DEPARTURE (DP)

A Departure Procedure (DP) is loaded at the departure airport in the flight plan. Only one departure can be loaded at a time in a flight plan. The route is defined by selection of a departure, the transition waypoints, and a runway.

Figure 5-68 Departure Loading Page - Selecting the Departure

Loading a departure procedure into a stored flight plan:

- 1) Select a stored flight plan from the Flight Plan Catalog Page.
- 2) Select the **EDIT** Softkey; or press the **MENU** Key, select 'Edit Flight Plan', and press the **ENT** Key. The Stored Flight Plan Page is displayed.
- 3) Select the LD DP Softkey; or press the **MENU** Key, select "Load Departure", and press the **ENT** Key. The Departure Loading Page is displayed.
- **4)** Select a departure. Press the **ENT** Key.
- **5)** Select a runway served by the selected departure, if required. Press the **ENT** Key.
- **6)** Select a transition for the selected departure. Press the **ENT** Key.
- 7) Press the **ENT** Key to load the selected departure procedure.

Figure 5-69 Departure Loading Page - Selecting Transition

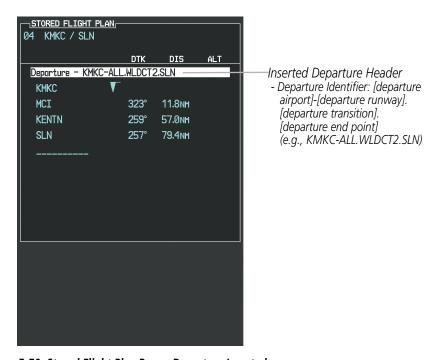


Figure 5-70 Stored Flight Plan Page - Departure Inserted

ARRIVAL (STAR)

A Standard Terminal Arrival (STAR) is loaded at the destination airport in the flight plan. Only one arrival can be loaded at a time in a flight plan. The route is defined by selection of an arrival, the transition waypoints, and a runway.

Figure 5-71 Arrival Loading Page - Selecting the Arrival

Loading an arrival procedure into a stored flight plan:

- 1) Select a stored flight plan from the Flight Plan Catalog Page.
- 2) Select the **EDIT** Softkey; or press the **MENU** Key, select 'Edit Flight Plan', and press the **ENT** Key. The Stored Flight Plan Page is displayed.
- 3) Select the **LD STAR** Softkey; or press the **MENU** Key, select "Load Arrival", and press the **ENT** Key. The Arrival Loading Page is displayed.
- **4)** Select an arrival. Press the **ENT** Key.
- **5)** Select a transition for the selected arrival. Press the **ENT** Key.
- **6)** Select a runway served by the selected arrival, if required. Press the **ENT** Key.
- 7) Press the **ENT** Key to load the selected arrival procedure.

Figure 5-72 Arrival Loading Page - Selecting the Transition

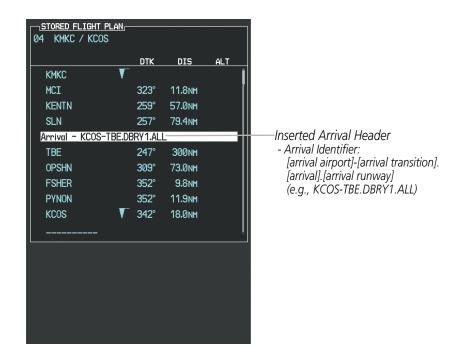


Figure 5-73 Stored Flight Plan Page - Arrival Inserted

APPROACH (APPR)

An Approach Procedure (APPR) can be loaded at any airport that has an approach available. Only one approach can be loaded at a time in a flight plan. The route for a selected approach is defined by designating transition waypoints.

Figure 5-74 Approach Loading Page - Selecting the Approach

Loading an approach procedure into a stored flight plan:

- 1) Select a stored flight plan from the Flight Plan Catalog Page.
- 2) Press the **EDIT** Softkey; or press the **MENU** Key, select 'Edit Flight Plan', and press the **ENT** Key. The Stored Flight Plan Page is displayed.
- **3)** Press the **LD APR** Softkey; or press the **MENU** Key, select "Load Approach", and press the **ENT** Key. The Approach Loading Page is displayed.
- **4)** Select the airport and approach:
 - a) Use the FMS Knob to select an airport and press the ENT Key.
 - **b)** Select an approach from the list and press the **ENT** Key.

Or:

- a) If necessary, push the **FMS** Knob to exit the approach list, and use the large **FMS** Knob to move the cursor to the APPROACH CHANNEL field.
- **b)** Use the **FMS** Knob to enter the approach channel number, and press the **ENT** Key to accept the approach channel number. The airport and approach are selected.
- **5)** Select a transition for the selected approach. Press the **ENT** Key.
- **6)** Press the **ENT** Key to load the selected approach procedure.

APPENDICES

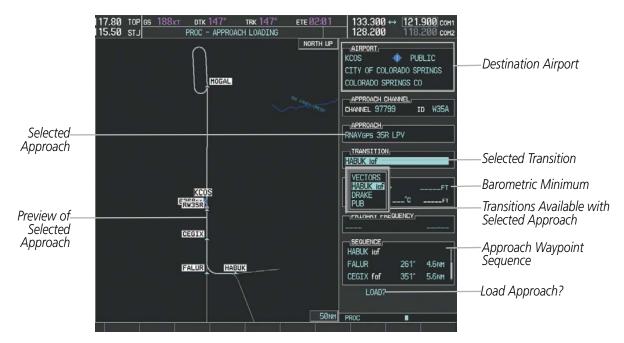


Figure 5-75 Approach Loading Page - Selecting the Transition

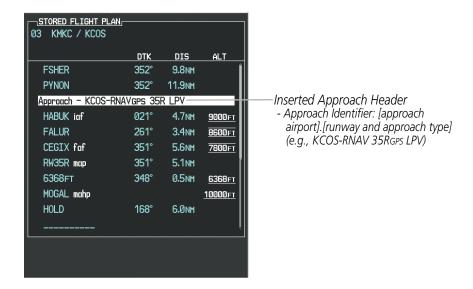


Figure 5-76 Stored Flight Plan Page - Approach Inserted

FLIGHT PLAN STORAGE

The G1000 can store up to 99 flight plans, numbered 1 through 99. The active flight plan is erased when the G1000 is powered off or when another flight plan is activated. Details about each stored flight plan can be viewed on the Flight Plan Catalog Page and on the Stored Flight Plan Page.

Viewing information about a stored flight plan:

- 1) Press the **FPL** Key on the MFD to display the Active Flight Plan Page.
- 2) Turn the small **FMS** Knob clockwise one click to display the Flight Plan Catalog Page.
- 3) Press the **FMS** Knob to activate the cursor and turn the **FMS** Knob to highlight the desired flight plan.
- **4)** The Flight Plan Information is displayed showing departure, destination, total distance, and enroute safe altitude information for the selected Flight Plan.
- 5) Press the **EDIT** Softkey to open the Stored Flight Plan Page and view the waypoints in the flight plan.
- **6)** Press the **FMS** Knob to exit the Stored Flight Plan Page.

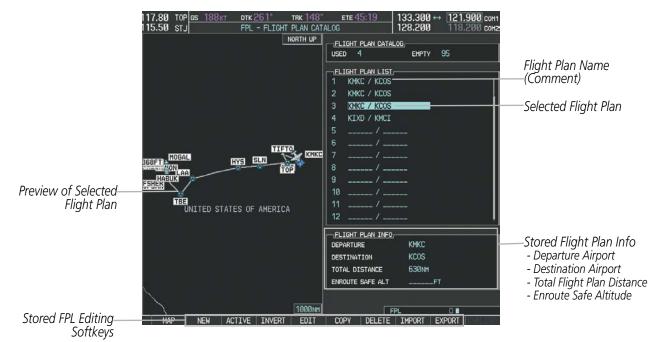


Figure 5-77 Stored Flight Plan Information

Storing an active flight plan from the Active Flight Plan Page or the Active Flight Plan Window:

- 1) Press the **MENU** Key.
- 2) Highlight 'Store Flight Plan'.
- **3)** Press the **ENT** Key.
- **4)** With 'OK' highlighted, press the **ENT** Key. The flight plan is stored in the next available position in the flight plan list on the Flight Plan Catalog Page.

ACTIVATE A FLIGHT PLAN

Activating a stored flight plan erases the active flight plan and replaces it with the flight plan being activated. Inverting a stored flight plan reverses the waypoint order, erases the active flight plan, and replaces it with the flight plan being activated (the stored flight plan is not changed).

Activating a stored flight plan on the MFD:

- 1) Press the FPL Key and turn the small FMS Knob to display the Flight Plan Catalog Page.
- 2) Press the **FMS** Knob to activate the cursor, and turn the **FMS** Knob to highlight the desired flight plan.
- 3) Select the **ACTIVE** Softkey; or press the **ENT** Key twice; or press the **MENU** Key, highlight 'Activate Flight Plan', and press the **ENT** Key. The 'Activate Stored Flight Plan?' window is displayed.
- **4)** With 'OK' highlighted, select the **ENT** Key. To cancel the request, press the **CLR** Key, or highlight 'CANCEL' and press the **ENT** Key.

Inverting and activating a stored flight plan on the MFD:

- 1) Press the **FPL** Key and turn the small **FMS** Knob to display the Flight Plan Catalog Page.
- 2) Press the **FMS** Knob to activate the cursor, and turn the **FMS** Knob to highlight the desired flight plan.
- **3)** Select the **INVERT** Softkey; or press the **MENU** Key, highlight 'Invert & Activate FPL?', and press the **ENT** Key. The 'Invert and activate stored flight plan?' window is displayed.
- **4)** With 'OK' highlighted, press the **ENT** Key. To cancel the request, press the **CLR** Key, or highlight 'CANCEL' and press the **ENT** Key.

COPY A FLIGHT PLAN

The G1000 allows copying a flight plan into a new flight plan memory slot, allowing editing, etc., without affecting the original flight plan. This can be used to duplicate an existing stored flight plan for use in creating a modified version of the original stored flight plan.

Copying a stored flight plan on the MFD:

- 1) Press the **FPL** Key and turn the small **FMS** Knob to display the Flight Plan Catalog Page.
- 2) Press the **FMS** Knob to activate the cursor, and turn the **FMS** Knob to highlight the desired flight plan.
- 3) Select the **COPY** Softkey; or press the **MENU** Key, highlight 'Copy Flight Plan', and press the **ENT** Key. The 'Copy to Flight Plan XX?' window is displayed.
- **4)** With 'OK' highlighted, press the **ENT** Key to copy the flight plan. To cancel the request, press the **CLR** Key, or highlight 'CANCEL' and press the **ENT** Key.

DELETE A STORED FLIGHT PLAN

Individual or all stored flight plans can be deleted from the G1000 memory.

Deleting a stored flight plan:

- 1) Press the **FPL** Key and turn the small **FMS** Knob to display the Flight Plan Catalog Page.
- 2) Press the **FMS** Knob to activate the cursor, and turn the **FMS** Knob to highlight the desired flight plan.
- 3) Select the **DELETE** Softkey; press the **CLR** Key; or press the **MENU** Key, highlight 'Delete Flight Plan', and press the **ENT** Key. The 'Delete Flight Plan XX?' window is displayed.
- **4)** With 'OK' highlighted, press the **ENT** Key to delete the flight plan. To cancel the request, press the **CLR** Key, or highlight 'CANCEL' and press the **ENT** Key.

NOTE: The option to delete all stored flight plans is not available while the aircraft is in flight.

Deleting all stored flight plans:

- 1) Press the **FPL** Key and turn the small **FMS** Knob to display the Flight Plan Catalog Page.
- **2)** Press the **MENU** Key.
- 3) Highlight 'Delete All' and press the **ENT** Key. A 'Delete all flight plans?' confirmation window is displayed.
- **4)** With 'OK' highlighted, press the **ENT** Key to delete all flight plans. To cancel the request, press the **CLR** Key, or highlight 'CANCEL' and press the **ENT** Key.

FLIGHT PLAN EDITING

The active flight plan or any stored flight plan can be edited. The edits made to the active flight plan affect navigation as soon as they are entered.

DELETING THE ACTIVE FLIGHT PLAN

The G1000 allows deleting an active flight plan. Deleting the active flight plan suspends navigation by the G1000.

Deleting the active flight plan:

- 1) Press the FPL Key to display the Active Flight Plan Page (MFD) or the Active Flight Plan Window (PFD).
- 2) Press the **MENU** Key, highlight 'Delete Flight Plan', and press the **ENT** Key. The 'Delete all waypoints in flight plan?' window is displayed.
- **3)** With 'OK' highlighted, press the **ENT** Key to delete the active flight plan. To cancel the request, press the **CLR** Key, or highlight 'CANCEL' and press the **ENT** Key.

DELETING FLIGHT PLAN ITEMS

Individual waypoints, entire airways, and entire procedures can be deleted from a flight plan. Some waypoints in the final approach segment (such as the FAF or MAP) can not be deleted individually. Attempting to delete a waypoint that is not allowed results in a window displaying 'Invalid flight plan modification.'

Deleting an individual waypoint from the active flight plan:

- 1) Press the **FPL** Key to display the Active Flight Plan Page (MFD) or the Active Flight Plan Window (PFD).
- 2) Press the **FMS** Knob to activate the cursor (not required on the PFD) and turn the large **FMS** Knob to highlight the waypoint to be deleted.
- **3)** Press the **CLR** Key. The 'Remove XXXXX?' window is displayed.
- **4)** With 'OK' highlighted, press the **ENT** Key. To cancel the request, press the **CLR** Key, or highlight 'CANCEL' and press the **ENT** Key.
- **5)** Press the **FMS** Knob to remove the flashing cursor.

Deleting an entire airway from the active flight plan:

- 1) Press the FPL Key to display the Active Flight Plan Page (MFD) or the Active Flight Plan Window (PFD).
- 2) Press the **FMS** Knob to activate the cursor (not required on the PFD) and turn the large **FMS** Knob to highlight the white header of the airway to be deleted.
- 3) Press the CLR Key. The 'Remove <airway name>?' window is displayed.
- **4)** With 'OK' highlighted, press the **ENT** Key. To cancel the request, press the **CLR** Key, or highlight 'CANCEL' and press the **ENT** Key.
- 5) Press the **FMS** Knob to remove the flashing cursor.

Deleting an entire procedure from the active flight plan:

- 1) Press the **FPL** Key to display the Active Flight Plan Page (MFD) or the Active Flight Plan Window (PFD).
- 2) Press the **FMS** Knob to activate the cursor (not required on the PFD) and turn the large **FMS** Knob to highlight the white header of the procedure to be deleted.
- 3) Press the CLR Key. The 'Remove cedure name from flight plan?' window is displayed.
- **4)** With 'OK' highlighted, press the **ENT** Key. To cancel the request, press the **CLR** Key, or highlight 'CANCEL' and press the **ENT** Key.
- **5)** Press the **FMS** Knob to remove the flashing cursor.

Or:

- 1) Press the **FPL** Key to display the Active Flight Plan Page (MFD) or the Active Flight Plan Window (PFD).
- 2) Press the **MENU** Key to display the Page Menu and turn the **FMS** Knob to highlight 'Remove coedure'.
- 3) Press the ENT Key. The 'Remove procedure name from flight plan?' window is displayed.
- **4)** With 'OK' highlighted, press the **ENT** Key. To cancel the request, press the **CLR** Key, or highlight 'CANCEL' and press the **ENT** Key.

Deleting an individual waypoint from a stored flight plan:

- 1) Press the **FPL** Key to display the Active Flight Plan Page.
- 2) Turn the small **FMS** Knob clockwise one click to display the Flight Plan Catalog Page.
- 3) Press the **FMS** Knob to activate the cursor and turn the **FMS** Knob to highlight the flight plan to be edited.

- **4)** Select the **EDIT** Softkey; or press the **MENU** Key, select 'Edit Flight Plan' and press the **ENT** Key. The Stored Flight Plan Page is displayed.
- **5)** Turn the large **FMS** Knob to highlight the waypoint to be deleted.
- **6)** Press the **CLR** Key. The 'Remove XXXXX?' window is displayed.
- 7) With 'OK' highlighted, press the **ENT** Key. To cancel the request, press the **CLR** Key, or highlight 'CANCEL' and press the **ENT** Key.
- **8)** Press the **FMS** Knob to remove the flashing cursor.

Deleting an entire airway from a stored flight plan:

- 1) Press the **FPL** Key to display the Active Flight Plan Page.
- 2) Turn the small **FMS** Knob clockwise one click to display the Flight Plan Catalog Page.
- 3) Press the **FMS** Knob to activate the cursor and turn the **FMS** Knob to highlight the flight plan to be edited.
- **4)** Select the **EDIT** Softkey; or press the **MENU** Key, select 'Edit Flight Plan' and press the **ENT** Key. The Stored Flight Plan Page is displayed.
- 5) Turn the large **FMS** Knob to highlight the white header of the airway to be deleted.
- **6)** Press the **CLR** Key. The 'Remove <airway name>?' window is displayed.
- 7) With 'OK' highlighted, press the **ENT** Key. To cancel the request, press the **CLR** Key, or highlight 'CANCEL' and press the **ENT** Key.
- 8) Press the **FMS** Knob to remove the flashing cursor.

Deleting an entire procedure from a stored flight plan:

- 1) Press the **FPL** Key to display the Active Flight Plan Page.
- **2)** Turn the small **FMS** Knob clockwise one click to display the Flight Plan Catalog Page.
- 3) Press the FMS Knob to activate the cursor and turn the FMS Knob to highlight the flight plan to be edited.
- 4) Select the **EDIT** Softkey; or press the **MENU** Key, select 'Edit Flight Plan' and press the **ENT** Key. The Stored Flight Plan Page is displayed.
- 5) Turn the large **FMS** Knob to highlight the white header of the procedure to be deleted.
- 7) With 'OK' highlighted, press the **ENT** Key. To cancel the request, press the **CLR** Key, or highlight 'CANCEL' and press the **ENT** Key.
- **8)** Press the **FMS** Knob to remove the flashing cursor.

Or:

- 1) Press the **FPL** Key to display the Active Flight Plan Page.
- 2) Turn the small FMS Knob clockwise one click to display the Flight Plan Catalog Page.
- 3) Press the **FMS** Knob to activate the cursor and turn the **FMS** Knob to highlight the flight plan to be edited.

- **4)** Select the **EDIT** Softkey; or press the **MENU** Key, select 'Edit Flight Plan' and press the **ENT** Key. The Stored Flight Plan Page is displayed.
- **5)** Press the **MENU** Key to display the Page Menu and turn the **FMS** Knob to highlight 'Remove cedure'.
- **6)** Press the **ENT** Key. The 'Remove <procedure name> from flight plan?' window is displayed.
- 7) With 'OK' highlighted, press the **ENT** Key. To cancel the request, press the **CLR** Key, or highlight 'CANCEL' and press the **ENT** Key.
- **8)** Press the **FMS** Knob to remove the flashing cursor.

CHANGING FLIGHT PLAN COMMENTS (NAMES)

The comment field (or name) of each flight plan can be changed to something that is useful for identification.

Changing the active flight plan comment:

- 1) Press the FPL Key to display the Active Flight Plan Page.
- 2) Press the **FMS** Knob to activate the cursor and turn the large **FMS** Knob to highlight the comment field.
- 3) Use the **FMS** Knobs to edit the comment.
- **4)** Press the **ENT** Key to accept the changes.
- **5)** Press the **FMS** Knob to remove the flashing cursor.

Changing a stored flight plan comment:

- 1) Press the FPL Key to display the Active Flight Plan Page.
- 2) Turn the small **FMS** Knob clockwise one click to display the Flight Plan Catalog Page.
- 3) Press the FMS Knob to activate the cursor and turn the FMS Knob to highlight the flight plan to be edited.
- **4)** Select the **EDIT** Softkey; or press the **MENU** Key, select 'Edit Flight Plan' and press the **ENT** Key. The Stored Flight Plan Page is displayed.
- **5)** Turn the large **FMS** Knob to highlight the comment field.
- 6) Use the **FMS** Knobs to edit the comment.
- **7)** Press the **ENT** Key to accept the changes.
- 8) Press the **FMS** Knob to remove the flashing cursor.

ALONG TRACK OFFSETS

A waypoint having an "along track offset" distance from an existing waypoint can be entered into a flight plan. Along track offset waypoints lie along the path of the existing flight plan, and can be used to make the system reach a specified altitude before or after reaching the specified flight plan waypoint. Offset distances can be entered from 1 to 999 nm in increments of 1 nm. Entering a negative offset distance results in an along track offset waypoint inserted before the selected waypoint, whereas entering a positive offset distance results in an along track offset waypoint inserted after the selected waypoint. Multiple offset waypoints are allowed.

A waypoint must be adjacent to its parent waypoint in the flight plan, so the system limits the along-track distance to less than the length of the leg before or after the selected waypoint. If the selected waypoint is the active waypoint, the distance is limited to less than the distance to go to the active waypoint. Assigning an along track offset to a leg with indeterminate length is not permitted. An along track offset is not allowed at or after the final approach fix of an approach.

An along track offset distance cannot be modified once entered. If the along track offset distance must be changed, the existing along track offset waypoint must be deleted and a new one created with the new offset distance.

Figure 5-78 Along Track Offset

Entering an along track offset distance:

- 1) Press the **FPL** Key to display the Active Flight Plan Page (MFD) or the Active Flight Plan Window (PFD).
- 2) Press the **FMS** Knob to activate the cursor (not required on the PFD) and turn the large **FMS** Knob to highlight the waypoint for the along track offset.
- **3)** Press the **ATK OFST** Softkey (MFD only); or press the **MENU** Key, highlight 'Create ATK Offset Waypoint', and press the **ENT** Key.
- 4) Enter a positive or negative offset distance in the range of \pm 1 to 999 nm (limited by leg distances).
- **5)** Press the **ENT** Key to create the offset waypoint.
- **6)** Turn the small **FMS** Knob to enter the desired altitude for the offset.
- **7)** Press the **FMS** Knob to remove the flashing cursor.

APPENDICES

PARALLEL TRACK

The Parallel Track (PTK) feature allows creation of a parallel course offset of 1 to 50 nm left or right of the current flight plan. When Parallel Track is activated, the course line drawn on the map pages shows the parallel course, and waypoint names have a lower case "p" placed after the identifier.

Using direct-to, loading an approach, a holding pattern, or editing and activating the flight plan automatically cancels Parallel Track. Parallel Track is also cancelled if a course change occurs greater than 120° or the parallel tracks overlap as a result of the course change.

NOTE: Vertical navigation is unavailable while the Parallel Track feature is active.

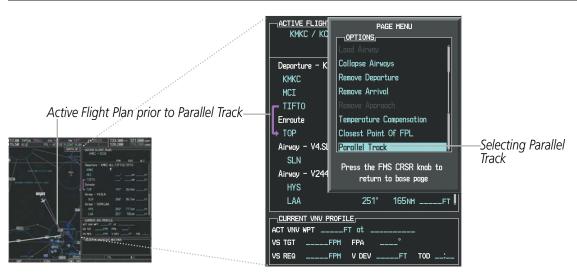


Figure 5-79 Active Flight Plan Window - Selecting Parallel Track

Activating parallel track:

- 1) Press the **FPL** Key to display the Active Flight Plan Page (MFD) or the Active Flight Plan Window (PFD).
- 2) Press the **MENU** Key, highlight 'Parallel Track', and press the **ENT** Key. The Parallel Track Window is displayed with the direction field highlighted.
- **3)** Turn the small **FMS** Knob to select 'Left' or 'Right' and press the **ENT** Key. The 'DISTANCE' field is highlighted.
- **4)** Turn the small **FMS** Knob to enter a distance from 1-99 nm and press the **ENT** Key. 'ACTIVATE PARALLEL TRACK' is highlighted.
- 5) Press the **ENT** Key to activate parallel track. Press the **FMS** Knob or the **CLR** Key to cancel the parallel track activation.

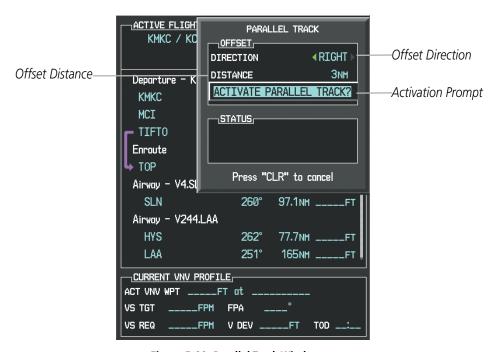


Figure 5-80 Parallel Track Window

Figure 5-81 Parallel Track Active

If the parallel track proposed by the offset direction and distance is not allowed by the system, the activation prompt is displayed, but disabled. Parallel Track cannot be activated if a course is set using direct-to or if the active leg is the first leg of the departure procedure. Attempting to activate parallel track with these conditions results in the message 'Parallel Track Unavailable Invalid Route Geometry'. If an approach leg is active the status indicates that the system is unable to activate the parallel track with the message 'Parallel Track Unavailable Approach Leg Active'. If the offset direction and distance results in an unreasonable route geometry the status indicates that the system is unable to activate the parallel track because of invalid geometry.

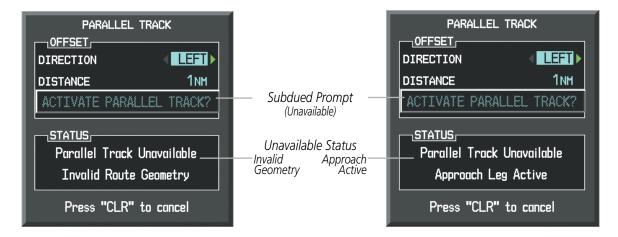


Figure 5-82 Parallel Track Unavailable

If the active leg is not a track between two fixes (TF) or a course to a fix (DF) leg, the status indicates that the system is unable to activate the parallel track because parallel track is not available for the active leg type.

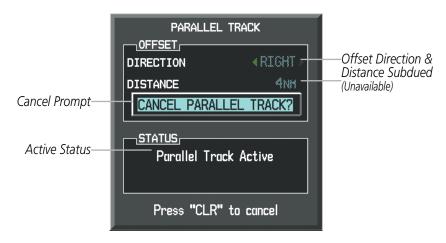


Figure 5-83 Cancelling Parallel Track

Cancelling parallel track:

- 1) Press the **FPL** Key to display the Active Flight Plan Page (MFD) or the Active Flight Plan Window (PFD).
- 2) Press the **MENU** Key, highlight 'Parallel Track', and press the **ENT** Key. The Parallel Track Window is displayed with 'CANCEL PARALLEL TRACK?' highlighted.
- 3) Press the ENT Key.

ACTIVATING A FLIGHT PLAN LEG

The G1000 allows selection of a highlighted leg as the "active leg" (the flight plan leg which is currently used for navigation guidance).

Activating a flight plan leg:

- 1) Press the FPL Key to display the Active Flight Plan Page (MFD) or the Active Flight Plan Window (PFD).
- 2) Press the **FMS** Knob to activate the cursor (not required on the PFD) and turn the large **FMS** Knob to highlight the destination waypoint for the desired leg.
- 3) Select the **ACT LEG** Softkey (MFD only); or press the **MENU** Key, highlight 'Activate Leg', and press the **ENT** Key. A confirmation window is displayed with 'ACTIVATE' highlighted.
- **4)** Press the **ENT** Key to activate the flight plan leg. To cancel, press the **CLR** Key, or highlight 'CANCEL' and press the **ENT** Key.
- **5)** Press the **FMS** Knob to remove the flashing cursor.

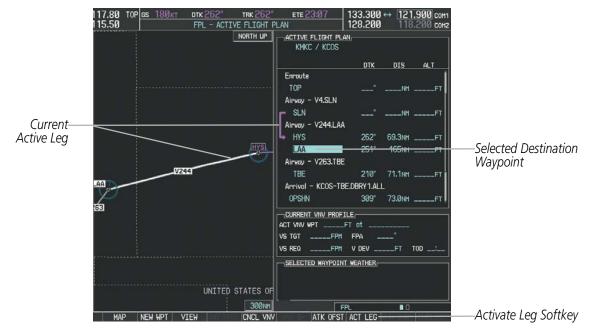


Figure 5-84 Active Flight Plan Page - Selecting the Leg Destination Waypoint

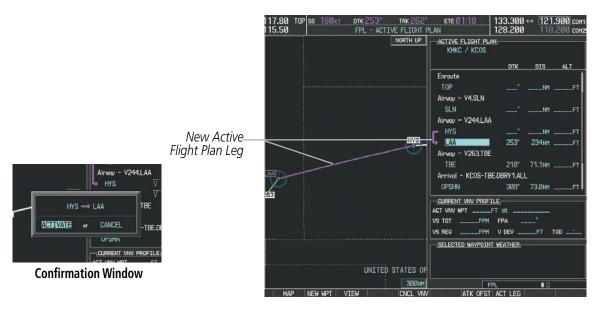


Figure 5-85 Active Flight Plan Page - New Active Leg

INVERTING A FLIGHT PLAN

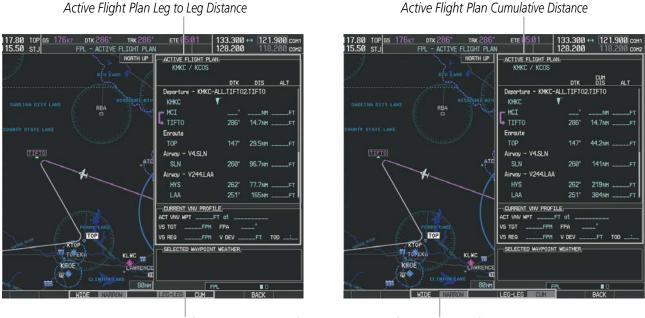
Any flight plan may be inverted (reversed) for navigation back to the original departure point.

Inverting the active flight plan:

- 1) Press the FPL Key to display the Active Flight Plan Page (MFD) or the Active Flight Plan Window (PFD).
- 2) Press the **MENU** Key, highlight 'Invert Flight Plan', and press the **ENT** Key. An 'Invert Active Flight Plan?' confirmation window is displayed.
- 3) Select 'OK'.
- **4)** Press the **ENT** Key to invert and activate the active flight plan. To cancel, press the **CLR** Key, or highlight 'CANCEL' and press the **ENT** Key.

Inverting and activating a stored flight plan:

- 1) Press the **FPL** Key and turn the small **FMS** Knob to display the Flight Plan Catalog Page.
- 2) Press the **FMS** Knob to activate the cursor, and turn the **FMS** Knob to highlight the desired flight plan.
- **3)** Select the **INVERT** Softkey; or press the **MENU** Key, highlight 'Invert & Activate FPL?', and press the **ENT** Key. The 'Invert and activate stored flight plan?' window is displayed.
- 4) With 'OK' highlighted, press the **ENT** Key. To cancel the request, press the **CLR** Key, or highlight 'CANCEL' and press the **ENT** Key.



FLIGHT PLAN VIEWS

Information about flight plans can be viewed in more than one way. The active flight plan can be configured to show cumulative distance over the length of the flight plan or the distance for each leg of the flight plan; and the active flight plan can be viewed in a narrow or wide view. In the wide view, additional information is displayed: Fuel Remaining (FUEL REM), Estimated Time Enroute (ETE), Estimated Time of Arrival (ETA), and Bearing to the waypoint (BRG).

Switching between leg-to-leg waypoint distance and cumulative waypoint distance:

- 1) Press the **FPL** Key on the MFD to display the Active Flight Plan Page.
- 2) Press the VIEW Softkey to display the CUM and LEG-LEG Softkeys.
- **3)** Press the **CUM** Softkey to view cumulative waypoint distance, or press the **LEG-LEG** Softkey to view leg-to-leg waypoint distance.
- 4) Press the **BACK** Softkey to return to the top level active flight plan softkeys.

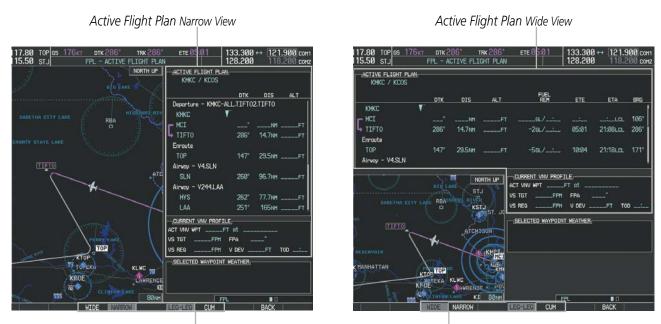

WIDE Softkey, NARROW Softkey, LEG-LEG Softkey, CUM Softkey

Figure 5-86 Active Flight Plan - Leg to Leg vs. Cumulative Distance

Switching between wide and narrow view:

- 1) Press the **FPL** Key on the MFD to display the Active Flight Plan Page.
- 2) Press the **VIEW** Softkey to display the **WIDE** and **NARROW** Softkeys.
- 3) Press the **WIDE** Softkey to display the wide view, or press the **NARROW** Softkey to display the narrow view.
- **4)** Press the **BACK** Softkey to return to the top level active flight plan softkeys.

WIDE Softkey, NARROW Softkey, LEG-LEG Softkey, CUM Softkey
Figure 5-87 Active Flight Plan - Wide vs. Narrow View

COLLAPSING AIRWAYS

The G1000 allows airways on the active flight plan to be collapsed or expanded from the Active Flight Plan Page/Window. When airways have been collapsed, it is indicated on the airway heading.

When airways are collapsed, leg-to-leg computed values such as DIS or ETE shown for the exit waypoint reflect the total of all the legs on the airway that have been hidden in the collapsed display. The DTK value is inhibited because it is not usable in this context.

The Active Flight Plan Page always keeps the following three waypoints visible: "From" waypoint, "To" waypoint, and "Next" waypoint. To prevent one or more of these waypoints from being hidden in a collapsed airway segment, the airway segment that contains either the "To" or the "Next" waypoint is automatically expanded. When an airway is loaded, airways are automatically expanded to facilitate flight plan review.

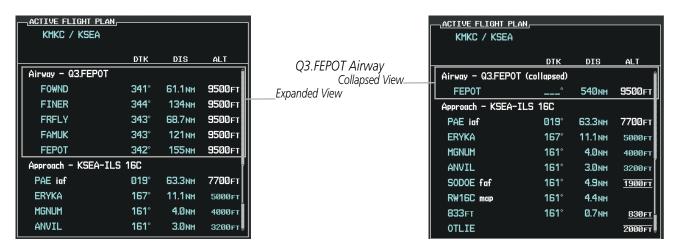


Figure 5-88 Expanded/Collapsed Airways

Collapsing/expanding the airways in the active flight plan:

- 1) Press the FPL Key to display the Active Flight Plan Page (MFD) or the Active Flight Plan Window (PFD).
- 2) Press the **MENU** Key, highlight 'Collapse Airways' or 'Expand Airways', and press the **ENT** Key. The airways are collapsed/expanded.

CLOSEST POINT OF FPL

'Closest Point of FPL' calculates the bearing and closest distance at which a flight plan passes a reference waypoint, and creates a new user waypoint along the flight plan at the location closest to a chosen reference waypoint.

Determining the closest point along the active flight plan to a selected waypoint:

- 1) Press the **FPL** Key to display the Active Flight Plan Page (MFD) or the Active Flight Plan Window (PFD).
- 2) Press the **MENU** Key, highlight 'Closest Point Of FPL", and press the **ENT** Key. A window appears with the reference waypoint field highlighted.
- 3) Enter the identifier of the reference waypoint and press the **ENT** Key. The G1000 displays the bearing (BRG) and distance (DIS) to the closest point along the flight plan to the selected reference waypoint and creates a user waypoint at this location. The name for the new user waypoint is derived from the identifier of the reference waypoint.

USER-DEFINED HOLDING PATTERNS

A holding pattern can be defined at any active flight plan waypoint, at the aircraft present position, or at a direct-to waypoint.

Creating a user-defined hold at an active flight plan waypoint:

- 1) Press the **FPL** Key to display the Active Flight Plan Page (MFD) or the Active Flight Plan Window (PFD).
- 2) Press the **FMS** Knob to activate the cursor (not required on the PFD) and turn the large **FMS** Knob to highlight the waypoint for the hold.
- **3)** Press the **MENU** Key, highlight 'Hold At Waypoint', and press the **ENT** Key. The HOLD AT window appears with the course field highlighted.
- 4) Use the **FMS** Knobs to edit the entry course, and press the **ENT** Key.
- 5) Use the small FMS Knob to select 'INBOUND' or 'OUTBOUND' course direction, and press the ENT Key.
- **6)** Use the small **FMS** Knob to select 'TIME' or 'DIST' length mode, and press the **ENT** Key.
- 7) Use the **FMS** Knobs to edit the length, and press the **ENT** Key.
- 8) Use the small **FMS** Knob to select 'RIGHT' or 'LEFT' turn direction, and press the **ENT** Key.
- 9) Use the **FMS** Knobs to edit the Expect Further Clearance Time (EFC TIME), and press the **ENT** Key.
- **10)** Press the **ENT** Key while 'LOAD?' is highlighted to insert the hold into the flight plan.

APPENDICES

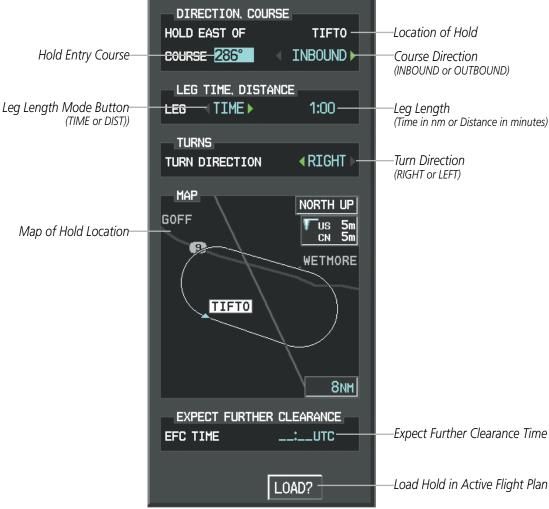


Figure 5-89 Creating a User Defined Holding Pattern at an Active Flight Plan Waypoint

Creating a user-defined hold at the aircraft present position:

- 1) Press the FPL Key to display the Active Flight Plan Page (MFD) or the Active Flight Plan Window (PFD).
- 2) Press the **MENU** Key, highlight 'Hold At Present Position', and press the **ENT** Key. The HOLD AT window appears with the course field highlighted.
- 3) If desired, use the **FMS** Knobs to edit the entry course, and press the **ENT** Key.
- 4) Use the small **FMS** Knob to select 'INBOUND' or 'OUTBOUND' course direction, and press the **ENT** Key.
- 5) Use the small **FMS** Knob to select 'TIME' or 'DIST' length mode, and press the **ENT** Key.
- **6)** Use the **FMS** Knobs to edit the length, and press the **ENT** Key.
- 7) Use the small **FMS** Knob to select 'RIGHT' or 'LEFT' turn direction, and press the **ENT** Key.
- **8)** Use the **FMS** Knobs to edit the Expect Further Clearance Time (EFC TIME), and press the **ENT** Key.
- **9)** Press the **ENT** Key while 'ACTIVATE?' is highlighted to create an Offroute Direct-to hold waypoint at the aircraft present position and activate the hold.

Creating a user-defined hold at a direct-to waypoint:

- 1) Press a **Direct-to** Key and set up the direct-to waypoint as desired, but select 'HOLD?' instead of 'ACTIVATE?' when finished (MFD or PFD).
- 2) Use the **FMS** Knobs to edit the entry course, and press the **ENT** Key.
- 3) Use the small **FMS** Knob to select 'INBOUND' or 'OUTBOUND' course direction, and press the **ENT** Key.
- **4)** Use the small **FMS** Knob to select 'TIME' or 'DIST' length mode, and press the **ENT** Key.
- 5) Use the FMS Knobs to edit the length, and press the ENT Key.
- **6)** Use the small **FMS** Knob to select 'RIGHT' or 'LEFT' turn direction, and press the **ENT** Key.
- 7) Use the **FMS** Knobs to edit the Expect Further Clearance Time (EFC TIME), and press the **ENT** Key.
- 8) Press the ENT Key while 'ACTIVATE?' is highlighted to activate the direct-to with the user-defined hold defined at the direct-to waypoint. (If the direct-to waypoint is part of the active flight plan, the HOLD is inserted into the active flight plan. If the direct-to waypoint is not part of the active flight plan, an off-route direct-to hold is created.)

Exiting a user-defined hold inserted into the active flight plan:

Press the **SUSP** Softkey. The system will provide guidance to follow the holding pattern to the inbound course and resume automatic waypoint sequencing.

Removing a user-defined hold inserted into the active flight plan:

- 1) Press the FPL Key to display the Active Flight Plan Page (MFD) or the Active Flight Plan Window (PFD).
- 2) Press the FMS Knob to activate the cursor (not required on the PFD) and turn the large FMS Knob to highlight the HOLD waypoint.
- 3) Press the **CLR** Key. A 'Remove Holding Pattern?' confirmation window is displayed.
- **4)** Select 'OK' and press the **ENT** Key. The holding pattern is removed from the active flight plan. Select 'CANCEL' and press the **ENT** Key to cancel the removal of the holding pattern.

Removing a user-defined hold at an off-route direct-to:

- 1) Press a **Direct To** Key to display the DIRECT TO Window (PFD or MFD).
- 2) Press the **MENU** Key to display the PAGE MENU with the cursor on the 'Cancel Direct-To NAV' selection.
- **3)** Press the **ENT** Key. The holding pattern is removed.

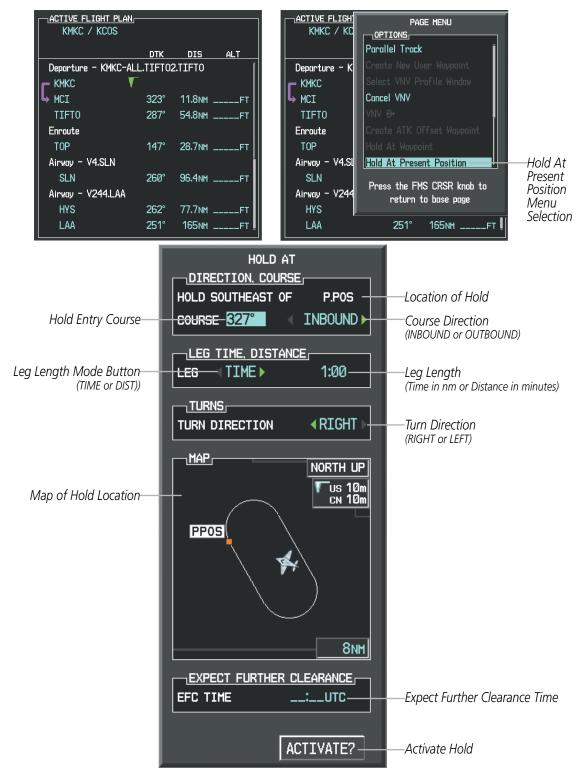
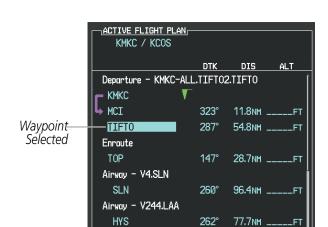



Figure 5-90 Creating a User Defined Holding Pattern at the Aircraft Present Position

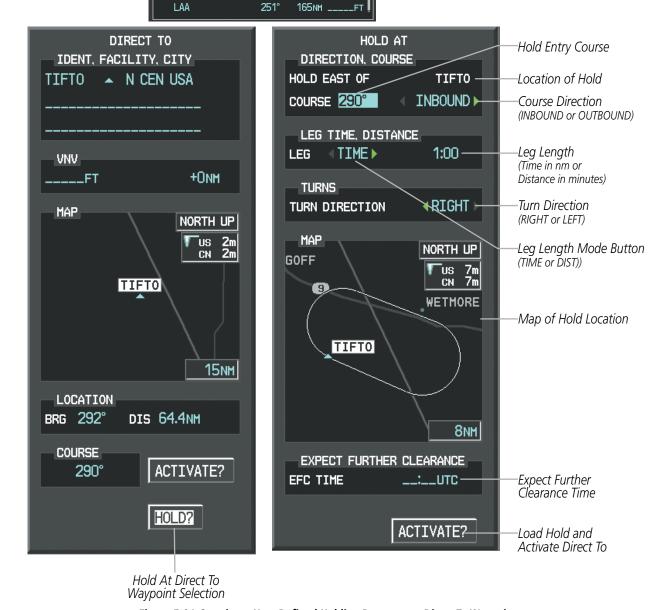


Figure 5-91 Creating a User Defined Holding Pattern at a Direct To Waypoint

GARMIN

APPENDICES

5.7 VERTICAL NAVIGATION

NOTE: The system supports vertical path guidance and altitude constraints for the following leg types: AF, CD, CF, CI, CR, DF, FC, FD, PI, RF, and TF. Altitude constraints are not retained in stored flight plans.

The G1000 system Vertical Navigation (VNV) feature provides vertical profile guidance during the enroute and teminal phases of flight. Guidance based on specified altitudes at waypoints in the active flight plan or to a direct-to waypoint is provided. It includes vertical path guidance to a descending path, which is provided as a linear deviation from the desired path. The desired path is defined by a line joining two waypoints with specified altitudes or as a vertical angle from a specified waypoint/altitude. The vertical waypoints are integrated into the active flight plan. Both manual and autopilot-coupled guidance are supported.

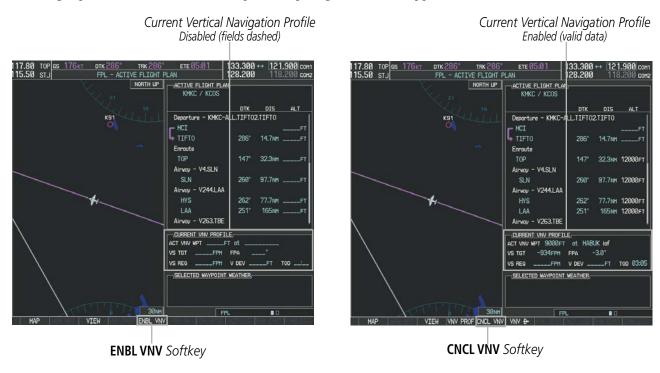


Figure 5-92 Enabling/Disabling Vertical Navigation

Enabling VNV guidance:

- 1) Press the FPL Key to display the Active Flight Plan Page on the MFD.
- 2) Press the **ENBL VNV** Softkey; or press the **MENU** Key, highlight 'Enable VNV', and press the **ENT** Key. Vertical navigation is enabled, and vertical guidance begins with the waypoint shown in the CURRENT VNV PROFILE box (defaults first waypoint in the active flight plan with an altitude enabled for vertical navigation (e.g., HABUK)).

Disabling VNV guidance:

- 1) Press the FPL Key to display the Active Flight Plan Page on the MFD.
- 2) Press the **CNCL VNV** Softkey; or press the **MENU** Key, highlight 'Cancel VNV', and press the **ENT** Key. Vertical navigation is disabled.

Canceling vertical navigation results in vertical deviation (V DEV), vertical speed required (VS REQ), and time to top of descent/bottom of descent (TIME TO TOD/BOD) going invalid. The Vertical Deviation Indicator (VDI) and Required Vertical Speed Indicator (RVSI) on the PFD are removed, and the V DEV, VS REQ, and TIME TO TOD items displayed in the CURRENT VNV PROFILE box are dashed. VNV remains disabled until manually enabled. Vertical guidance in reversionary mode can only be enabled for a direct-to waypoint.

The G1000 allows a vertical navigation direct-to to any waypoint in the active flight plan with an altitude constraint "designated" for vertical guidance. Selecting the **VNV Direct-to** Softkey on the Active Flight Plan Page allows the flight plan to be flown, while vertical guidance based on the altitude constraint at the VNV direct-to waypoint is provided. The altitude change begins immediately and is spread along the flight plan from current position to the vertical direct-to waypoint, not just along the leg for the direct-to waypoint. A direct-to with altitude constraint activated by pressing the **Direct-to** Key also provides vertical guidance, but would bypass flight plan waypoints between the current position in the flight plan and the direct-to waypoint. A top of descent (TOD) point is computed based on the default flight path angle; descent begins once the TOD is reached.

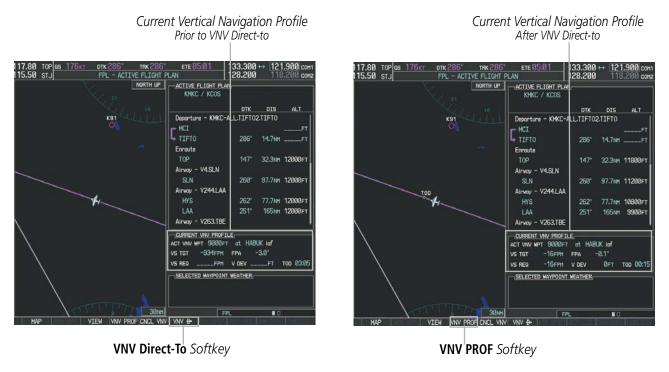


Figure 5-93 Vertical Navigation Direct-To

Activating a vertical navigation direct-to:

- 1) Press the **FPL** Key to display the Active Flight Plan Page on the MFD.
- 2) Press the FMS Knob to activate the cursor and turn the FMS Knob to highlight the desired waypoint.

NOTE: The selected waypoint must have a designated altitude constraint (cyan number) to be used. If not, the first waypoint in the flight plan with a designated altitude constraint is selected.

- **3)** Press the **VNV Direct-To** Softkey; or press the **MENU** Key, highlight 'VNV Direct-To', and press the **ENT** Key. An 'Activate vertical Direct-to to: NNNNNFT at XXXXXX?' confirmation window is displayed.
- 4) Press the **ENT** Key. Vertical guidance begins to the altitude constraint for the selected waypoint.
- **5)** Press the **FMS** Knob to remove the flashing cursor.

The vertical navigation profile can be modified by directly entering a vertical speed target (VS TGT) and/or flight path angle (FPA) in the CURRENT VNV PROFILE box.

Modifying the VS TGT and FPA:

- 1) Press the **FPL** Key to display the Active Flight Plan Page on the MFD.
- 2) Press the VNV PROF Softkey; or press the MENU Key, highlight 'Select VNV Profile Window', and press the ENT Key. The cursor is now located in the CURRENT VNV PROFILE box.
- 3) Turn the FMS Knobs as needed to edit the values.
- **4)** Press the **FMS** Knob to remove the flashing cursor.

ALTITUDE CONSTRAINTS

The G1000 system can use altitude constraints associated with lateral waypoints to give guidance for vertical navigation. These altitudes are, depending on the specific instance, manually entered or retrieved from the published altitudes in the navigation database. The navigation database only contains altitudes for procedures that call for "Cross at" altitudes. If the procedure states "Expect to cross at," then the altitude is not in the database. In this case the altitude may be entered manually.

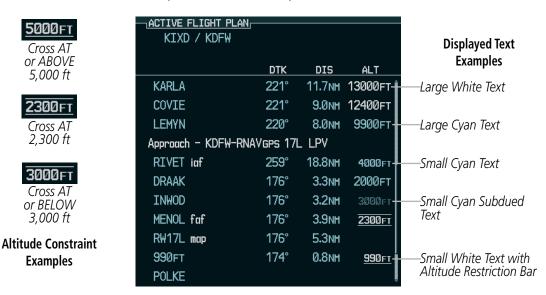


Figure 5-94 Waypoint Altitude Constraints

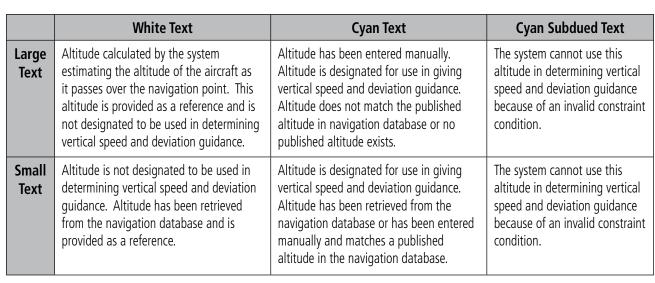


Table 5-8 Altitude Constraint Size and Color Coding

Altitudes associated with approach procedures are "auto-designated". This means the system automatically uses the altitudes loaded with the approach for giving vertical speed and deviation guidance. Note that these altitudes are displayed as cyan text up to, but not including, the FAF. The FAF is always a "reference only" altitude and cannot be designated, unless the selected approach does not provide vertical guidance. In this case, the FAF altitude can be designated.

Altitudes that have been designated for use in vertical guidance can be "un-designated" using the **CLR** Key. The altitude is now displayed only as a reference. It is not used to give vertical guidance. Other displayed altitudes may change due to re-calculations or be rendered invalid as a result of manually changing an altitude to a non-designated altitude.

Designating a waypoint altitude to be used for vertical guidance:

- 1) Press the **FPL** Key to display the Active Flight Plan Page on the MFD.
- 2) Press the **FMS** Knob, and turn to highlight the desired waypoint altitude.
- **3)** Turn the small **FMS** Knob to enter editing mode.
- **4)** Press the **ENT** Key. The altitude is now shown in cyan, indicating it is usable for vertical guidance.

Designating a procedure waypoint altitude to be used for vertical guidance:

- 1) Press the **FPL** Key to display the Active Flight Plan Page on the MFD.
- 2) Press the **FMS** Knob, and turn to highlight the desired waypoint altitude.
- 3) Press the **ENT** Key. The altitude is now shown in cyan, indicating it is usable for vertical guidance.

GARMIN

Altitude constraints are displayed and entered in feet mean sea level (MSL) values to the nearest hundred. An altitude constraint in feet above ground level (AGL) format is supported for airports. When a database altitude restriction is displayed, the G1000 allows entry of a different altitude when creating a waypoint, effectively overriding the database restriction (only before the FAF). When a database altitude restriction of type "AT or ABOVE" or "AT or BELOW" is activated, the system uses the "AT" portion of the restriction to define the vertical profile.

An altitude constraint is invalid if:

- Meeting the constraint requires the aircraft to climb
- Meeting the constraint requires the maximum flight path angle or maximum vertical speed to be exceeded
- The altitude constraint results in a TOD behind the aircraft present position
- The constraint is within a leg type for which altitude constraints are not supported
- The altitude constraint is added to the FAF of an approach that provides vertical guidance (i.e., ILS or GPS SBAS approach)
- The altitude constraint is added to a waypoint past the FAF.

Entering/modifiying an altitude constraint:

- 1) Press the FPL Key to display the Active Flight Plan Page on the MFD.
- 2) Press the **FMS** Knob, and turn to highlight the desired waypoint altitude constraint.
- **FMS** Knob counter-clockwise past zero or clockwise past 9 on the first character, and the system automatically changes to show units of Flight Level. Turn the large **FMS** Knob clockwise to highlight the first zero and enter the three digit flight level.
- **4)** Press the **ENT** Key to accept the altitude constraint; if the selected waypoint is an airport, an additional choice is displayed. Turn the small **FMS** Knob to choose 'MSL' or 'AGL', and press the **ENT** Key to accept the altitude.

Altitude constraints can be modified or deleted after having been added to the flight plan. In the event an altitude constraint is deleted and the navigation database contains an altitude restriction for the lateral waypoint, the G1000 displays the altitude restriction from the database provided no predicted altitude can be provided. The G1000 also provides a way to reinstate a published altitude constraint that has been edited.

Deleting an altitude constraint provided by the navigation database:

- 1) Press the **FPL** Key to display the Active Flight Plan Page on the MFD.
- 2) Press the FMS Knob, and turn to highlight the desired waypoint altitude constraint.
- 3) Press the CLR Key. A 'Remove VNV altitude constraint?' confirmation window is displayed.
- **4)** Select 'OK' and press the **ENT** Key.

Deleting an altitude constraint that has been manually entered:

- 1) Press the **FPL** Key to display the Active Flight Plan Page on the MFD.
- 2) Press the **FMS** Knob, and turn to highlight the desired waypoint altitude constraint.
- 3) Press the **CLR** Key. A 'Remove or Revert to published VNV altitude of nnnnnFT?' confirmation window is displayed.
- **4)** Select 'REMOVE' and press the **ENT** Key. The manually entered altitude is deleted (it is replaced by a system calculated altitude, if available).

Reverting a manually entered altitude constraint back to the navigation database value:

- 1) Press the **FPL** Key to display the Active Flight Plan Page on the MFD.
- 2) Press the **FMS** Knob, and turn to highlight the desired waypoint altitude constraint.
- 3) Press the **CLR** Key. A 'Remove or Revert to published VNV altitude of nnnnnFT?' confirmation window is displayed.
- **4)** Select 'REVERT' and press the **ENT** Key. The altitude is changed to the navigation database value.
- **5)** Press the **FMS** Knob to remove the flashing cursor.

Modifying a system calculated altitude constraint:

- 1) Press the **FPL** Key to display the Active Flight Plan Page on the MFD.
- 2) Press the **FMS** Knob, and turn to highlight the desired waypoint altitude constraint.
- 3) Press the **CLR** Key. An 'Edit or Revert to published VNV altitude of nnnnnFT?' confirmation window is displayed.
- **4)** Select 'EDIT' and press the **ENT** Key.
- **5)** Edit the value using the **FMS** Knobs, and press the **ENT** Key.
- **6)** Press the **FMS** Knob to remove the flashing cursor.

5.8 PROCEDURES

The G1000 can access the whole range of instrument procedures available. Departures (DPs), arrivals (STARs), and non-precision and precision approaches (APPRs) are stored within the database and can be loaded using the Procedures **(PROC)** Key.

The selected procedure for the departure or arrival airport is added to the active flight plan. No waypoints are required to be in the active flight plan to load procedures; however, if the departure and arrival airport are already loaded, the procedure loading window defaults to the appropriate airport, saving some time selecting the correct airport on the Procedure Loading Page. Whenever an approach is selected, the choice to either "load" or "activate" is given. "Loading" adds the approach to the end of the flight plan without immediately using it for navigation guidance. This allows continued navigation via the intermediate waypoints in the original flight plan, but keeps the procedure available on the Active Flight Plan Page for quick activation when needed. "Activating" also adds the procedure to the end of the flight plan but immediately begins to provide guidance to the first waypoint in the approach.

The system adds terminal procedures to the flight plan based on leg types coded within that procedure in the navigation database. If the terminal procedure in the flight plan contains an identifier like '6368FT', that indicates a leg that terminates when the specified altitude (6368 feet) has been exceeded. A heading leg in the flight plan displays 'hdg' preceding the DTK (e.g. 'hdg 008°'). A flight plan leg requiring the pilot to manually intitiate sequencing to the next leg displays 'MANSEQ' as the identifier.

Figure 5-95 Procedure Leg Identifiers

DEPARTURES

A Departure Procedure (DP) is loaded at the departure airport in the flight plan. Only one departure can be loaded at a time in a flight plan. If a departure is loaded when another departure is already in the active flight plan, the new departure replaces the previous departure. The route is defined by selection of a departure, the transition waypoints, and a runway.

LOADING A DEPARTURE INTO THE ACTIVE FLIGHT PLAN

Loading a departure into the active flight plan using the PROC Key:

- 1) Press the **PROC** Key. The Procedures Window is displayed.
- 2) Highlight 'SELECT DEPARTURE'.
- **3)** Press the **ENT** Key. The Departure Loading Page is displayed.
- 4) Use the FMS Knob to select an airport and press the ENT Key.
- **5)** Select a departure from the list and press the **ENT** Key.
- **6)** Select a runway (if required) and press the **ENT** Key.
- 7) Select a transition (if required) and press the **ENT** Key. 'LOAD?' is highlighted.
- **8)** Press the **ENT** Key to load the departure procedure.

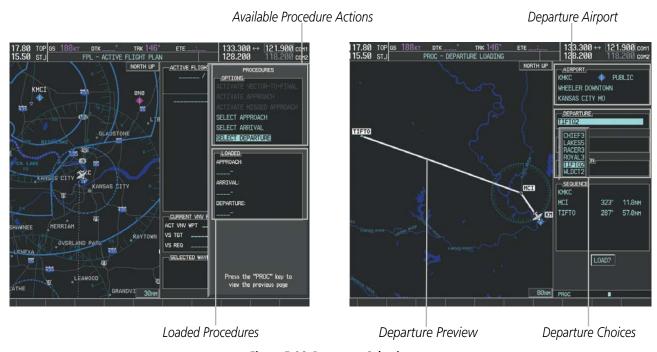


Figure 5-96 Departure Selection

APPENDICES

Figure 5-97 Departure Loading

Viewing available departures at an airport:

- 1) From the Airport Information Page (first page in the WPT group), select the **DP** Softkey. The Departure Information Page is displayed, defaulting to the airport displayed on the Airport information Page.
- 2) To select another airport, press the **FMS** Knob to activate the cursor, enter an identifier/facility name/city, and press the **ENT** Key.
- 3) Turn the large **FMS** Knob to highlight the Departure. The departure is previewed on the map.
- **4)** Turn the small **FMS** Knob to view the available departures. Press the **ENT** Key to select the departure. The cursor moves to the Runway box. The departure is previewed on the map.
- 5) Turn the small **FMS** Knob to view the available runways. Press the **ENT** Key to select the runway. The cursor moves to the Transition box (only if there are available transitions). The departure is previewed on the map.
- **6)** Turn the small **FMS** Knob to view the available transitions. Press the **ENT** Key to select the transition. The cursor moves to the Sequence box. The departure is previewed on the map.
- 7) Select the **INFO-1/2** Softkey to return to the Airport Information Page.

Loading a departure into the active flight plan from the Departure Information Page:

- 1) From the Airport Information Page (first page in the WPT group), press the **DP** Softkey. The Departure Information Page is displayed, defaulting to the airport displayed on the Airport information Page.
- 2) To select another airport, press the **FMS** Knob to activate the cursor, enter an identifier/facility name/city, and press the **ENT** Key.
- 3) Select a different departure, if desired.
 - a) Turn the large **FMS** Knob to highlight the Departure. The departure is previewed on the map.
- **b)** Turn the small **FMS** Knob to view the available departures. Press the **ENT** Key to select the departure. The cursor moves to the Runway box. The departure is previewed on the map.
- c) Turn the small **FMS** Knob to view the available runways. Press the **ENT** Key to select the runway. The cursor moves to the Transition box (only if there are available transitions). The departure is previewed on the map.
- **d)** Turn the small **FMS** Knob to view the available transitions. Press the **ENT** Key to select the transition. The cursor moves to the Sequence box. The departure is previewed on the map.
- **4)** Press the **MENU** Key to display the Departure Information Page Menu.
- **5)** Turn the **FMS** Knob to highlight 'Load Departure'.
- **6)** Press the **ENT** Key to load the departure procedure into the active flight plan.

REMOVING A DEPARTURE FROM THE ACTIVE FLIGHT PLAN

When plans change while flying IFR, departures can be easily removed from the Active Flight Plan.

Removing a departure procedure from the active flight plan:

- 1) Press the FPL Key to display the Active Flight Plan Page (MFD) or the Active Flight Plan Window (PFD).
- 2) Press the MENU Key, and highlight 'Remove Departure'.
- 3) Press the ENT Key. A confirmation window is displayed listing the departure procedure.
- **4)** With 'OK' highlighted, press the **ENT** Key. To cancel the removal request, highlight 'CANCEL' and press the **ENT** Key.

Or:

- 1) Press the FPL Key to display the Active Flight Plan Page (MFD) or the Active Flight Plan Window (PFD).
- 2) Press the **FMS** Knob, and turn to highlight the departure header in the active flight plan.
- 3) Press the **CLR** Key. A confirmation window is displayed listing the departure procedure.
- **4)** With 'OK' highlighted, press the **ENT** Key. To cancel the removal request, highlight 'CANCEL' and press the **ENT** Key.
- **5)** Press the **FMS** Knob to remove the flashing cursor.

ARRIVALS

A Standard Terminal Arrival (STAR) can be loaded at any airport that has one available. Only one arrival can be loaded at a time in a flight plan. If an arrival is loaded when another arrival is already in the active flight plan, the new arrival replaces the previous arrival. The route is defined by selection of an arrival, the transition waypoints, and a runway.

LOADING AN ARRIVAL INTO THE ACTIVE FLIGHT PLAN

Loading an arrival into the active flight plan using the **PROC** Key:

- 1) Press the **PROC** Key. The Procedures Window is displayed.
- 2) Highlight 'SELECT ARRIVAL'.
- **3)** Press the **ENT** Key. The Arrival Loading Page is displayed.
- 4) Use the FMS Knob to select an airport and press the ENT Key.
- **5)** Select an arrival from the list and press the **ENT** Key.
- **6)** Select a transition (if required) and press the **ENT** Key.
- 7) Select a runway (if required) and press the **ENT** Key. 'LOAD?' is highlighted.
- 8) Press the ENT Key to load the arrival procedure.

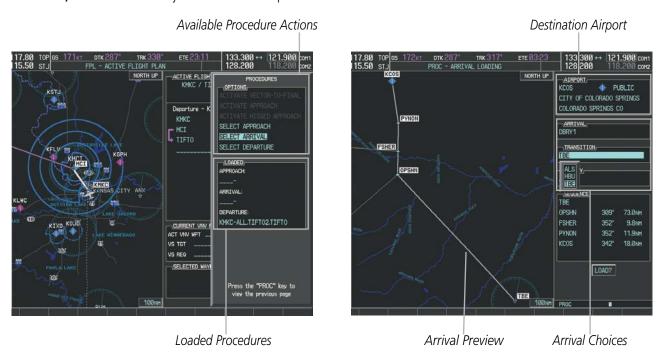


Figure 5-98 Arrival Selection

Procedure Loading Page Selection Softkeys

Figure 5-99 Arrival Loading

Viewing available arrivals at an airport:

- 1) From the Airport Information Page (first page in the WPT group), select the **STAR** Softkey. The Arrival Information Page is displayed, defaulting to the airport displayed on the Airport Information Page.
- 2) To select another airport, press the **FMS** Knob to activate the cursor, enter an identifier/facility name/city, and press the **ENT** Key.
- 3) Turn the large **FMS** Knob to highlight the Arrival. The arrival is previewed on the map.
- **4)** Turn the small **FMS** Knob to view the available arrivals. Press the **ENT** Key to select the arrival. The cursor moves to the Transition box. The arrival is previewed on the map.
- **5)** Turn the small **FMS** Knob to view the available transitions. Press the **ENT** Key to select the transition. The cursor moves to the Runway box. The arrival is previewed on the map.
- **6)** Turn the small **FMS** Knob to view the available runways. Press the **ENT** Key to select the runway. The cursor moves to the Sequence box. The arrival is previewed on the map.
- 7) Press the **INFO-1** Softkey or the **INFO-2** Softkey to return to the Airport Information Page.

GARMIN

Loading an arrival into the active flight plan from the Arrival Information Page:

- 1) From the Airport Information Page (first page in the WPT group), press the **STAR** Softkey. The Arrival Information Page is displayed, defaulting to the airport displayed on the Airport information Page.
- 2) To select another airport, press the **FMS** Knob to activate the cursor, enter an identifier/facility name/city, and press the **ENT** Key.
- **3)** Select a different arrival, if desired.
 - a) Turn the large FMS Knob to highlight the arrival. The arrival is previewed on the map.
- **b)** Turn the small **FMS** Knob to view the available arrivals. Press the **ENT** Key to select the arrival. The cursor moves to the Transition box (only if there are available transitions). The arrival is previewed on the map.
- **c)** Turn the small **FMS** Knob to view the available transitions. Press the **ENT** Key to select the transition. The cursor moves to the Runway box. The arrival is previewed on the map.
- **d)** Turn the small **FMS** Knob to view the available runways. Press the **ENT** Key to select the runway. The cursor moves to the Sequence box. The arrival is previewed on the map.
- **4)** Press the **MENU** Key to display the Arrival Information Page Menu.
- 5) Turn the **FMS** Knob to highlight 'Load Arrival'.
- **6)** Press the **ENT** Key to load the arrival procedure into the active flight plan.

REMOVING AN ARRIVAL FROM THE ACTIVE FLIGHT PLAN

When plans change while flying IFR, arrivals can be easily removed from the Active Flight Plan.

Removing an arrival from the active flight plan:

- 1) Press the **FPL** Key to display the Active Flight Plan Page (MFD) or the Active Flight Plan Window (PFD).
- 2) Press the **MENU** Key, and highlight 'Remove Arrival'.
- 3) Press the ENT Key. A confirmation window is displayed listing the arrival procedure.
- **4)** With 'OK' highlighted, press the **ENT** Key. To cancel the removal request, highlight 'CANCEL' and press the **ENT** Key.

Or:

- 1) Press the FPL Key to display the Active Flight Plan Page (MFD) or the Active Flight Plan Window (PFD).
- 2) Press the **FMS** Knob, and turn to highlight the arrival header in the active flight plan.
- 3) Press the CLR Key. A confirmation window is displayed listing the arrival procedure.
- **4)** With 'OK' highlighted, press the **ENT** Key. To cancel the removal request, highlight 'CANCEL' and press the **ENT** Key.
- 5) Press the **FMS** Knob to remove the flashing cursor.

APPROACHES

NOTE: If certain GPS parameters (SBAS, RAIM, etc.) are not available, some published approach procedures for the desired airport may not be displayed in the list of available approaches.

An Approach Procedure (APPR) can be loaded at any airport that has one available, and provides guidance for non-precision and precision approaches to airports with published instrument approach procedures. Only one approach can be loaded at a time in a flight plan. If an approach is loaded when another approach is already in the active flight plan, the new approach replaces the previous approach. The route is defined by selection of an approach and the transition waypoints.

Whenever an approach is selected, the choice to either "load" or "activate" is given. "Loading" adds the approach to the end of the flight plan without immediately using it for navigation guidance. This allows continued navigation via the intermediate waypoints in the original flight plan, but keeps the procedure available on the Active Flight Plan Page for quick activation when needed. "Activating" also adds the procedure to the end of the flight plan but immediately begins to provide guidance to the first waypoint in the approach.

When selecting an approach, a "GPS" designation to the right of the procedure name indicates the procedure can be flown using the GPS receiver. Some procedures do not have this designation, meaning the GPS receiver can be used for supplemental navigation guidance only. If the GPS receiver cannot be used for primary guidance, the appropriate navigation receiver must be used for the selected approach (e.g., VOR or ILS). The final course segment of ILS approaches, for example, must be flown by tuning the NAV receiver to the proper frequency and selecting that NAV receiver on the CDI.

The G1000 SBAS GPS allows for flying LNAV, LNAV+V, LNAV/VNAV, LP, LP+V and LPV approach service levels according to the published chart. The '+V' designation adds advisory vertical guidance for assistance in maintaining a constant vertical glidepath similar to an ILS glideslope on approach. This guidance is displayed on the system PFD in the same location as the ILS glideslope using a magenta diamond. The active approach service level is annunciated on the HSI as shown in the following table

HSI Annunciation	Description	Example on HSI
LNAV	RNAV GPS approach using published LNAV minima	Approach Service Level - LNAV, LNAV+V, LVNAV, LP, LP+V, LPV
LNAV+V	RNAV GPS approach using published LNAV minima. Advisory vertical guidance is provided	
L/VNAV (available only if SBAS available)	RNAV GPS approach using published LNAV/ VNAV minima (downgrades to LNAV if SBAS unavailable)	
LP (available only if SBAS available)	RNAV GPS approach using published LP minima (downgrades to LNAV if SBAS unavailable)	
LP+V (available only if SBAS available)	RNAV GPS approach using published LP minima Advisory vertical guidance is provided (downgrades to LNAV if SBAS unavailable)	
LPV (available only if SBAS available)	RNAV GPS approach using published LPV minima	

Table 5-9 Approach Types

LOADING AN APPROACH INTO THE ACTIVE FLIGHT PLAN

Loading an approach into the active flight plan using the **PROC** Key:

- 1) Press the **PROC** Key. The Procedures Window is displayed.
- **2)** Highlight 'SELECT APPROACH', and press the **ENT** Key. The Approach Loading Page is displayed.
- **3)** Select the airport and approach:
 - a) Use the FMS Knob to select an airport and press the ENT Key.
 - **b)** Select an approach from the list and press the **ENT** Key.

Or:

- a) If necessary, push the **FMS** Knob to exit the approach list, and use the large **FMS** Knob to move the cursor to the APPROACH CHANNEL field.
- **b)** Use the **FMS** Knob to enter the approach channel number, and press the **ENT** Key to accept the approach channel number. The airport and approach are selected.
- **4)** Select a transition (if required) and press the **ENT** Key.
- 5) Minimums
- **a)** To set 'MINIMUMS', turn the small **FMS** Knob to select 'BARO' or 'TEMP COMP' or 'RAD ALT', and press the **ENT** Key. Turn the small **FMS** Knob to select the altitude, and press the **ENT** Key.
- **b)** If 'TEMP COMP' was selected, the cursor moves to the temperature field. Turn the small **FMS** Knob to select the temperature, and press the **ENT** Key.

Or:

- a) To skip setting minimums, press the **ENT** Key.
- 6) Press the **ENT** Key with 'LOAD?' highlighted to load the approach procedure; or turn the large **FMS** Knob to highlight 'ACTIVATE' and press the **ENT** Key to load and activate the approach procedure.

NOTE: When GPS is not approved for the selected final approach course, the message 'NOT APPROVED FOR GPS' is displayed. GPS provides guidance to the approach, but the HSI must to be switched to a NAV receiver to fly the final course of the approach.

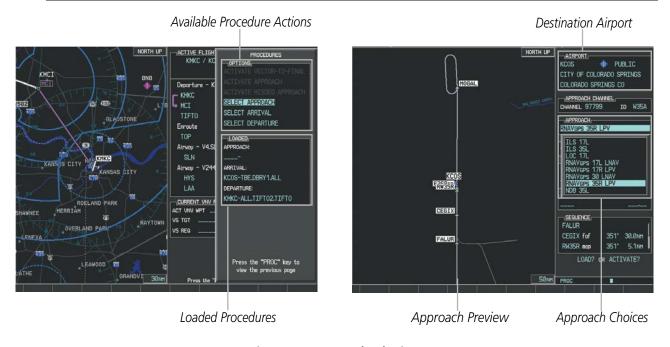


Figure 5-100 Approach Selection

Procedure Loading Page Selection Softkeys LOAD or ACTIVATE? Annunciation

Figure 5-101 Approach Loading

Viewing available approaches at an airport:

- 1) From the Airport Information Page (first page in the WPT group), press the **APR** Softkey. The Approach Information Page is displayed, defaulting to the airport displayed on the Airport information Page.
- 2) To select another airport, press the **FMS** Knob to activate the cursor, enter an identifier/facility name/city, and press the **ENT** Key.
- **3)** Press the **FMS** Knob, then turn the large **FMS** Knob to highlight the Approach. The approach is previewed on the map.
- **4)** Turn the small **FMS** Knob to view the available approaches. Press the **ENT** Key to select the approach. The cursor moves to the Transition box. The approach is previewed on the map.
- 5) Turn the small **FMS** Knob to view the available transitions. Press the **ENT** Key to select the transition. The cursor moves to the Minimums box. The approach is previewed on the map.
- **6)** Turn the small **FMS** Knob to select minimums on or off. Press the **ENT** Key.
- **a)** When minimums are selected on, the cursor moves to the minimum altitude field . Use the small **FMS** Knob to select the altitude. Press the **ENT** Key.
- **b)** If temperature compensated minimums was selected, the cursor moves to the temperature field. Use the small **FMS** Knob to select the temperature. Press the **ENT** Key. The cursor moves to the Sequence box. The approach is previewed on the map.

Or:

- **a)** When minimums are selected off, the cursor moves to the Sequence box. The approach is previewed on the map.
- 7) Press the **INFO-1** or the **INFO-2** Softkey to return to the Airport Information Page.

Loading an approach into the active flight plan from the Nearest Airport Page:

- 1) Select the Nearest Airports Page.
- 2) Press the **FMS** Knob, then turn the large **FMS** Knob to highlight the desired nearest airport. The airport is previewed on the map.
- 3) Press the APR Softkey; or press the MENU Key, highlight 'Select Approach Window', and press the ENT Key.
- **4)** Turn the **FMS** Knob to highlight the desired approach.
- 5) Press the **LD APR** Softkey; or press the **MENU** Key, highlight 'Load Approach', and press the **ENT** Key. The Approach Loading Page is displayed with the transitions field highlighted.
- **6)** Turn the **FMS** Knob to highlight the desired transition, and press the **ENT** Key.
- **7)** Minimums
 - **a)** To set 'MINIMUMS', turn the small **FMS** Knob to select 'BARO' or 'TEMP COMP' or 'RAD ALT', and press the **ENT** Key. Turn the small **FMS** Knob to select the altitude, and press the **ENT** Key.
 - **b)** If 'TEMP COMP' was selected, the cursor moves to the temperature field. Turn the small **FMS** Knob to select the temperature, and press the **ENT** Key.

Or:

- a) To skip setting minimums, press the ENT Key. The 'LOAD?' field is highlighted.
- 8) Press the **ENT** Key with 'LOAD?' highlighted to load the approach procedure; or turn the large **FMS** Knob to highlight 'ACTIVATE' and press the **ENT** Key to load and activate the approach procedure. The system continues navigating the current flight plan until the approach is activated. When GPS is not approved for the selected final approach course, the message 'NOT APPROVED FOR GPS' is displayed. GPS provides guidance to the approach, but the HSI must to be switched to a NAV receiver to fly the final course of the approach.

ACTIVATING AN APPROACH

A previously loaded approach can be activated from the Procedures Window.

Activating a previously loaded approach:

- 1) Press the **PROC** Key. The Procedures Window is displayed with 'Activate Approach' highlighted.
- 2) Press the ENT Key to activate the approach.

In many cases, it may be easiest to "load" the full approach while still some distance away, enroute to the destination airport. Later, if vectored to final, use the steps above to select 'Activate Vector-To-Final' — which makes the inbound course to the FAF waypoint active.

Activating a previously loaded approach with vectors to final:

- 1) Press the **PROC** Key to display the Procedures Window.
- **2)** Highlight 'ACTIVATE VECTOR-TO-FINAL' and press the **ENT** Key.

Loading and activating an approach using the MENU Key:

- 1) From the Approach Loading Page, press the **MENU** Key. The page menu is displayed with 'Load & Activate Approach' highlighted.
- 2) Press the **ENT** Key. When GPS is not approved for the selected final approach course, the message 'NOT APPROVED FOR GPS' is displayed. GPS provides guidance to the approach, but the HSI must to be switched to a NAV receiver to fly the final course of the approach.

REMOVING AN APPROACH FROM THE ACTIVE FLIGHT PLAN

When plans change while flying IFR, approaches can be easily removed from the Active Flight Plan.

Removing an approach from the active flight plan:

- 1) Press the **FPL** Key to display the Active Flight Plan Page (MFD) or the Active Flight Plan Window (PFD).
- 2) Press the **MENU** Key, and highlight 'Remove Approach'.
- 3) Press the **ENT** Key. A confirmation window is displayed listing the approach procedure.
- **4)** With 'OK' highlighted, press the **ENT** Key. To cancel the removal, highlight 'CANCEL' and press the **ENT** Key. **Or**:
- 1) Press the **FPL** Key to display the Active Flight Plan Page (MFD) or the Active Flight Plan Window (PFD).
- 2) Press the **FMS** Knob, and turn to highlight the approach header in the active flight plan.
- **3)** Press the **CLR** Key. A confirmation window is displayed listing the approach procedure.

- 4) With 'OK' highlighted, press the ENT Key. To cancel the removal, highlight 'CANCEL' and press the ENT Key.
- **5)** Press the **FMS** Knob to remove the flashing cursor.

MISSED APPROACH

Activating a missed approach in the active flight plan:

Press the Go Around Button.

Or:

Fly past the MAP, and press the **SUSP** Softkey on the PFD.

Or:

- 1) Press the **PROC** Key.
- 2) Turn the **FMS** Knob to highlight 'ACTIVATE MISSED APPROACH'.
- **3)** Press the **ENT** Key. The aircraft automatically sequences to the MAHP.

In this missed approach procedure, the altitude immediately following the MAP (in this case '6368FT') is not part of the published procedure. It is simply a Course to Altitude (CA) leg which guides the aircraft along the runway centerline until the altitude required to safely make the first turn toward the MAHP is exceeded. This altitude is provided by the navigation database, and may be below, equal to, or above the published minimums for this approach. In this case, if the aircraft altitude is below the specified altitude (6,368 feet) after crossing the MAP, a direct-to is established to provide a course on runway heading until an altitude of 6,368 feet is reached. After reaching 6,368 feet, a direct-to is established to the published MAHP (in this case MOGAL). If the aircraft altitude is above the specified altitude after crossing the MAP, a direct-to is established to the published fix (MOGAL) to begin the missed approach procedure.

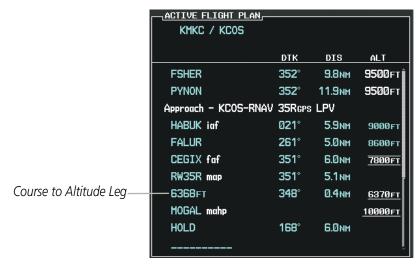
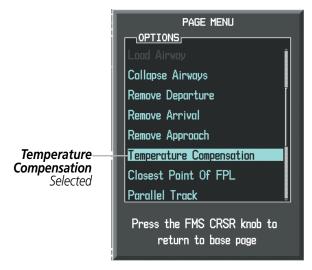


Figure 5-102 Course to Altitude

In some missed approach procedures this Course to Altitude leg may be part of the published procedure. For example, a procedure may dictate a climb to 5,500 feet, then turn left and proceed to the Missed Approach Hold Point (MAHP). In this case, the altitude would appear in the list of waypoints as '5500ft'. Again, if the aircraft altitude is lower than the prescribed altitude, a direct-to is established on a Course to Altitude leg when the missed approach procedure is activated.

TEMPERATURE COMPENSATED ALTITUDE

If desired, the system can compensate the loaded approach altitudes based on a pilot-supplied temperature at the destination. For example, if the pilot enters a destination temperature of -40° C, the system increases the approach altitudes accordingly. A temperature compensated altitude is displayed in slanted text.


Activating temperature compensated altitude:

- **1)** From the Active Flight Plan Page, press the **MENU** Key. The Page Menu is displayed.
- 2) Turn the **FMS** Knob to highlight 'Temperature Compensation'.
- 3) Press the ENT Key. The TEMPERATURE COMPENSATION Window is displayed.
- **4)** Use the small **FMS** Knob to select the temperature at the <airport>. The compensated altitude is computed as the temperature is selected.

NOTE: The temperature at the destination can be entered in the TEMPERATURE COMPENSATION Window on the MFD, or in the REFERENCES Window on the PFD. There is only one compensation temperature for the system, therefore, changing the temperature will affect both the loaded approach altitudes and the minimums. Refer to the Flight Instruments section for information about applying temperature compensation to the MDA/DH.

- **5)** Press the **ENT** Key. 'ACTIVATE COMPENSATION?' is highlighted.
- **6)** Press the **ENT** Key. The compensated altitudes for the approach are shown in the flight plan.

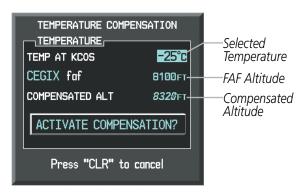


Figure 5-103 Temperature Compensation

Figure 5-104 Activating/Cancelling Temperature Compensation

Figure 5-105 Temperature Compensation in the Active Flight Plan

Cancelling temperature compensated altitude:

- 1) From the Active Flight Plan Page, press the **MENU** Key. The Page Menu is displayed.
- 2) Turn the **FMS** Knob to highlight 'Temperature Compensation'.
- 3) Press the **ENT** Key. The TEMPERATURE COMPENSATION Window is displayed.
- **4)** Press the **ENT** Key. 'CANCEL COMPENSATION?' is highlighted.
- **5)** Press the **ENT** Key. The temperature compensated altitude at the FAF is cancelled.

NOTE: Activating/cancelling temperature compensation for the loaded approach altitudes does not select/ deselect temperature compensated minimums (MDA/DH), nor does selecting/deselecting temperature compensated minimums activate/cancel temperature compensated approach altitudes.

5.9 TRIP PLANNING

The G1000 allows the pilot to view trip planning information, fuel information, and other information for a specified flight plan or flight plan leg based on automatic data, or based on manually entered data. Weight planning is also available, based on manually entered fuel data and the active flight plan (to estimate remaining fuel).

TRIP PLANNING

All of the input of data needed for calculation and viewing of the statistics is done on the Trip Planning Page located in the AUX Page Group.

Selected Flight Plan Segment

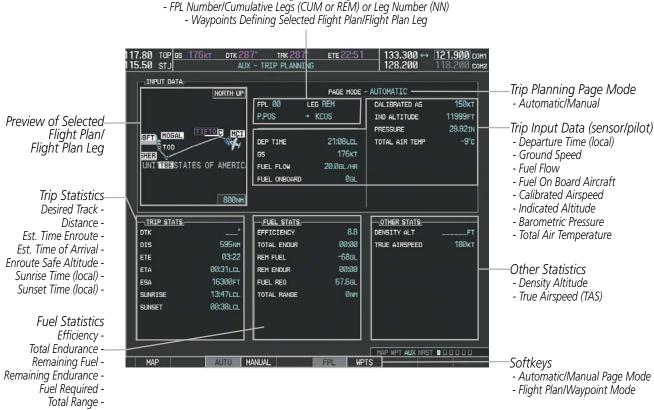


Figure 5-106 Trip Planning Page

The trip planning inputs are based on sensor inputs (automatic page mode) or on pilot inputs (manual page mode). Some additional explanation of the sources for some of the inputs is as follows:

- Departure time (DEP TIME) This defaults to the current time in automatic page mode. The computations are from the aircraft present position, so the aircraft is always just departing.
- Calibrated airspeed (CALIBRATED AS) The primary source is from the air data system, and the secondary source of information is GPS ground speed.
- Indicated altitude (IND ALTITUDE) The primary source is the barometric altitude, and the secondary source of information is GPS altitude.

TRIP STATISTICS

The trip statistics are calculated based on the selected starting and ending waypoints and the trip planning inputs.

In flight plan mode (FPL) with a stored flight plan selected (NN), and the entire flight plan (CUM) selected, the waypoints are the starting and ending waypoints of the selected flight plan.

In flight plan mode (FPL) with a stored flight plan selected (NN), and a specific leg (NN) selected, the waypoints are the endpoints of the selected leg.

In flight plan mode (FPL) with the active flight plan selected (00), and the remaining flight plan (REM) selected, the 'from' waypoint is the present position of the aircraft and the 'to' waypoint is the endpoint of the active flight plan.

In flight plan mode (FPL) with the active flight plan selected (00), and a specific leg (NN) selected, the 'from' waypoint is the current aircraft position and the 'to' waypoint is the endpoint of the selected leg.

In waypoint (WPTS) mode these are manually selected waypoints (if there is an active flight plan, these default to the endpoints of the active leg).

Some of the calculated trip statistics are dashed when the selected leg of the active flight plan has already been flown.

- Desired Track (DTK) DTK is shown as nnn° and is the desired track between the selected waypoints. It is dashed unless only a single leg is selected.
- Distance (DIS) The distance is shown in tenths of units up to 99.9, and in whole units up to 9999.
- Estimated time enroute (ETE) ETE is shown as hours:minutes until less than an hour, then it is shown as minutes:seconds.
- Estimated time of arrival (ETA) ETA is shown as hours:minutes and is the local time at the destination.
 - If in waypoint mode then the ETA is the ETE added to the departure time.
 - If a flight plan other than the active flight plan is selected it shows the ETA by adding to the departure time all of the ETEs of the legs up to and including the selected leg. If the entire flight plan is selected, then the ETA is calculated as if the last leg of the flight plan was selected.
 - If the active flight plan is selected the ETA reflects the current position of the aircraft and the current leg being flown. The ETA is calculated by adding to the current time the ETEs of the current leg up to and including the selected leg. If the entire flight plan is selected, then the ETA is calculated as if the last leg of the flight plan was selected.
- Enroute safe altitude (ESA) The ESA is shown as nnnnnFT
- Destination sunrise and sunset times (SUNRISE, SUNSET) These times are shown as hours:minutes and are the local time at the destination.

FUEL STATISTICS

The fuel statistics are calculated based on the selected starting and ending waypoints and the trip planning inputs. Some of the calculated trip statistics are dashed when the selected leg of the active flight plan has already been flown.

- Fuel efficiency (EFFICIENCY) This value is calculated by dividing the current ground speed by the current fuel flow.
- Time of fuel endurance (TOTAL ENDUR) This time is shown as hours:minutes. This value is obtained by dividing the amount of fuel on board by the current fuel flow.
- Fuel on board upon reaching end of selected leg (REM FUEL) This value is calculated by taking the amount of fuel onboard and subtracting the fuel required to reach the end of the selected leg.
- Fuel endurance remaining at end of selected leg (REM ENDUR) This value is calculated by taking the time of fuel endurance and subtracting the estimated time enroute to the end of the selected leg.
- Fuel required for trip (FUEL REQ) This value is calculated by multiplying the time to go by the fuel flow.
- Total range at entered fuel flow (TOTAL RANGE) This value is calculated by multiplying the time of fuel endurance by the ground speed.

OTHER STATISTICS

These statistics are calculated based on the system sensor inputs or the manual trip planning inputs.

- Density altitude (DENSITY ALT)
- True airspeed (TRUE AIRSPEED)

The pilot may select automatic (AUTO) or manual (MANUAL) page mode, and flight plan (FPL) or waypoint (WPTS) mode. In automatic page mode, only the FPL, LEG, or waypoint IDs are editable (based on FPL/WPTS selection).

Figure 5-107 Trip Planning Page - Flight Plan Mode

Figure 5-108 Trip Planning Page - Waypoint Mode

Selecting automatic or manual page mode:

Select the **AUTO** Softkey or the **MANUAL** Softkey; or press the **MENU** Key, highlight 'Auto Mode' or 'Manual Mode', and press the **ENT** Key.

Selecting flight plan or waypoint mode:

Select the **FPL** Softkey or the **WPTS** Softkey; or press the **MENU** Key, highlight 'Flight Plan Mode' or 'Waypoints Mode', and press the **ENT** Key.

Selecting a flight plan and leg for trip statistics:

- 1) Press the **FMS** Knob to activate the cursor in the flight plan number field.
- 2) Turn the small **FMS** Knob to select the desired flight plan number.
- 3) Turn the large **FMS** Knob to highlight 'CUM' or 'REM'. The statistics for each leg can be viewed by turning the small **FMS** Knob to select the desired leg. The Inset Map also displays the selected data.

Selecting waypoints for waypoint mode:

- 1) Select the **WPTS** Softkey; or press the **MENU** Key, highlight 'Waypoints Mode', and press the **ENT** Key. The cursor is positioned in the waypoint field directly below the FPL field.
- 2) Turn the **FMS** knobs to select the desired waypoint (or select from the Page Menu 'Set WPT to Present Position' if that is what is desired), and press the **ENT** Key. The cursor moves to the second waypoint field.
- **3)** Turn the **FMS** knobs to select the desired waypoint, and press the **ENT** Key. The statistics for the selected leg are displayed.

In manual page mode, the other eight trip input data fields must be entered by the pilot, in addition to flight plan and leg selection.

Entering manual data for trip statistics calculations:

- 1) Select the **MANUAL** Softkey or select 'Manual Mode' from the Page Menu, and press the **ENT** Key. The cursor may now be positioned in any field in the top right two boxes.
- 2) Turn the **FMS** Knobs to move the cursor onto the DEP TIME field and enter the desired value. Press the **ENT** Key. The statistics are calculated using the new value and the cursor moves to the next entry field. Repeat until all desired values have been entered.

5.10 RAIM PREDICTION

RAIM (Receiver Autonomous Integrity Monitoring) is a GPS receiver function that performs a consistency check on all tracked satellites. RAIM ensures that the available satellite geometry allows the receiver to calculate a position within a specified RAIM protection limit (2.0 nm for oceanic, 2.0 nm for enroute, 1.0 nm for terminal, and 0.3 nm for non-precision approaches). During oceanic, enroute, and terminal phases of flight, RAIM is available nearly 100% of the time. The RAIM prediction function also indicates whether RAIM is available at a specified date and time. RAIM computations predict satellite coverage within ±15 min of the specified arrival date and time. Because of the tighter protection limit on approaches, there may be times when RAIM is not available. RAIM prediction must be initiated manually if there is concern over SBAS coverage at the destination or some other reason that compromises navigation precision. If RAIM is not predicted to be available for the final approach course, the approach does not become active. If RAIM is not available when crossing the FAF, the missed approach procedure must be flown.

Figure 5-109 RAIM Prediction

Predicting RAIM availability at a selected waypoint:

- 1) Select the AUX-GPS Status Page.
- Press the FMS Knob. The RAIM Prediction 'WAYPOINT' field is highlighted.
- 3) Turn the small **FMS** Knob to display the Waypoint Information Window. (Turning it clockwise displays a blank Waypoint Information Window, turning it counter-clockwise displays the Waypoint Information Window with a waypoint selection submenu allowing selection of active flight plan, nearest, recent, user, or airway waypoints).
- **4)** Enter the identifier, facility, or city name of the departure waypoint; or select a waypoint from the submenu of waypoints and press the **ENT** Key to accept the waypoint entry.
- **5)** Turn the FMS Knobs to enter an arrival time and press the **ENT** Key.
- **6)** Turn the FMS Knobs to enter an arrival date and press the **ENT** Key.
- **7)** Press the **ENT** Key with 'COMPUTE RAIM?' highlighted to begin the computation.

Predicting RAIM availability at the aircraft present position:

- 1) Select the AUX-GPS Status Page.
- 2) Press the **FMS** Knob. The RAIM Prediction 'WAYPOINT' field is highlighted.
- **3)** Press the **MENU** Key, highlight 'Set WPT to Present Position', and press the **ENT** Key.
- **4)** Press the **ENT** Key to accept the waypoint entry.
- **5)** Turn the FMS Knobs to enter an arrival time and press the **ENT** Key.
- **6)** Turn the FMS Knobs to enter an arrival date and press the **ENT** Key.
- **7)** Press the **ENT** Key with 'COMPUTE RAIM?' highlighted to begin the computation.

Status of the RAIM computation for the selected waypoint, time, and date is displayed at the bottom of the RAIM PREDICTION Box as follows:

- 'COMPUTE RAIM?' RAIM has not been computed.
- 'COMPUTING AVAILABILITY' RAIM calculation is in progress.
- 'RAIM AVAILABLE' RAIM is predicted to be available.
- 'RAIM NOT AVAILABLE' RAIM is predicted to be unavailable.

The Satellite Based Augmentation System (SBAS) provides increased navigation accuracy when available. SBAS can be enabled or disabled manually on the GPS Status Page.

Figure 5-110 SBAS Display - Active

Enabling/Disabling SBAS:

- 1) Select the AUX-GPS Status Page.
- **2)** Press the **SBAS** Softkey.
- 3) Press the **FMS** Knob, and turn the large FMS Knob to highlight 'EGNOS', 'MSAS' or 'WAAS'.
- **4)** Press the **ENT** Key to disable SBAS. Press the **ENT** Key again to enable SBAS.

RAIM Softkey.

(displays RAIM

PREDICTION)

APPENDICES

5.11 NAVIGATING A FLIGHT PLAN

The following discussion is an example of navigating a flight plan with the SBAS capable GPS system while the G1000 provides vertical guidance through descents. A lateral flight plan (LNAV) would be navigated in much the same way, but would not include vertical guidance when the final approach course is active.

NOTE: The following example flight plan is for instructional purposes only. All database information depicted should be considered not current.

The example is a flight plan from KMKC to KCOS filed using the TIFTO2 departure, various Victor Airways, and the DBRY1 arrival with the transition at TBE. The flight plan includes an enroute altitude of 12,000 feet, an LPV (WAAS) RNAV approach selected for runway 35R, and a missed approach executed at the Missed Approach Point (MAP). A few enroute changes are demonstrated.

- 1) Prior to departure, the TIFTO2 departure, the airways, and the DBRY1 arrival at KCOS are loaded. See the Procedures section for loading departures and arrivals. Note the magenta arrow in Figure 5-112 indicating the active departure leg.
 - After takeoff, ATC assigns a heading of 240°.
- 2) Figure 5-112 shows the aircraft on the assigned heading of 240°. 'TERM' (Terminal) is the current CDI flight phase displayed on the HSI indicating 1.0 nm CDI scaling.

Figure 5-112 Assigned Heading of 240°

3) ATC now assigns routing to join V4. A heading of 290° is assigned to intercept V4. The aircraft turns to heading 290° as seen in Figure 5-113.

Figure 5-113 Assigned Heading of 290°

- **4)** Enter V4 into the flight plan.
 - a) Press the **FMS** Knob to activate the cursor.

APPENDICES

b) The desired entry point for V4 (TOP) must be entered. Turn the large **FMS** Knob to highlight the desired flight plan insertion point (SLN) as shown in Figure 5-114. When the V4 entry point (TOP) is inserted, it is placed immediately above the highlighted waypoint (SLN).

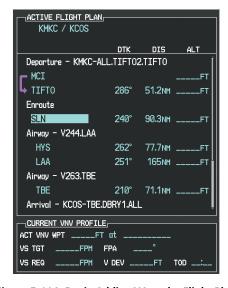


Figure 5-114 Begin Adding V4 to the Flight Plan

c) Turn the small **FMS** Knob to display the Waypoint Information Window. Enter the desired entry point for V4, Topeka VOR (TOP), as shown in Figure 5-115.

Figure 5-115 Entering V4 Entry Point

d) Press the ENT Key. TOP is inserted into the flight plan as in Figure 5-116.

Figure 5-116 TOP Inserted into the Flight Plan

- **e)** With SLN still highlighted as in Figure 5-114, turn the small **FMS** Knob clockwise. The Waypoint Information Page is displayed and the **LD AIRWY** Softkey is now available.
- f) Select the LD AIRWY Softkey to display the list of available airways for TOP as seen in Figure 5-117.

Figure 5-117 List of Available Airways for TOP

g) Turn either **FMS** Knob to highlight V4 in the list as seen in Figure 5-117.

h) Press the ENT Key. The list of available exits for V4 is now displayed as in Figure 5-118.

Figure 5-118 List of Available Exits for V4

- i) If necessary, turn either **FMS** Knob to select the desired exit. In this case Salina VOR (SLN) is selected as in Figure 5-118.
- **j)** Press the **ENT** Key. The selected airway and exit are displayed, and the prompt "LOAD?" highlighted as in Figure 5-119.

Figure 5-119 Ready to Load V4

k) Press the ENT Key.

I) V4 is now loaded into the flight plan as shown in Figure 5-120.

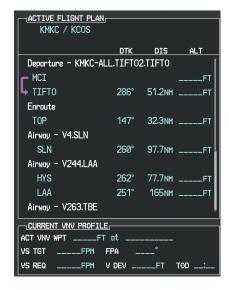


Figure 5-120 V4 is Loaded in the Flight Plan

- 5) Making V4 the active leg of the flight plan.
- a) Press the FMS Knob to activate the cursor.
- b) Turn the large FMS Knob to highlight SLN. The TO waypoint of the leg is selected in order to activate the leg.
- c) Select the **ACT LEG** Softkey. The confirmation window is now displayed as in Figure 5-121. Note the TOP to SLN leg is actually part of V4.

Figure 5-121 Comfirm Active Leg

APPENDICES

d) Verify the displayed leg is the desired leg and press the **ENT** Key. Note in Figure 5-122, the magenta arrow in the flight plan window and magenta line on the map indicating V4 is now the active flight plan leg. Note the phase of flight remained in Terminal (TERM) mode up to this point because a departure leg was active. Since a leg after the departure is now active, the current CDI flight phase is ENR (Enroute) and CDI scaling has changed to 2.0 nm.

Figure 5-122 V4 Now Active Leg

6) The aircraft continues on heading 290°. When crosstrack distance is less than 2.0 nm, the XTK disappears from the HSI and the CDI is positioned on the last dot indicating a 2.0 nm distance from the centerline of the next course.

GARMIN

7) As the CDI approaches center, the aircraft turns onto the active leg as seen in Figure 5-123.

Figure 5-123 Turn on to Active Leg

8) At SLN, Victor Airway 244 (V244) is intercepted. Turn prompts are displayed in the PFD Navigation Status Box as seen in Figure 5-124.

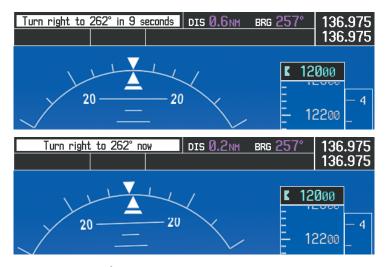


Figure 5-124 Turn to Intercept V244

APPENDICES

9) As seen in Figure 5-125, V244 is now the active flight plan leg.

Figure 5-125 V244 Now Active Leg

GARMIN

10) At Lamar VOR (LAA) V263 is intercepted. See Figure 5-126.

Figure 5-126 HYS to LAA Leg Active

- **11)** ATC grants clearance to proceed direct to the OPSHN intersection to begin the arrival procedure. ATC advises to expect an altitude of 10,000 feet at OPSHN.
- a) Press the FMS Knob to activate the cursor.
- **b)** Turn the large **FMS** Knob to select OPSHN in the flight plan list.
- c) Press the **Direct-to** (Key. The Direct-to Window is now displayed as shown in Figure 5-127.

Figure 5-127 Direct To OPSHN

d) Turn the large **FMS** Knob to place the cursor in the VNV altitude field as shown in Figure 5-128.

Figure 5-128 Enter VNV Altitude

- e) An altitude of 10,000 feet is entered as requested by ATC.
- **f)** Press the **ENT** Key. The cursor is now displayed in the VNV offset field as shown in Figure 5-129.

Figure 5-129 Enter VNV Offset Distance

g) Enter the offset, or distance from the waypoint at which to reach the selected altitude. In this case, three miles prior to OPSHN is entered. In other words, the G1000 gives vertical guidance so the aircraft arrives at an altitude of 10,000 feet three miles prior to OPSHN.

h) Press the ENT Key twice to activate the direct-to. Note, in Figure 5-130, the magenta arrow indicating the direct-to OPSHN after the offset waypoint for OPSHN. The preceding offset waypoint indicates the offset distance and altitude that were previously entered. The remaining waypoints in the loaded arrival procedure have no database specified altitudes, therefore, dashes are displayed. Keep the CDI centered and maintain a track along the magenta line to OPSHN.

Note the Direct-to waypoint is within the loaded arrival procedure, therefore, phase of flight scaling for the CDI changes to Terminal Mode and is annunciated by displaying 'TERM' on the HSI.

NOTE: If the loaded arrival procedure has waypoints with altitude constraints retrieved from the database to be used as is, the altitude must be manually accepted by placing the cursor over the desired altitude, then pressing the ENT Key. The altitude is now displayed as cyan meaning it is used by the system to determine vertical speed and deviation guidance.

Figure 5-130 Direct-to Active

- **12)** The aircraft is proceeding to OPSHN. The expected approach is the RNAV LPV approach to runway 35R, so it is selected.
- a) Press the PROC Key to display the Procedures Window.

b) 'SELECT APPROACH' should be highlighted as shown in Figure 5-131.

Figure 5-131 Procedures Window

c) Press the ENT Key. A list of available approaches for the destination airport is displayed as in Figure 5-132.

Figure 5-132 List of Available Approaches

d) Turn either **FMS** Knob to select the RNAV LPV approach for 35R as shown in Figure 5-132.

e) Press the ENT Key. A list of available transitions for the selected approach is displayed as in Figure 5-133.

Figure 5-133 List of Available Transitions

- **f)** Turn either **FMS** Knob to select the desired transition. In this case, the Initial Approach Fix (IAF) at HABUK is used.
- g) Press the ENT Key.
- h) Barometric Minimums

To set 'MINIMUMS', turn the small **FMS** Knob to select 'BARO', and press the **ENT** Key. Turn the small **FMS** Knob to select the altitude, and press the **ENT** Key.

Or:

To skip setting minimums, press the **ENT** Key.

Figure 5-134 Barometric Minimums Set

i) With 'LOAD?' highlighted, again press the **ENT** Key. The selected approach is added to the flight plan as seen in Figure 5-135.

Figure 5-135 Loaded Approach

13) Note the altitude constraints associated with each of the approach waypoints as seen in Figure 5-136. These altitudes are loaded from the database and are displayed as cyan text, indicating these values are "designated" for use in computing vertical deviation guidance.

Note: To no longer use the displayed altitude for calculating vertical deviation guidance, perform the following:

- a) Press the **FMS** Knob to activate the cursor.
- **b**) Turn the small **FMS** Knob to highlight the desired altitude.
- c) Press the **CLR** Key.
- **d**) Press the **FMS** Knob to deactivate the cursor.

After making the altitude "non-designated", it is displayed as white text.

Altitude constraint values associated with the Final Approach Fix (FAF) and waypoints beyond the FAF cannot be designated for vertical guidance. These altitude values are always displayed as white text, as in Figure 5-136. Vertical guidance from the FAF and on to the Missed Approach Point (MAP) is given using the WAAS GPS altitude source, therefore, the displayed altitude values are for reference only.

Figure 5-136 Vertical Guidance is Active to the FAF

- **14)** As the aircraft approaches OPSHN, it may be desirable to adjust the speed, or steepness of the upcoming descent. The default Flight Path Angle (FPA) is -3.0 degrees and a required vertical speed is computed to maintain the -3.0 FPA. To change the vertical flight path, perform the following steps.
 - a) Select the **VNV PROF** Softkey to place the cursor in the target vertical speed field (VS TGT) as shown in Figure 5-137.
- **b)** At this point, the descent vertical speed can be selected, or the FPA can be selected. Turn the large **FMS** Knob to select the desired selection field, then turn the small **FMS** Knob to enter the desired value.

Note the information now displayed in the 'CURRENT VNV PROFILE' box. Also, note the offset waypoint (orange box) and gray circle are now displayed on the map. The gray circle marks the Top of Descent (TOD). In this example, vertical guidance is provided at the TOD that results in a -3.0 degree FPA descent to an altitude of 10,000 feet upon reaching the offset waypoint.

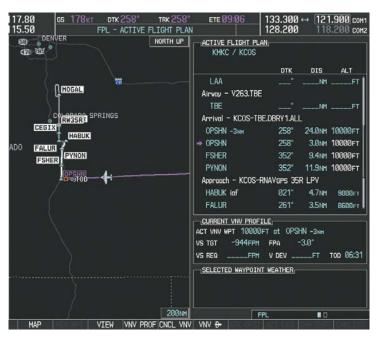


Figure 5-137 Adjusting the Descent

c) Press the ENT Key.

15) As seen in Figure 5-138, the aircraft is approaching TOD. Note the target vertical speed required to reach the selected altitude. The Vertical Deviation Indicator (VDI) and the Required Vertical Speed Indicator (RVSI) are now displayed on the PFD as shown in Figure 5-139. When the aircraft is within one minute of the TOD, it is annunciated as shown in Figure 5-139, and an aural alert 'Vertical track' will be heard.

Figure 5-138 Approaching Top of Descent (TOD)

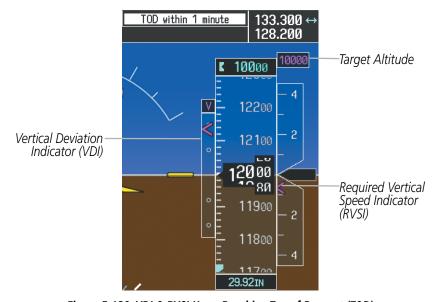


Figure 5-139 VDI & RVSI Upon Reaching Top of Descent (TOD)

APPENDICES

16) Upon reaching TOD, a descent vertical speed is established by placing the VSI pointer in line with the RVSI as shown in Figure 5-140.

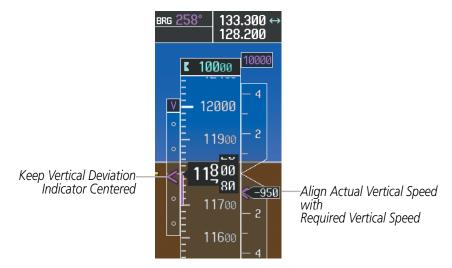


Figure 5-140 VDI & RVSI Showing Correctly Established Descent

17) When the aircraft is one minute from the bottom of descent (BOD) it is annunciated as shown in Figure 5-141. Upon reaching the offset waypoint for OPSHN, the aircraft is at 10,000 feet.

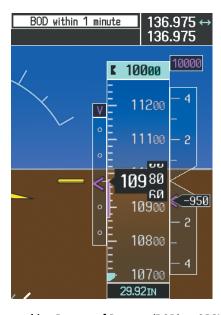


Figure 5-141 Approaching Bottom of Descent (BOD) at OPSHN Offset Waypoint

GARMIN

18) The aircraft is approaching OPSHN. The upcoming turn and next heading are annunciated at the top left of the PFD as seen in Figure 5-142. Initiate the turn and maneuver the aircraft on a track through the turn radius to intercept the magenta line for the OPSHN to FSHER leg and center the CDI.

Figure 5-142 Turn to intercept OPSHN to FSHER Leg

19) After passing OPSHN, the next leg of the arrival turns magenta as shown in Figure 5-143. The magenta arrow in the flight plan list now indicates the OPSHN to FSHER leg of the arrival procedure is now active.

Figure 5-143 Tracking the OPSHN to FSHER Leg

- **20)** The flight continues through the arrival procedure to PYNON (see Figure 5-144). At a point 31 nm from the destination airport, the phase of flight scaling for the CDI changes to Terminal Mode and is annunciated by displaying 'TERM' on the HSI.
 - A descent to HABUK is in the next leg. Note the TOD point on the map. Annunciations for the upcoming turn and descent, as well as the VDI and RVSI, appear on the PFD as the flight progresses.

Figure 5-144 Approaching PYNON

21) Upon passing PYNON the approach procedure automatically becomes active. The approach may be activated at any point to proceed directly to the IAF. In this example, the aircraft has progressed through the final waypoint of the arrival and the flight plan has automatically sequenced to the IAF as the active leg, activating the approach procedure (see Figure 5-145).

Figure 5-145 Approach is Now Active

Note: To manually activate the approach procedure, perform the following steps:

- a) Press the PROC Key.
- **b)** Turn the large **FMS** Knob to highlight 'ACTIVATE APPROACH' as shown in Figure 5-146.
- c) Press the ENT Key to activate the approach.

Figure 5-146 Manually Activate Approach

GARMIN

22) The IAF is the next waypoint. At the TOD, establish a descent vertical speed as previously discussed in Step 16. The aircraft altitude is 9,000 feet upon reaching HABUK.

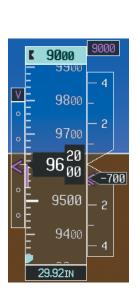


Figure 5-147 Descending Turn to the Initial Approach Fix (IAF)

23) After crossing FALUR the next waypoint is the FAF. The flight phase changes to LPV on the HSI indicating the current phase of flight is in Approach Mode and the approach service level is LPV. CDI scaling changes accordingly and is used much like a localizer when flying an ILS approach. The RVSI is no longer displayed and the VDI changes to the Glidepath Indicator (as shown in Figure 5-148) when the final approach course becomes active.

Figure 5-148 Descending to the FAF

The descent continues through the FAF (CEGIX) using the Glidepath Indicator, as one would use a glideslope indicator, to obtain an altitude "AT" 7,800 feet at the FAF. Note the altitude restriction lines over and under (At) the altitude in the 'ALT' field in Figure 5-148.

24) After crossing CEGIX, the aircraft continues following the glidepath to maintain the descent to "AT or ABOVE" 6,370 feet at the Missed Approach Point (MAP) (RW35R) as seen in Figure 5-149.

Figure 5-149 Descending to the Missed Approach Point

In this missed approach procedure, the altitude immediately following the MAP (in this case '6368_{FT}') is not part of the published procedure. It is simply a Course to Altitude (CA) leg which guides the aircraft along the runway centerline until the altitude required to safely make the first turn toward the MAHP is exceeded. This altitude is provided by Jeppesen, and may be below, equal to, or above the published minimums for this approach. In this case, if the aircraft altitude is below the specified altitude (6,368 feet) after crossing the MAP, a direct-to is established to provide a course on runway heading until an altitude of 6,368 feet is reached. After reaching 6,368 feet, a direct-to is established to the published MAHP (in this case MOGAL). If the aircraft altitude is above the specified altitude after crossing the MAP, a direct-to is established to the published fix (MOGAL) to begin the missed approach procedure.

In some missed approach procedures this Course to Altitude leg may be part of the published procedure. For example, a procedure may dictate a climb to 5,500 feet, then turn left and proceed to the Missed Approach Hold Point (MAHP). In this case, the altitude would appear in the list of waypoints as '5500FT'. Again, if the aircraft altitude is lower than the prescribed altitude, a direct-to is established on a Course to Altitude leg when the missed approach procedure is activated.

25) Upon reaching the MAP, it is decided to execute a missed approach. Automatic waypoint sequencing is suspended past the MAP. Press the Go Around Button, or press the **SUSP** Softkey on the PFD, to resume automatic waypoint sequencing through the missed approach procedure.

A direct-to is initiated to MOGAL, which is the Missed Approach Hold Point (MAHP) as seen in Figure 5-150. The aircraft is climbing to 10,000 feet. The CDI flight phase now changes from LPV to MAPR as seen on the HSI.



Figure 5-150 Missed Approach Active

GARMIN

26) The aircraft continues climbing to "AT or ABOVE" 10,000 feet at MOGAL. A holding pattern is established at the MAHP (MOGAL) as shown in Figure 5-151.

Figure 5-151 Establishing the Holding Pattern

27) The aircraft maintains 10,000 feet while following the magenta line through the hold as in Figure 5-152.

Figure 5-152 Hold Established

5.12 ABNORMAL OPERATION

This section discusses the Dead Reckoning mode of operation and the subsequent indications.

NOTE: Dead Reckoning Mode only functions in Enroute (ENR) or Oceanic (OCN) phase of flight. In all other phases, an invalid GPS solution produces a "NO GPS POSITION" annunciation on the map and the G1000 stops using GPS.

While in Enroute or Oceanic phase of flight, if the G1000 detects an invalid GPS solution or is unable to calculate a GPS position, the system automatically reverts to Dead Reckoning (DR) Mode. In DR Mode, the G1000 uses its last-known position combined with continuously updated airspeed and heading data (when available) to calculate and display the aircraft's current estimated position.

It is important to note that estimated navigation data supplied by the G1000 in DR Mode may become increasingly unreliable and must not be used as a sole means of navigation. If while in DR Mode airspeed and/or heading data is also lost or not available, the DR function may not be capable of accurately tracking estimated position and, consequently, the system may display a path that is different than the actual movement of the aircraft. Estimated position information displayed by the G1000 through DR while there is no heading and/or airspeed data available should not be used for navigation.

DR Mode is inherently less accurate than the standard GPS/SBAS Mode due to the lack of satellite measurements needed to determine a position. Changes in wind speed and/or wind direction compounds the relative inaccuracy of DR Mode. Because of this degraded accuracy, other navigation equipment must be relied upon for position awareness until GPS-derived position data is restored.

DR Mode is indicated on the G1000 by the appearance of the letters 'DR' superimposed in yellow over the 'own aircraft' symbol as shown in Figure 5-153. In addition, 'DR' is prominently displayed in yellow on the HSI slightly above and to the right of the aircraft symbol on the CDI as shown in Figure 5-153. Also, the CDI deviation bar is removed from the display. Lastly, but at the same time, a 'GPS NAV LOST' alert message appears on the PFD. Normal navigation using GPS/SBAS source data resumes automatically once a valid GPS solution is restored.

As a result of operating in DR Mode, all GPS-derived data is computed based upon an estimated position and is displayed as yellow text on the display to denote degraded navigation source information as shown in Figure 5-153.

Also, while the G1000 is in DR Mode, the autopilot does not couple to GPS, and both TAWS and Terrain Proximity are disabled. Additionally, the accuracy of all nearest information (airports, airspaces, and waypoints) is questionable. Finally, airspace alerts continue to function, but with degraded accuracy.

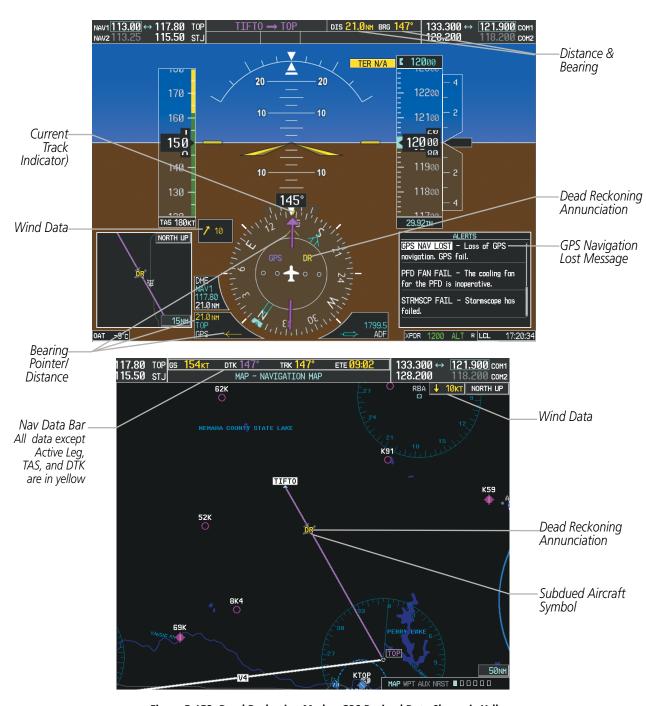


Figure 5-153 Dead Reckoning Mode - GPS Derived Data Shown in Yellow

NOTE: The Inset Map is removed from the PFD any time aircraft pitch is greater than $+30^{\circ}$ or less than -20° , or when a 65° bank angle is reached.

BLANK PAGE

SECTION 6 HAZARD AVOIDANCE

Hazard avoidance features available for the G1000 are designed to aid situational awareness and provide advisory information with regard to potential hazards to flight safety associated with weather, terrain, and air traffic.

Weather

- Garmin GDL 69 SiriusXM Weather and Temporary Flight Restrictions (Optional)
- Garmin GSR 56 Garmin Connext Weather and Temporary Flight Restrictions (Optional)
- Garmin GWX 70 Airborne Color Weather Radar (Optional)
- On-board Lightning Detection System (Optional)

Terrain Avoidance

- Terrain Proximity
- Terrain-SVS (Included with the SVT option)

Traffic

- Traffic Information Service (TIS)
- Avidyne TAS600[®] Series Traffic Advisory System (TAS) (Optional)

6.1 SIRIUSXM WEATHER

WARNING: Do not use data link weather information for maneuvering in, near, or around areas of hazardous weather. Information contained within data link weather products may not accurately depict current weather conditions.

WARNING: Do not use the indicated data link weather product age to determine the age of the weather information shown by the data link weather product. Due to time delays inherent in gathering and processing weather data for data link transmission, the weather information shown by the data link weather product may be significantly older than the indicated weather product age.

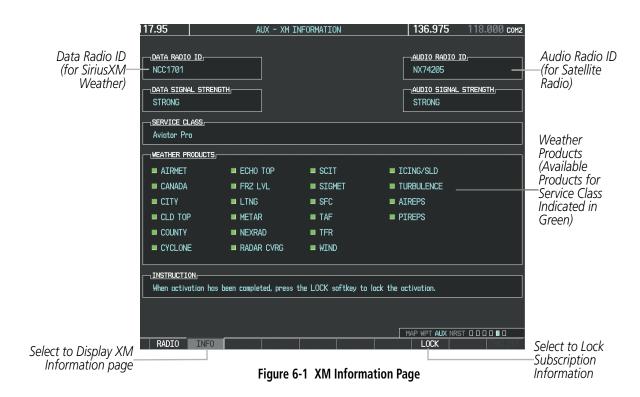
The Garmin GDL 69/69A/69E is a remote-mounted data link satellite receiver. It provides SiriusXM Weather information to the system, which appears on the Multi Function Display (MFD) and the Primary Flight Display (PFD) Inset Map. The GDL 69A and GDL 69E can also receive SiriusXM Satellite Radio entertainment services. Both weather data and entertainment programming operate in the S-band frequency range to provide continuous reception capabilities at any altitude throughout North America.

Services from SiriusXM are subscription-based. For more information on specific service packages, visit www. siriusxm.com.

ACTIVATING SERVICES

Before SiriusXM Weather and SiriusXM Satellite Radio can be used, the services must be activated. Services are activated by providing coded IDs unique to the installed receiver. SiriusXM Satellite Radio (audio) and SiriusXM Weather (data) services each have coded IDs. The Data and Audio Radio IDs must be provided to activate the weather service and entertainment subscriptions, respectively. These IDs are located on:

- The label on the back of the GDL 69/69A/69E Data Link Receiver
- The XM Information Page on the MFD (Figure 6-1)
- The XM Satellite Radio Activation Instructions included with the unit

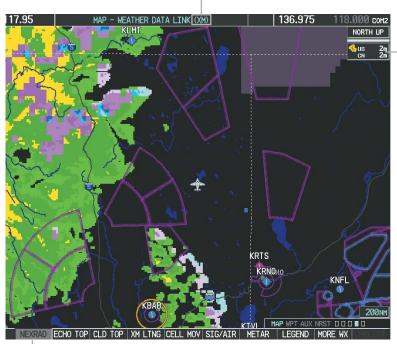

Contact the installer if the Audio and Data Radio IDs cannot be located.

SiriusXM uses the coded IDs to send an activation signal that allows the system to receive weather data and/or entertainment programming provided through the receiver.

Activating SiriusXM Weather and SiriusXM Satellite Radio services:

- 1) Contact SiriusXM customer service using the phone number listed on the website www.siriusxm.com. Follow the instructions provided by SiriusXM costumer service.
- 2) Select the XM Page in the Auxiliary Page Group.
- 3) Press the **INFO** Softkey to display the XM Information Page.
- **4)** Verify the desired services are activated.
- **5)** Press the **LOCK** Softkey.
- **6)** Turn the large **FMS** Knob to highlight 'YES'.
- **7)** To complete activation, press the **ENT** Key.

USING SIRIUSXM WEATHER PRODUCTS


The primary map for viewing SiriusXM weather data is the Weather Data Link (XM) Page in the Map Page Group. This is the only map display capable of showing information for all available SiriusXM weather products.

If more than one data link weather service is installed (such as the optional Garmin Connext Weather service), the Weather Data Link (XM or CNXT) Page is also used to select which data link weather service provider is to be used. The available softkeys and menus change to match the selected provider.

Viewing the Weather Data Link (XM) Page:

- 1) Turn the large **FMS** Knob to select the Map Page Group.
- 2) Turn the small **FMS** Knob to select the Weather Data Link (XM) Page. If the name of another weather data service provider is listed in the page title (such as 'CNXT'), proceed to the following steps in order to change the selected data link weather service provider to SiriusXM.
- **3)** Press the MENU Key.
- **4)** Turn the large **FMS** Knob to select 'Display XM Weather' and and press the **ENT** Key. The page title changes to 'Weather Data Link (XM)' to indicate SiriusXM is now the selected weather data link source.

SiriusXM is the Active Weather Data Link Source

NEXRAD Weather Product Symbol and Ages (U.S. and Canada)

NEXRAD Weather Product-Selected for Display

Figure 6-2 Weather Data Link (XM) Page

For each enabled SiriusXM Weather product which can be shown as a map overlay, the system displays a weather product icon and product age. The product age is the elapsed time (in minutes) since the weather data provider compiled the weather product. The product age display does not indicate the age of the information contained within the weather product, which can be significantly older than the displayed weather product age.

The SiriusXM Weather service broadcasts weather products at specific intervals (defined in the **Broadcast Rate** column in Table 6-1). If for any reason, a product is not refreshed within the **Broadcast Rate** intervals (see Table 6-1), the system removes the expired data from the display, and shows dashes instead of the product age. This ensures the displayed information is consistent with what is currently being transmitted by the SiriusXM Weather service. If more than half of the expiration time has elapsed, the color of the product age changes to yellow. If data for a weather product is not available, the system displays 'N/A' next to the weather product symbol instead of the product age.

Table 6-1 shows the weather product symbols, the expiration times and the broadcast rates. The broadcast rate represents the interval at which the SiriusXM Weather service transmits new signals that may or may not contain updated weather products. It does not represent the rate at which the weather information is updated or when the Data Link Receiver receives new data. SiriusXM and its weather data suppliers define and control the data update intervals, which are subject to change.

SiriusXM Weather Product	Symbol	Expiration Time (Minutes)	Refresh Rate (Minutes)
Next-generation Radar (NEXRAD)	≪	30	5 (U.S.) 10 (Canada)
Cloud Top (CLD TOP)	4	60	15
Echo Top (ECHO TOP)	-	30	7.5
XM Lightning (LTNG)	*	30	5
Cell Movement (CELL MOV)	■ 7	30	12
SIGMETs/AIRMETs (SIG/AIR)	SIGMET AIRMET	60	12
Meteorological Aerodrome Report (METARs)	T	90	12
City Forecast (CITY)		90	12
Surface Analysis (SFC)	7	60	12
Freezing Levels (FRZ LVL)	*	120	12
Winds Aloft (WIND)	^	90	12
County Warnings (COUNTY)	**	60	5
Cyclone Warnings (CYCLONE)	5	60	12
Icing Potential (CIP and SLD) (ICNG)	*****	90	22
Pilot Weather Report (PIREPs)	-	90	12
Air Report (AIREPs)		90	12
Turbulence (TURB)	A	180	12
No Radar Coverage	no product image	30	5
Temporary Flight Restrictions (TFRs)	no product image	60	12
Terminal Aerodrome Reports (TAFs)	no product image	60	12

Table 6-1 SiriusXM Weather Product Symbols and Data Timing

Table 6-2 shows which SiriusXM products can be displayed (indicated with a '+' symbol) on specific maps.

SiriusXM Weather Product	PFD Inset Map	Navigation Map Page	Weather Data Link (XM) Page	Weather Information Page	AUX - Trip Planning Page	AUX - Video Page	Nearest Page Group	Flight Plan Pages
NEXRAD	+	+	+		+	+	+	+
Cloud Top (CLD TOP)			+					
Echo Top (ECHO TOP)			+					
SiriusXM Lightning (XM LTNG)	+	+	+		+	+	+	+
Cell Movement (CELL MOV)	+	+	+		+	+	+	+
SIGMETs/AIRMETs (SIG/AIR)			+					
METARs	+	+	+	+	+	+	+	+
City Forecast (CITY)			+					
Surface Analysis (SFC)			+					
Freezing Levels (FRZ LVL)			+					
Winds Aloft (WIND)		+*	+					
County Warnings (COUNTY)			+					
Cyclone Warnings (CYCLONE)			+					
Icing Potential (ICNG)			+					
PIREPs			+	+				
AIREPs			+	+				
Turbulence (TURB)			+					
No Radar Coverage	+	+	+		+	+	+	+
TFRs	+	+	+	+	+	+	+	+
TAFs				+				

^{*} Winds Aloft data is available inside Profile View when enabled on the Navigation Map Page.

Table 6-2 Sirius Weather Product Display Maps

Softkeys control the display of weather information on most MFD pages and the PFD Inset Map (The figure shows the weather product softkeys for the Weather Data Link (XM) Page). When a weather product is selected for display, the corresponding softkey label changes to gray to indicate the product is enabled.

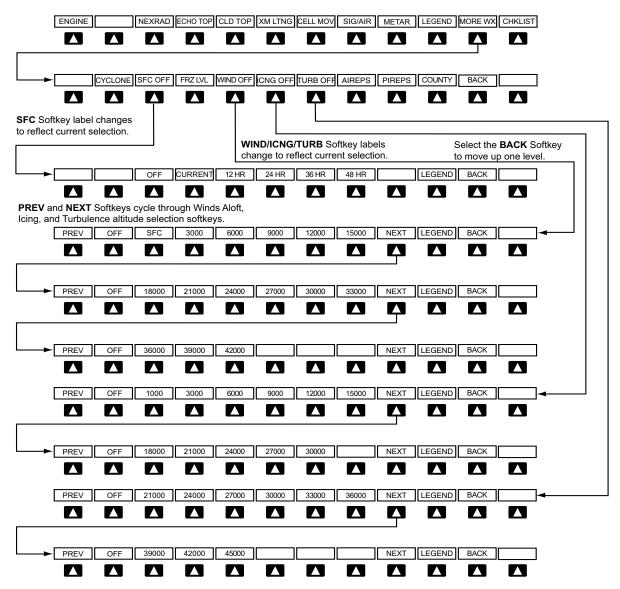


Figure 6-3 Weather Data Link (XM) Page Softkeys

The setup menus for the Navigation Map Page and the Weather Data Link (XM) Page control the map range settings above which weather products data are decluttered from the display. If a map range larger than the weather product map range setting is selected, the weather product data is removed from the map. The menus also provide a means in addition to the softkeys for enabling/disabling display of weather products.

Setting up and customizing the Weather Data Link (XM) Page:

- 1) Select the Weather Data Link (XM) Page.
- **2)** Press the **MENU** Key.
- **3)** With 'Weather Setup' highlighted, press the **ENT** Key (Figure 6-4).
- **4)** Turn the small **FMS** Knob to select 'PRODUCT GROUP 1' or 'PRODUCT GROUP 2', and press the **ENT** Key (Figure 6-5).
- 5) Turn the large **FMS** Knob or press the **ENT** Key to scroll through product selections.
- **6)** Turn the small **FMS** Knob to scroll through options for each product (ON/OFF, range settings, etc.).
- **7)** Press the **ENT** Key to select an option.
- 8) Press the **FMS** Knob or **CLR** Key to return to the Weather Data Link (XM) Page with the changed settings.

Figure 6-4 Weather Data Link (XM) Page Menu

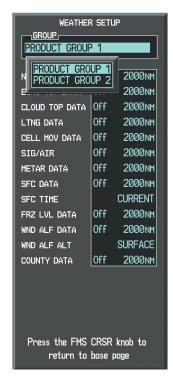


Figure 6-5 Weather Data Link (XM) Page Setup Menu

Restoring default Weather Data Link (XM) Page settings:

- 1) Select the Weather Data Link (XM) Page.
- **2)** Press the **MENU** Key.
- 3) With 'Weather Setup' highlighted, press the ENT Key.
- 4) Press the MENU Key.
- **5)** Highlight the desired default(s) to restore (all or for selection) and press **ENT** Key.

Maps besides the Weather Data Link (XM) Page use settings based on those selected for the Navigation Map Page.

Setting up and customizing weather data for the Navigation Map Page:

- 1) Select the Navigation Map Page.
- **2)** Press the **MENU** Key.
- **3)** With 'Map Setup' highlighted, press the **ENT** Key (Figure 6-6).
- 4) Turn the small **FMS** Knob to select the 'Weather' Group and press the **ENT** Key (Figure 6-7).
- 5) Turn the large **FMS** Knob or press the **ENT** Key to scroll through product selections (Figure 6-8).
- **6)** Turn the small **FMS** Knob to scroll through options for each product (ON/OFF, range settings).
- **7)** Press the **ENT** Key to select an option.
- 8) Press the **FMS** Knob or **CLR** Key to return to the Navigation Map Page with the changed settings.

Figure 6-6 Navigation Map Page Menu

Figure 6-7 Navigation Map Page Setup Menu

Figure 6-8 Navigation Map Page Setup Menu, Weather Group

If multiple weather data link services are installed, customizing the display settings for the corresponding weather products shown in Table 6-3 will result in identical settings for a comparable weather product from another service provider.

SiriusXM Weather Product	Garmin Connext Weather Product
Next-generation Radar	Precipitation
(NEXRAD)	(PRECIP)
Cloud Top	Infrared Satellite
(CLD TOP)	(IR SAT)
SiriusXM Lightning	Garmin Connext Data Link Lightning
(XM LTNG)	(DL LTNG)
SIGMETs/AIRMETs	SIGMETs/AIRMETs
(SIG/AIR)	(SIG/AIR)
Meteorological Aerodrome Report	Meteorological Aerodrome Report
(METARs)	(METARs)
Winds Aloft	Winds Aloft
(WIND)	(WIND)
Pilot Weather Report	Pilot Weather Report
(PIREPs)	(PIREPs)

Table 6-3 Shared Weather Data Link Map Settings for Corresponding

Data Link Weather Products

Each active SiriusXM Weather product has an associated legend which can be displayed on the Weather Data Link (XM) Page and Navigation Map Page.

Viewing legends for displayed weather products on the Weather Data Link (XM) Page:

- 1) Select the Weather Data Link (XM) Page with the FMS Knob.
- **2)** Select the **LEGEND** Softkey to display the legends for the displayed weather products.

Or:

- 1) Press the **MENU** Key.
- **2)** Select Weather Legend and press the **ENT** Key.
- 3) Turn the **FMS** Knob to scroll through the legends if more are available than fit in the window.
- **4)** To remove the XM Weather Legends Window, select the **LEGEND** Softkey, the **ENT** or the **CLR** Key, or press the **FMS** Knob.

Viewing legends for displayed weather products on the Navigation Map Page:

- 1) Select the Navigation Map Page with the **FMS** Knob.
- **2)** Press the **MAP** Softkey.
- 3) Press the **LEGEND** Softkey to display the legends for the displayed weather products.
- 4) To remove the XM Weather Legends Window, press the **LEGEND** Softkey, the **ENT** or the **CLR** Key, or press the **FMS** Knob.

Additional

COUNTY

WØ98*58*47-6"

NORTH UP

NEXRAD

AGE: 2min

RAIN

HIX

H SNOW

Y

T SNOW

mation about the following can be displayed by panning over the display on the map:

- AIRMETs
- METARs
- County Warnings
- TFRs

ng feature is enabled by pressing the **Joystick**. The map range is adjusted by turning the ap range is adjusted while panning is enabled, the map is re-centered on the Map Pointer.



Figure 6-9 Panning on the Weather Data Link (XM) Page

NEXRAD

NOTE: NEXRAD cannot be displayed at the same time as echo tops, icing, turbulence, terrain data, or airborne weather radar information is displayed.

The National Weather Service (NWS) operates the WSR-88D, or NEXRAD (NEXt-generation RADar) system, an extensive network of 156 high-resolution Doppler radar systems. The NEXRAD network provides centralized meteorological information for the continental United States and selected overseas locations. The maximum range of a single NEXRAD site is 250 nm.

Individual NEXRAD sites supply the network with radar images, and the images from each radar site may arrive at the network at different rates and times. Periodically, the weather data provider compiles the available individual site images from the network to form a composite image, and assigns a single time to indicate when it created the image. This image becomes the NEXRAD weather product. Individual images--gathered from each NEXRAD site--differ in age, and are always older than the displayed NEXRAD weather product age. The data provider then sends the NEXRAD data to the SiriusXM Weather service, whose satellites transmit this information during the next designated refresh time for the NEXRAD weather product.

Because of the time required to detect, assemble, and distribute the NEXRAD weather product, the displayed weather information contained within the product may be significantly older than the current radar synopsis and may not depict the current weather conditions. The NEXRAD weather product should never be used as a basis for maneuvering in, near, or around areas of hazardous weather regardless of the information it contains.

The system displays either base or composite NEXRAD imagery, depending on the model of data link receiver installed.

Data Link Receiver Model	NEXRAD Reflectivity Type	
GDL 69/69A	Composite Reflectivity	
GDL 69E/69EA	Base Reflectivity	

The base reflectivity NEXRAD weather product shows the radar returns from the perspective of a single antenna tilt angle. The composite reflectivity NEXRAD weather product shows the *highest* radar energy received from multiple antenna tilt angles. The display of the information is color-coded to indicate the intensity of the echoes and the type of precipitation.

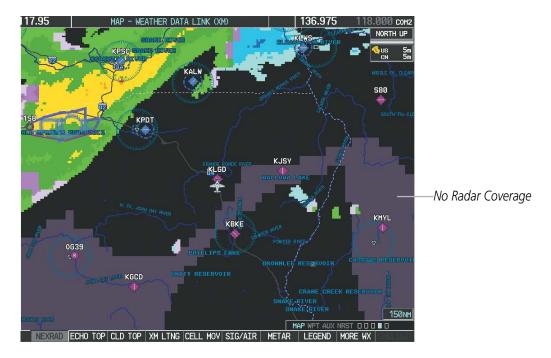


Figure 6-10 NEXRAD Data on the Weather Data Link (XM) Page

Displaying NEXRAD weather information:

- 1) Press the **MAP** Softkey (for the PFD Inset Map, press the **INSET** Softkey). This step is not necessary on the Weather Data Link (XM) Page.
- 2) Press the **NEXRAD** Softkey.

The display of the information is color-coded to indicate the weather severity level. All weather product legends can be viewed on the Weather Data Link (XM) Page. For the NEXRAD legend (Figure 6-11), press the **LEGEND** Softkey when NEXRAD is selected for display.

Figure 6-11 NEXRAD Data with Legend

The display of no radar coverage is always active when either NEXRAD or Echo Tops is selected. Areas where NEXRAD radar coverage and Echo Tops information is not currently available or is not being collected are indicated in gray shade of purple.

REFLECTIVITY

Reflectivity is the amount of transmitted power returned to the radar receiver. Colors on the NEXRAD display are directly correlative to the level of detected reflectivity. Reflectivity as it relates to hazardous weather can be very complex.

The role of radar is essentially to detect moisture in the atmosphere. Simply put, certain types of weather reflect radar better than others. The intensity of a radar reflection is not necessarily an indication of the weather hazard level. For instance, wet hail returns a strong radar reflection, while dry hail does not. Both wet and dry hail can be extremely hazardous.

The different NEXRAD echo intensities are measured in decibels (dB) relative to reflectivity (Z). NEXRAD measures the radar reflectivity ratio, or the energy reflected *back to* the radar receiver (designated by the letter Z). The value of Z increases as the returned signal strength increases.

NEXRAD LIMITATIONS

NEXRAD radar images may have certain limitations:

- NEXRAD base reflectivity does not provide sufficient information to determine cloud layers or precipitation characteristics (wet hail vs. rain). For example, it is not possible to distinguish between wet snow, wet hail, and rain.
- NEXRAD base reflectivity is sampled at the minimum antenna elevation angle. An individual NEXRAD site cannot depict high altitude storms at close ranges. It has no information about storms directly over the site.
- When zoomed in to a range of 30 nm, each square block on the display represents an area of four square kilometers. The intensity level reflected by each square represents the *highest* level of NEXRAD data sampled within the area (Figure 6-12).
- Any unknown precipitation below 52°N is displayed as rain regardless of the actual precipitation type.

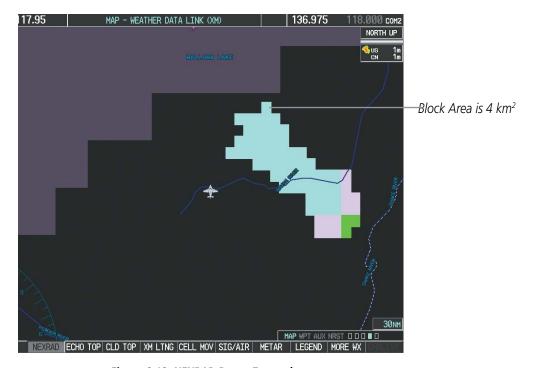


Figure 6-12 NEXRAD Data - Zoomed

The following may cause abnormalities in displayed NEXRAD radar images:

- Ground clutter
- Strobes and spurious radar data
- Sun strobes (when the radar antenna points directly at the sun)
- Interference from buildings or mountains, which may cause shadows
- Metallic dust (chaff) from military aircraft, which can cause alterations in radar scans

NEXRAD LIMITATIONS (CANADA)

- Radar coverage extends to 55°N.
- Any precipitation displayed between 52°N and 55°N is displayed as mixed regardless of actual precipitation type.

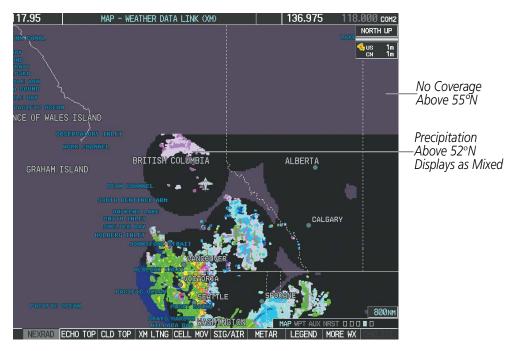


Figure 6-13 NEXRAD Data - Canada

ECHO TOPS

NOTE: Echo Tops cannot be displayed at the same time as Cloud Tops or NEXRAD.

Echo Tops data (Figure 6-14) shows the location, elevation, and direction of the highest radar echo. The highest radar echo does not indicate the top of a storm or clouds; rather it indicates the highest altitude at which precipitation is detected. Information is derived from NEXRAD data.

Figure 6-14 Echo Tops Data

Displaying Echo Tops information:

- 1) Select the Weather Data Link (XM) Page.
- 2) Press the **ECHO TOP** Softkey.

To display the Echo Tops legend (Figure 6-15), press the **LEGEND** Softkey when Echo Tops is selected for display. Since Echo Tops and Cloud Tops use the same color scaling to represent altitude, display of these weather products is mutually exclusive. When Echo Tops is activated, NEXRAD and Cloud Tops data are removed.

Figure 6-15 Echo Tops Legend

The display of unavailable radar coverage is always active when either NEXRAD or Echo Tops is selected. Areas where NEXRAD radar coverage and Echo Tops information is not currently available or is not being collected are indicated in gray shade of purple.

CLOUD TOPS

NOTE: Cloud Tops and Echo Tops cannot be displayed at the same time.

Cloud Tops data (Figure 6-16) depicts cloud top altitudes as determined from satellite imagery.

Figure 6-16 Cloud Tops Data

Displaying Cloud Tops information:

- 1) Select the Weather Data Link (XM) Page.
- 2) Press the CLD TOP Softkey.

To display the Cloud Tops legend (Figure 6-17), press the **LEGEND** Softkey when Cloud Tops is selected for display. Since Cloud Tops and Echo Tops use the same color scaling to represent altitude, display of these weather products is mutually exclusive. When Cloud Tops is activated, Echo Tops data is removed.

Figure 6-17 Cloud Tops Legend

SIRIUSXM LIGHTNING

NOTE: SiriusXM Lightning cannot be displayed simultaneously with the optional on-board lightning detection system information on the same map.

SiriusXM Lightning data (Figure 6-18) shows the approximate location of cloud-to-ground lightning strikes. A strike icon represents a strike that has occurred within a two-kilometer region. The exact location of the lightning strike is not displayed.



Figure 6-18 SiriusXM Lightning Data

Displaying SiriusXM Lightning information:

- 1) Press the MAP Softkey (for the PFD Inset Map, press the INSET Softkey). This step is not necessary on the Weather Data Link (XM) Page.
- 2) Press the XM LTNG Softkey..

To display the SiriusXM Lightning legend on the Weather Data Link (XM) Page (Figure 6-19), press the **LEGEND** Softkey when SiriusXM Lightning is selected for display.

Figure 6-19 SiriusXM Lightning Legend

CELL MOVEMENT

Cell Movement data (Figure 6-20) shows the location and movement of storm cells as identified by the ground-based system. Cells are represented by yellow squares, with direction of movement indicated with short, orange arrows.

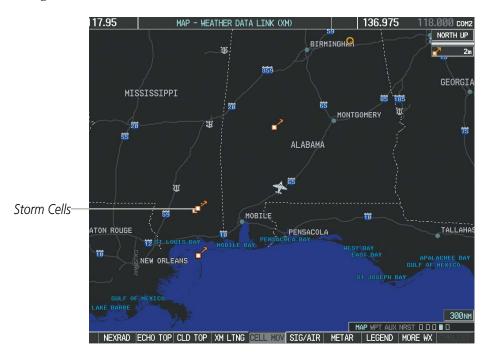


Figure 6-20 Cell Movement Data

On most applicable maps, Cell Movement data is selected for display along with NEXRAD. On the Weather Data Link (XM) Page, Cell Movement data can be selected independently.

Displaying Cell Movement information:

- 1) Press the MAP Softkey (for the PFD Inset Map, press the INSET Softkey). This step is not necessary on the XM Weather Data Link Page.
- 2) Press the **NEXRAD** Softkey (CEL MOV Softkey on the Weather Data Link (XM) Page). For Cell Movement to be displayed on maps other than the Weather Data Link (XM) Page, Cell Movement must be turned on in the Navigation Map Setup Menu (see the procedure "Setting up and customizing weather data for the Navigation Map Page").

To display the Cell Movement legend on the Weather Data Link (XM) Page, (Figure 6-21), press the **LEGEND** Softkey when Cell Movement is selected for display.

Figure 6-21 Cell Movement Legend

SIGMETS AND AIRMETS

SIGMETs (SIGnificant METeorological Information) and AIRMETs (AIRmen's METeorological Information) are issued for potentially hazardous weather. A Convective SIGMET is issued for hazardous convective weather such as severe or widespread thunderstorms.

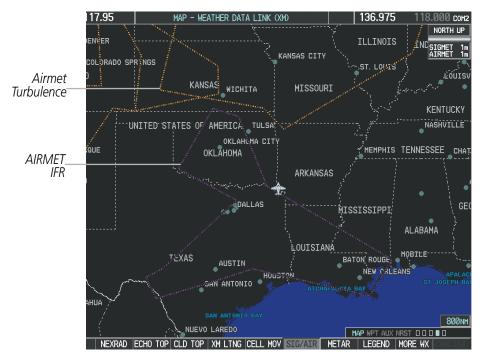


Figure 6-22 SIGMET/AIRMET Data

Displaying SIGMETs and AIRMETs:

- 1) Select the Weather Data Link (XM) Page.
- 2) Press the **SIG/AIR** Softkey.
- 3) To view the text of the SIGMET or AIRMET, press the **Joystick** and move the Map Pointer over the icon.
- 4) Press the ENT key. Figure 6-23 shows sample SIGMET text.

To display the SIGMET and AIRMET legend (Figure 6-24), press the **LEGEND** Softkey when SIGMETs and AIRMETs are selected for display.

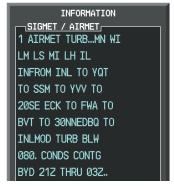


Figure 6-23 Sample SIGMET Text

Figure 6-24 SIGMET/AIRMET Legend

METARS AND TAFS

NOTE: Atmospheric pressure as reported for METARs is given in hectopascals (hPa), except for in the United States, where it is reported in inches of mercury (in Hg). Temperatures are reported in Celsius.

NOTE: METAR information is only displayed within the installed navigation database service area.

METARS (METeorological Aerodrome Reports) typically contain information about the temperature, dewpoint, wind, precipitation, cloud cover, cloud heights, visibility, and barometric pressure at an airport or observation station. They can also contain information on precipitation amounts, lightning, and other critical data. METARs reflect hourly observations; non-routine updates include the code "SPECI" in the report. METARs are shown as colored flags at airports that provide them.

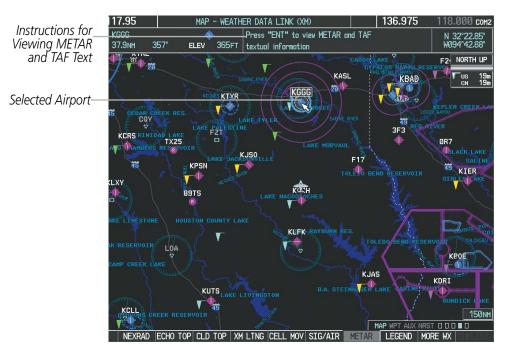


Figure 6-25 METAR Flags on the XM Weather Data Link Page

TAFs (Terminal Aerodrome Forecasts) are weather predictions for specific airports within a 24- hour period, and may span up to 36 hours. TAFs typically include forecast wind, visibility, weather phenomena, and sky conditions using METAR codes.

METAR and TAF text are displayed on the Weather Information Page. METAR data is displayed first in a decoded fashion, followed by the original text. Note the original text may contain additional information not found in the decoded text. TAF information is displayed only in its original form, when a TAF is available.

Displaying METAR and TAF text:

- 1) On the Weather Data Link (XM) Page, press the **METAR** Softkey.
- 2) Press the **Joystick** and pan to the desired airport.
- 3) Press the ENT Key. The Weather Information Page is shown with METAR and TAF text.

- 4) Use the **FMS** Knob or the **ENT** Key to scroll through the METAR and TAF text. METAR text must be completely scrolled through before scrolling through the TAF text.
- **5)** Press the **FMS** Knob or the **CLR** Key to return to the Weather Data Link (XM) Page.

Or:

- 1) Select the Weather Information Page.
 - a) Turn the large **FMS** Knob to select the Waypoint Page Group.
 - **b)** Press the **WX** Softkey to select the Weather Information Page.
- **2)** Press the **FMS** Knob to display the cursor.
- 3) Use the **FMS** Knob to enter the desired airport and press the **ENT** Key.
- **4)** Use the **FMS** Knob or the **ENT** Key to scroll through the METAR and TAF text. Note that the METAR text must be completely scrolled through before scrolling through the TAF text.

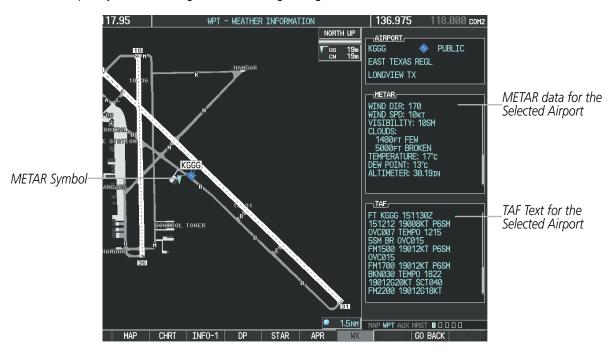


Figure 6-26 METAR and TAF Text on the Weather Information Page

Original METAR text is also accessible while panning the map cursor over a METAR flag on any map page on which a METAR is displayed. The METAR text is shown in a box near the METAR flag.

In addition, METAR flags and their associated text are displayed on the Active Flight Plan Page on the MFD. A METAR flag is shown next to waypoint(s) in the flight plan with an available METAR.

Displaying original METAR text on the Active Flight Plan Page:

- 1) Select the Active Flight Plan Page on the MFD.
- 2) Press the **FMS** Knob to activate the cursor.
- **3)** Turn the large **FMS** Knob to highlight the desired waypoint. The METAR text will appear in the 'SELECTED WAYPOINT WEATHER' window below.
- **4)** When finished, press the **FMS** Knob to remove the cursor or press the **FPL** Key to exit the Active Flight Plan Page.

To display the METAR legend on the Weather Data Link (XM) Page (Figure 6-27), press the **LEGEND** Softkey when METARs are selected for display.

The METAR flag color is determined by the information in the METAR text. A gray METAR flag is displayed when the METAR text does not contain adequate information to determine the METAR category (e.g., VFR, IFR).

Figure 6-27 METAR Legend

SURFACE ANALYSIS AND CITY FORECAST

NOTE: Surface Analysis and City Forecast data are displayed only within the installed navigation database service area.

Surface Analysis and City Forecast information (Figure 6-28) is available for current and forecast weather conditions. Forecasts are available for intervals of 12, 24, 36, and 48 hours.

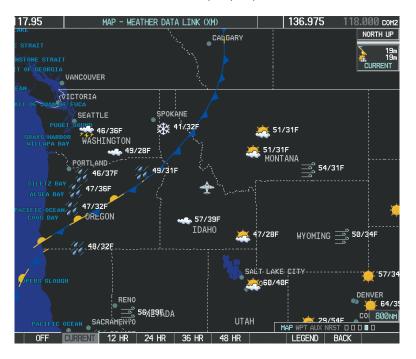


Figure 6-28 Current Surface Analysis Data

Displaying Surface Analysis and City Forecast information:

- 1) Select the Weather Data Link (XM) Page.
- **2)** Press the **MORE WX** Softkey.
- **3)** Press the **SFC** Softkey.
- 4) Select the desired forecast time: **CURRENT**, **12 HR**, **24 HR**, **36 HR**, or **48 HR**. The **SFC** Softkey label changes to reflect the forecast time selected.

To display the Surface Analysis and City Forecast legend (Figure 6-29), press the **LEGEND** Softkey when Surface Analysis and City Forecast are selected to be displayed.

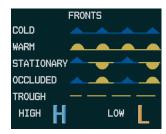


Figure 6-29 City Forecast and Surface Analysis Legend

FREEZING LEVELS

Freezing Level data (Figure 6-30) shows the color-coded contour lines for the altitude and location at which the first isotherm is found. When no data is displayed for a given altitude, the data for that altitude has not been received, or is out of date and has been removed from the display.

Figure 6-30 Freezing Level Data

Displaying Freezing Level information:

- 1) Select the Weather Data Link (XM) Page.
- 2) Press the **MORE WX** Softkey.
- **3)** Press the **FRZ LVL** Softkey.

To display the Freezing Level legend (Figure 6-31), press the **LEGEND** Softkey when Freezing Level data is selected to be displayed.

Figure 6-31 Freezing Level Legend

WINDS ALOFT

Winds Aloft data (Figure 6-32) shows the forecasted wind speed and direction at the surface and at selected altitudes. Altitude can be displayed in 3,000-foot increments up to 42,000 feet MSL.

Displaying Winds Aloft data:

- 1) Select the Weather Data Link (XM) Page.
- 2) Press the MORE WX Softkey.
- **3)** Press the **WIND** Softkey.
- **4)** Select the desired altitude level: SFC (surface) up to 42,000 feet. Press the **NEXT** or **PREV** Softkey to cycle through the altitude softkeys. The **WIND** Softkey label changes to reflect the altitude selected.

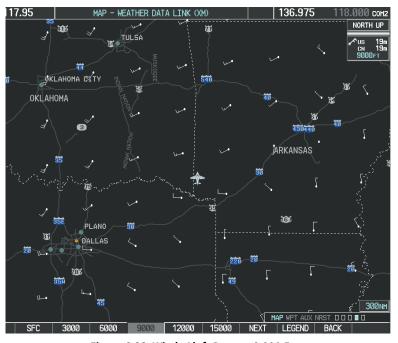


Figure 6-32 Winds Aloft Data at 9,000 Feet

To display the Winds Aloft legend (Figure 6-33), press the **LEGEND** Softkey when Winds Aloft is selected for display.

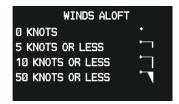


Figure 6-33 Winds Aloft Data with Legend

Headwind and tailwind components aloft are available inside the Profile View on the Navigation Map Page (Figure 6-34). The displayed components are relative to current aircraft altitude and track, but not to aircraft speed.

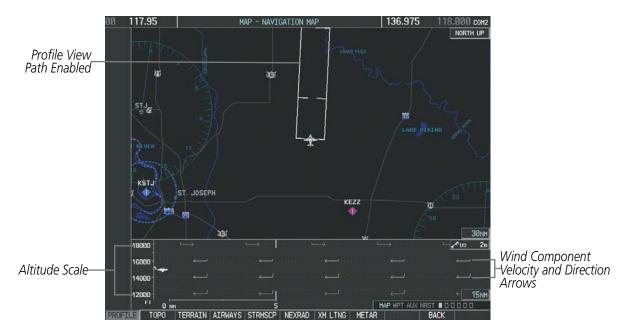


Figure 6-34 Winds Aloft Data Inside Profile View (Navigation Map Page)

Arrows pointing to the left indicate headwind components; tailwind component arrows point to the right, as shown in Table 6-4.

Headwind Symbol	Tailwind Symbol	Headwind/Tailwind Component
None	None	Less than 5 knots
\longleftarrow	$ \longrightarrow $	5 knots
\longleftarrow^{I}	$ \stackrel{\textstyle \downarrow}{}$	10 knots
←	$\stackrel{\blacktriangle}{\longrightarrow}$	50 knots

Table 6-4 Profile View Headwind/Tailwind Component Symbols

Showing/Hiding Profile View (containing winds aloft data)

- 1) Select the Navigation Map Page.
- **2)** Press the **PROFILE** Softkey.

Or:

- 1) Press the **MENU** Key.
- 2) Turn the large FMS Knob to highlight 'Show Profile View' or 'Hide Profile View' (choice dependent on current state) and press the **ENT** Key.

Winds Aloft data inside the Profile View is enabled by default when the Profile View is displayed on the Navigation Map Page. This behavior can be changed on the Navigation Map Page.

Enabling/disabling winds aloft data display in Profile View:

- 1) Select the Navigation Map Page.
- 2) Press the **MENU** Key.
- **3)** With Map Setup highlighted, press the **ENT** Key (Figure 6-35).
- **4)** Turn the small **FMS** Knob to select the Profile Group and press the **ENT** Key (Figure 6-36).
- **5)** Turn the large **FMS** Knob to select 'Profile Winds' (Figure 6-37).
- **6)** Turn the small **FMS** Knob to select 'On' or 'Off'.
- 7) Press the **FMS** Knob or **CLR** Key to return to the Navigation Map Page with the changed settings.

Figure 6-35 Navigation Map Page Menu

Figure 6-36 Navigation Map Page Setup Menu

Figure 6-37 Navigation Map Page Setup Menu, Weather Group

COUNTY WARNINGS

County data (Figure 6-38) provides specific public awareness and protection weather warnings from the National Weather Service (NWS). This can include information on fires, tornadoes, severe thunderstorms, and flood conditions

Figure 6-38 County Flood Warning

Displaying County Warning information:

- 1) Select the Weather Data Link (XM) Page.
- **2)** Press the **MORE WX** Softkey.
- **3)** Press the **COUNTY** Softkey.

To display the County Warnings legend (Figure 6-39), press the **LEGEND** Softkey when County Warnings are displayed.

Figure 6-39 County Warnings Legend

CYCLONE

The Cyclone weather product (Figure 6-40) shows the current location of cyclones (hurricanes), tropical storms, and their projected tracks. The system displays the projected track information in the form of DD/HH:MM.

Figure 6-40 Cyclone Data with Projected Track

Displaying cyclone (hurricane) track information:

- 1) Select the Weather Data Link (XM) Page.
- **2)** Press the **MORE WX** Softkey.
- **3)** Press the **CYCLONE** Softkey.

To display the Cyclone legend (Figure 6-41), press the **LEGEND** Softkey when Cyclone data is displayed.

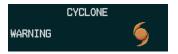


Figure 6-41 Cyclone Legend

APPENDICES

ICING (CIP & SLD)

NOTE: Icing data cannot be displayed at the same time as NEXRAD data.

Current Icing Product (CIP) data shows a graphical view of the current icing environment (Figure 6-42). Icing severity is displayed in four categories: light, moderate, severe, and extreme (not specific to aircraft type). The CIP product is not a forecast, but a presentation of the current conditions at the time of the analysis.

Supercooled Large Droplet (SLD) icing conditions are characterized by the presence of relatively large, super cooled water droplets indicative of freezing drizzle and freezing rain aloft. SLD threat areas are depicted as magenta dots over the CIP colors.

Displaying Icing data:

- 1) Select the Weather Data Link (XM) Page.
- 2) Press the MORE WX Softkey.
- **3)** Press the **ICNG** Softkey.
- **4)** Select the desired altitude level: 1,000 feet up to 30,000 feet. Press the **NEXT** or **PREV** Softkey to cycle through the altitude softkeys. The **ICNG** Softkey label changes to reflect the altitude selected.

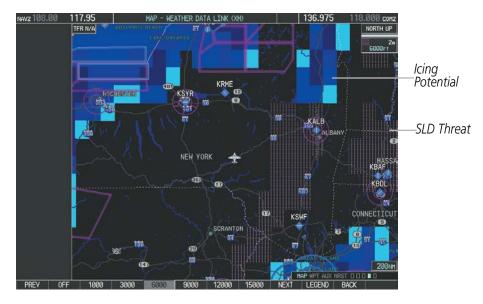


Figure 6-42 Icing Data at 6,000 Feet

To display the Icing Potential legend (Figure 6-43), press the **LEGEND** Softkey when Icing data is displayed.

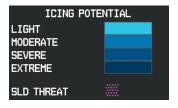


Figure 6-43 Icing Potential Legend

TURBULENCE

NOTE: Turbulence data cannot be displayed at the same time as NEXRAD data.

Turbulence data (Figure 6-44) identifies the potential for erratic movement of high-altitude air mass associated winds. Turbulence is classified as light, moderate, severe or extreme, at altitudes between 21,000 and 45,000 feet. Turbulence data is intended to supplement AIRMETs and SIGMETs.

Displaying Turbulence data:

- 1) Select the Weather Data Link (XM) Page.
- 2) Press the MORE WX Softkey.
- **3)** Press the **TURB** Softkey.
- **4)** Select the desired altitude level: 21,000 feet up to 45,000 feet. Press the **NEXT** or **PREV** Softkey to cycle through the altitude softkeys. The **TURB** Softkey label changes to reflect the altitude selected.

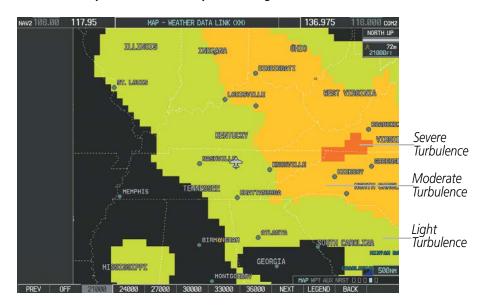


Figure 6-44 Turbulence Data at 21,000 Feet

To display the Turbulence legend (Figure 6-45), press the **LEGEND** Softkey when Turbulence is selected for display.

Figure 6-45 Turbulence Legend

PIREPS AND AIREPS

Pilot Weather Reports (PIREPs) describe in-flight weather encountered by pilots. When significant weather conditions are reported or forecast, Air Traffic Control (ATC) facilities are required to solicit PIREPs. A PIREP may contain adverse weather conditions, such as low in-flight visibility, icing conditions, wind shear, turbulence, and type of aircraft flown. PIREPs are issued as either Routine (UA) or Urgent (UUA).

Another type of PIREP is an Air Report (AIREP). AIREPs are used almost exclusively by commercial airlines.

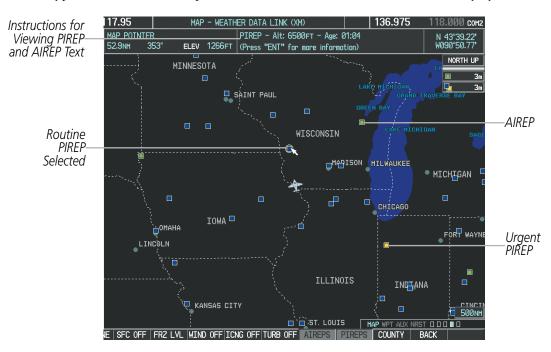


Figure 6-46 AIREPs and PIREPs on the XM Weather Data Link Page

Displaying PIREP and AIREP text:

- 1) Select the Weather Data Link (XM) Page.
- **2)** Press the **MORE WX** Softkey.
- 3) Press the **AIREPS** or **PIREPS** Softkey.
- 4) Press the **Joystick** and pan to the desired weather report. A gray circle will appear around the weather report when it is selected.
- 5) Press the **ENT** Key. The Weather Information Page is shown with PIREP or AIREP text. The data is first displayed in a decoded fashion, followed by the original text. Note the original text may contain addition information not present in the decoded version.
- **6)** Use the **FMS** Knob or the **ENT** Key to scroll through the PIREP or AIREP text.
- 7) Press the **FMS** Knob or the **CLR** Key to return to the Weather Data Link (XM) Page.

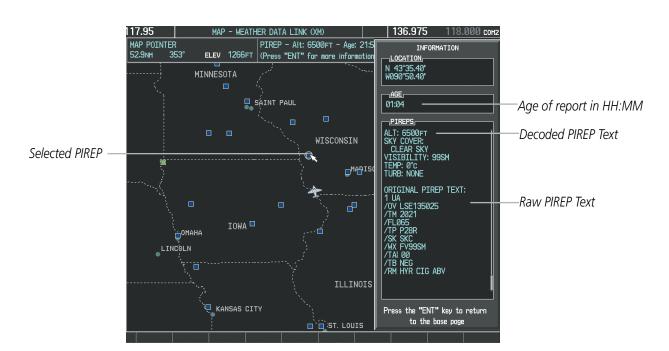


Figure 6-47 PIREP Text on the Weather Information Page

To display the PIREP or AIREP legend (Figure 6-48), press the **LEGEND** Softkey when PIREPs or AIREPs are displayed.

The PIREP color is determined by the type (routine or urgent).

Figure 6-48 AIREPs & PIREPs Legend

TFRS

GARMIN

The Federal Aviation Administration (FAA) issues Temporary Flight Restrictions (TFRs) to designate areas where flight is restricted. TFRs are issued to restrict flight for a variety of reasons including national security, law enforcement, firefighting, natural disasters., airshows, and large sporting events. TFRs may be issued at any time, and TFR data displayed on the G1000 is only intended to supplement official TFR information obtained from official sources including Flight Service Stations (FSS), and air traffic control.

The age of TFR data is not shown; however, if TFR data is not available or has expired, the system displays 'TFR N/A' in the upper-left corner of maps on which TFRs can be displayed.

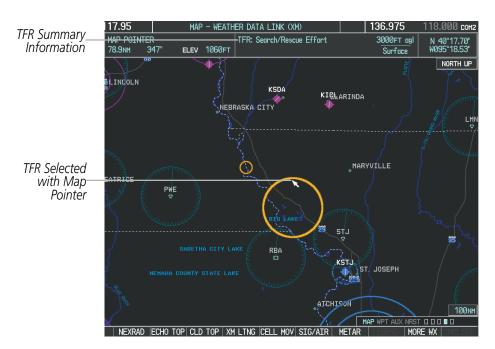


Figure 6-49 TFR Data on the Weather Data Link (XM) Page

Displaying TFR Data:

- 1) Select the Weather Data Link (XM) Page or Navigation Map Page.
- 2) Press the **Joystick** and pan the map pointer over a TFR to highlight it. The system displays TFR summary information above the map.
- **3)** Press the **ENT** Key. The system displays a pop-up menu.
- **4)** If necessary, turn the **FMS** Knob to select 'Review Airspaces' and press the **ENT** Key. The system displays the TFR Information window.
- 5) Press the **FMS** Knob or the **CLR** Key to remove the TFR Information window.

Figure 6-50 Full Text for Selected TFR

The setup menus for the Navigation Map Page control the map range settings above which TFR data is decluttered from the display. If a map range larger than the TFR product map range setting is selected, the TFR product data is removed from the map.

Maps other than the Navigation Map Page use settings based on those selected for the Navigation Map Page.

Setting up and customizing TFR data for maps on which TFR data can be displayed:

- 1) Select the Navigation Map Page.
- 2) Press the **MENU** Key.
- **3)** With Map Setup highlighted, press the **ENT** Key (Figure 6-51).
- **4)** Turn the small **FMS** Knob to select the Aviation Group and press the **ENT** Key (Figure 6-52).
- **5)** Turn the large **FMS** Knob to scroll to the TFR product range setting (Figure 6-53).
- **6)** Turn the small **FMS** Knob to scroll through options (Off, range settings).
- **7)** Press the **ENT** Key to select an option.
- 8) Press the **FMS** Knob or **CLR** Key to return to the Navigation Map Page with the changed settings.

Figure 6-51 Navigation Map Page Menu

Figure 6-52 Navigation Map Page Setup Menu

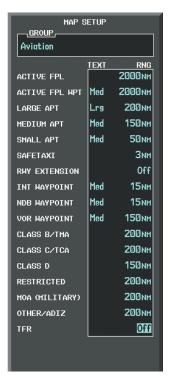


Figure 6-53 Navigation Map Page Setup Menu, Aviation Group

APPENDICES

6.2 GARMIN CONNEXT WEATHER

WARNING: Do not use data link weather information for maneuvering in, near, or around areas of hazardous weather. Information contained within data link weather products may not accurately depict current weather conditions.

WARNING: Do not use the indicated data link weather product age to determine the age of the weather information shown by the data link weather product. Due to time delays inherent in gathering and processing weather data for data link transmission, the weather information shown by the data link weather product may be significantly older than the indicated weather product age.

NOTE: The availability of specific Garmin Connext weather products varies by region and is subject to change. For weather product coverage information, refer to sites.garmin.com/connext. This Pilot's Guide shows all Garmin Connext weather products, regardless of product availability in a specific area or subscription package.

The optional GSR 56 Iridium satellite transceiver provides Garmin Connext Weather reception capabilities to the system. Graphical weather information and its associated text are displayed on the Multi Function Display (MFD) and the Primary Flight Display (PFD) Inset Map.

The system provides weather information after the pilot initiates either a manual or automatic Connext Data Request on the Weather Data Link (CNXT) Page on the MFD.

Garmin Connext weather requires an active Iridium satellite network account and a subscription to the Garmin Connext Weather service.

REGISTERING THE IRIDIUM SATELLITE SYSTEM

A subscriber account must be established for the Iridium transceiver prior to using the Iridium Satellite System for telephone services. Before setting up an Iridium account, obtain the serial number of the Iridium Transceiver (GSR1) and the System ID by selecting the AUX-System Status Page as shown in Figure 6-54. Contact Garmin at 1-866-739-5687 in the United States or 913-397-8200, ext. 1135.

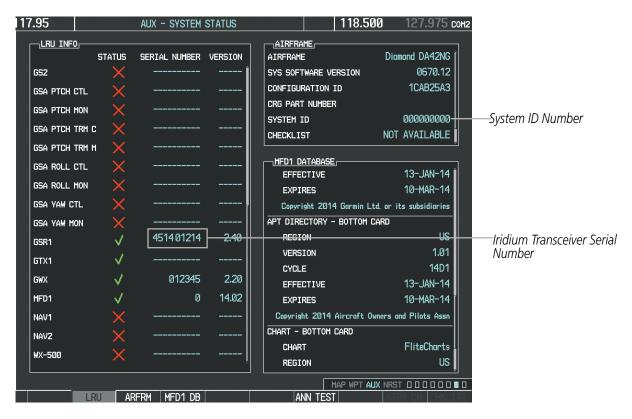


Figure 6-54 Identification Needed for Iridium Registration

REGISTERING GARMIN CONNEXT WEATHER

When an account is established, Garmin provides an Access Code which must be entered on the system in order to complete the registration process.

Registering the system to receive Garmin Connext Weather:

- 1) With the aircraft outside and having a clear view of the sky, turn the large **FMS** Knob on the MFD to select the MAP page group.
- 2) Turn the small **FMS** Knob to select the MAP WEATHER DATA LINK (CNXT or XM) Page. If 'XM' is displayed in the page title, it will be necessary to change the data link source to CNXT before continuing. Refer to 'Viewing the Weather Data Link (CNXT) Page' procedure to change the data link source to prior to registration.
- **3)** If the system displays the 'CONNEXT REGISTRATION' window, proceed to step 6. Otherwise, press the **MENU** Key. The Page Menu window is now displayed as seen in Figure 6-55.

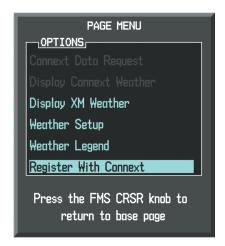


Figure 6-55 Select Register With Connext

- 4) Turn the large **FMS** Knob to select 'Register With Connext' in the menu list.
- **5)** Press the **ENT** Key. The Connext Registration Window appears as shown in Figure 6-56.

Figure 6-56 Enter Access Code

6) Enter the access code provided by Garmin Flight Data Services in the 'ACCESS CODE' field.

- **7)** Press the **ENT** Key. 'REGISTER' is highlighted as in Figure 6-56.
- 8) Press the **ENT** Key. The system contacts Garmin through the Iridium network. System registration is complete when 'REGISTERED' appears in the STATUS field.

ACCESSING GARMIN CONNEXT WEATHER PRODUCTS

The principal map for viewing Garmin Connext weather information is the Weather Data Link (CNXT) Page in the Map Page Group (Figure 6-57). This is the only map display capable of showing information for all available Garmin Connext weather products. This page is also used to select a data link weather source, if more than one source (such as SiriusXM Weather) has also been installed. The displayed weather products and softkeys correspond to the selected data link weather source. No weather information is displayed until the first successful Connext Data Request has completed.

Viewing the Weather Data Link (CNXT) Page:

- 1) Turn the large **FMS** Knob to select the Map Page Group.
- 2) Turn the small **FMS** Knob to select the Weather Data Link (CNXT or XM) Page.
- 3) If the page title displays 'MAP WEATHER DATA LINK (XM)' and Garmin Connext (CNXT) data is desired, proceed to the next step to change the weather data link source to Garmin Connext
- **4)** Press the **MENU** Key.
- **5)** Turn the **FMS** Knob to highlight 'Display Connext Weather' and press the **ENT** Key. Page title displays 'MAP WEATHER DATA LINK (CNXT)' to indicate Garmin Connext is the selected weather data link source.

Only one weather data link source may be selected for display at a time. If Garmin Connext is selected, optional SiriusXM Weather data (and corresponding softkeys) are removed.

Precip Weather Product Selected for Display

Figure 6-57 Weather Data Link (CNXT) Page (After Connext Data Request)

WARNING: Do not use the indicated data link weather product age to determine the age of the weather information shown by the data link weather product. Due to time delays inherent in gathering and processing weather data for data link transmission, the weather information shown by the data link weather product may be significantly older than the indicated weather product age.

For each enabled Garmin Connext weather product, the system displays a weather product icon and product age. The product age is the elapsed time (in minutes) since the weather data provider compiled the weather product. The product age display does not indicate the age of the information contained within the weather product, which can be significantly older than the displayed weather product age.

Weather products are updated continuously or refreshed at specific intervals (defined in the **Refresh Rate** column in Table 6-5). If for any reason, a product is not refreshed within the **Expiration Time** intervals (see Table 6-5), the system removes the expired data from the display, and shows dashes instead of the product age. If more than half of the expiration time has elapsed, the color of the product age changes to yellow. If data for a weather product is not available, the system displays 'N/A' next to the weather product symbol instead of the product age.

Table 6-5 shows the Garmin Connext weather product symbols, the expiration times, and the refresh rates. The refresh rate represents the interval at which the Garmin Connext ground-based servers make available the most current known weather data. It does not necessarily represent the rate at which new content is received from various weather sources.

GARMIN

Garmin Connext Weather Product	Symbol	Expiration Time (Minutes)	Refresh Rate (Minutes)	
Radar Precipitation (PRECIP)	≪	30	U.S.: 3* Canada: 3*† Europe: 15 Australia: 15^	
Infrared Satellite (IR SAT)	****	60	30	
Data Link Lightning (DL LTNG)	* +	30	Continuous	
SIGMETs/AIRMETs (SIG/AIR)	SIGMET AIRMET	60	Continuous	
Meteorological Aerodrome Report (METARs)	Ŧ	90	Continuous	
Winds Aloft (WIND)	<u> </u>	90	Continuous	
Pilot Weather Report (PIREPs)	-	90	Continuous	
Temporary Flight Restrictions (TFRs)	no product image	60	Continuous	
Terminal Aerodrome Forecasts (TAFs)	no product image	60	Continuous	

^{*} The composite precipitation image is updated every 3 minutes, but individual radar sites may take between 3 and 10 minutes to provide new data.

† Canadian radar precipitation data provided by Environment Canada.

† Australian radar precipitation data provided by the Australian Bureau of Meteorology.

Table 6-5 Garmin Connext Weather Product Symbols and Data Timing

APPENDICES

Table 6-6 shows which Garmin Connext Weather products can be displayed (indicated with a '+' symbol) on specific G1000 maps.

Garmin Connext Weather Product	PFD Inset Map	Navigation Map Page	Weather Data Link (CNXT) Page	Weather Information Page	AUX - Trip Planning Page	System Page Group	Nearest Page Group	Flight Plan Pages
Precipitation (PRECIP)	+	+	+		+	+	+	+
Infrared Satellite (IR SAT)			+					
Datalink Lightning (LTNG)	+	+	+		+	+	+	+
SIGMETs/AIRMETs (SIG/AIR)			+					
METARs	+	+	+	+	+	+	+	+
Winds Aloft (WIND)		+*	+					
PIREPs			+	+				
Radar Coverage	+	+	+			+	+	+
TFRs	+	+	+	+	+	+	+	+
TAFs				+				

^{*} Winds Aloft data on Navigation Map Page displayed inside Profile View when enabled.

Table 6-6 Garmin Connext Weather Product Display Maps

Softkeys control the display of weather information on most MFD pages and the PFD Inset Map (Figure 6-58 shows the weather product softkeys for the Weather Data Link (CNXT) Page). When a weather product is selected for display, the corresponding softkey label changes to gray to indicate the product display is enabled.

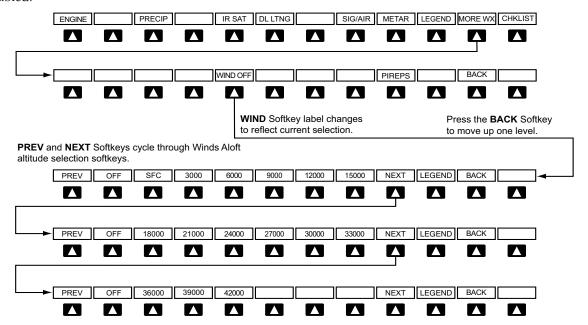


Figure 6-58 Weather Product Softkeys on the Weather Data Link (CNXT) Page

The setup menus for the Navigation Map Page and the Weather Data Link (CNXT) Page control the map range settings above which weather products data are decluttered from the display. If a map range larger than the weather product map range setting is selected, the weather product data is removed from the map. The menus also provide a means in addition to the softkeys for enabling/disabling display of weather products.

Setting up and customizing the Weather Data Link (CNXT) Page:

- 1) Select the Weather Data Link (CNXT) Page.
- 2) Press the MENU Key.
- **3)** With 'Weather Setup' highlighted, press the **ENT** Key (Figure 6-59).
- 4) Turn the small **FMS** Knob to select 'Product Group 1' or 'Product Group 2', and press the **ENT** Key (Figure 6-60).
- **5)** Turn the large **FMS** Knob or press the **ENT** Key to scroll through product selections.
- **6)** Turn the small **FMS** Knob to scroll through options for each product (ON/OFF, range settings, etc.).
- **7)** Press the **ENT** Key to select an option.
- 8) Press the **FMS** Knob or **CLR** Key to return to the Weather Data Link (CNXT) Page with the changed settings.

Figure 6-59 Weather Data Link (CNXT) Page Menu

Figure 6-60 Weather Data Link (CNXT) Page Setup Menu

Restoring default Weather Data Link (CNXT) Page settings:

- 1) Select the Weather Data Link (CNXT) Page.
- 2) Press the **MENU** Key.
- **3)** With 'Weather Setup' highlighted, press the **ENT** Key.

- **4)** Press the **MENU** Key.
- **5)** Highlight the desired default(s) to restore (all or for selection) and press **ENT** Key.

The G1000 supports dual installation of both the GSR 56 for Garmin Connext Weather and the GDL69/69A for SiriusXM Weather. Only one set of data link weather products (Garmin Connext or SiriusXM) can be displayed at a time.

Switching between Garmin Connext and SiriusXM weather data link sources:

- 1) Turn the large **FMS** Knob on the MFD to select the MAP page group.
- 2) Turn the small **FMS** Knob to select the CNXT (or XM) Weather Data Link Page.
- 3) Press the MENU Key.
- **4)** Turn the large **FMS** Knob to select 'Display Connext Weather' or 'Display XM' Weather' (choice dependent on current weather source) and press the **ENT** Key.

If both Garmin Connext and SiriusXM Weather services are installed, customizing the display settings for the corresponding weather products shown in Table 6-7 will result in identical settings for both services.

SiriusXM Weather Product	Garmin Connext Weather Product
Next-generation Radar	Precipitation
(NEXRAD)	(PRECIP)
Cloud Top	Infrared Satellite
(CLD TOP)	(IR SAT)
SiriusXM Lightning	Garmin Connext Data Link
(XM LTNG)	Lightning (DL LTNG)
SIGMETs/AIRMETs	SIGMETs/AIRMETs
(SIG/AIR)	(SIG/AIR)
Meteorological Aerodrome Report	Meteorological Aerodrome Report
(METARs)	(METARs)
Winds Aloft	Winds Aloft
(WIND)	(WIND)
Pilot Weather Report	Pilot Weather Report
(PIREPs)	(PIREPs)

Table 6-7 Corresponding SiriusXM Weather and Garmin Connext Weather Products with Shared Settings

Maps besides the Weather Data Link (CNXT) Page use settings based on those selected for the Navigation Map Page.

Setting up and customizing weather data for the Navigation Map Page:

- **1)** Select the Navigation Map Page.
- **2)** Press the **MENU** Key.
- **3)** With 'Map Setup' highlighted, press the **ENT** Key (Figure 6-61).

- **4)** Turn the small **FMS** Knob to select the 'Weather' Group and press the **ENT** Key (Figure 6-62).
- **5)** Turn the large **FMS** Knob or press the **ENT** Key to scroll through product selections (Figure 6-63).
- **6)** Turn the small **FMS** Knob to scroll through options for each product (ON/OFF, range settings).
- **7)** Press the **ENT** Key to select an option.
- 8) Press the **FMS** Knob or **CLR** Key to return to the Navigation Map Page with the changed settings.

Figure 6-61 Navigation Map Page Menu

Figure 6-62 Navigation Map Page Setup Menu

Figure 6-63 Navigation Map Page Setup Menu, Weather Group

Each active weather product has an associated legend which can be displayed on the Weather Data Link (CNXT) Page. If no weather product softkeys are selected, the **LEGEND** Softkey will be unavailable.

Viewing legends for displayed weather products

- 1) Select the Weather Data Link (CNXT) Page.
- 2) Press the **LEGEND** Softkey to display the legends for the displayed weather products.

Or:

- a) Press the **MENU** Key.
- **b)** Select 'Weather Legend' and press the **ENT** Key.
- 3) Turn the **FMS** Knob to scroll through the legends if more are available than fit in the window.
- **4)** To remove the Legend Window, select the **LEGEND** Softkey, the **ENT** or the **CLR** Key, or press the **FMS** Knob.

When a Garmin Connext weather product is enabled for display on the PFD Inset Map, the weather product information box (with the product icon and age) can be displayed inside the PFD Inset Map.

APPENDICES

Viewing the weather product information box on the PFD Inset Map:

- 1) On the PFD, press the **INSET** Softkey.
- **2)** Press the **WX LGND** Softkey.
- 3) To remove the weather product information box, press the **WX LGND** Softkey again or deselect all active Garmin Connext Weather products on the PFD Inset Map.

Additional information about the following can be displayed by panning over the display on the map:

• Infrared Satellite (IR SAT)

METARs

• SIGMETs

• TFRs

AIRMETs

PIREPs

The map panning feature is enabled by pressing the **Joystick**. The map range is adjusted by turning the **Joystick**. If the map range is adjusted while panning is enabled, the map is re-centered on the Map Pointer.

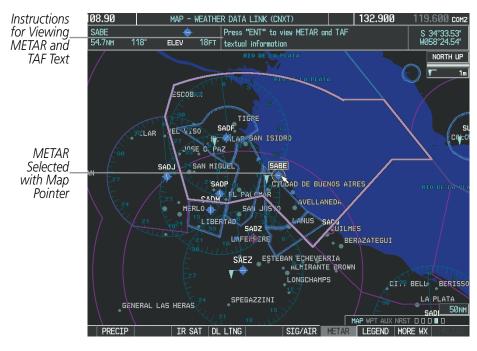


Figure 6-64 Map Panning on the Weather Data Link (CNXT) Page

CONNEXT DATA REQUESTS

The Connext Data Request Menu provides the flight crew with the options to enable or disable the requested weather coverage area(s), choose automatic weather update intervals (if desired), and the ability to send or cancel weather data requests. The status of the Garmin Connext data request process is also displayed.

Before a Garmin Connext data request can occur, a valid request coverage area must be defined from which all currently available Garmin Connext weather products will be retrieved. At a minimum, either the aircraft's present position or a waypoint (as part of a flight plan or entered directly in the 'WAYPOINT' coverage field) must be part of the request coverage area, otherwise the request status window will indicate 'INVALID COVERAGE AREA' and the system will not allow a request to occur.

It is not necessary for a destination (based on an active flight plan), a flight plan, or waypoint to be specified prior to enabling these coverage areas; however no weather data will be retrieved for these option(s) until a flight plan or waypoint is provided, respectively.

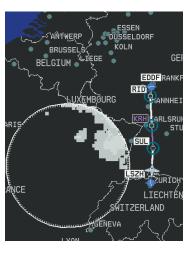
Requesting Garmin Connext weather manually:

- 1) Select the Weather Data Link (CNXT) Page.
- **2)** Press the **MENU** Key.
- 3) With 'Connext Data Request' highlighted, press the **ENT** Key (Figure 6-65).
- **4)** Turn the large **FMS** Knob to highlight the desired coverage option(s) and press the **ENT** Key to check or uncheck one of more of the following coverage selections (Figures 6-66, 6-67):
 - PRESENT POSITION Requests data based on current location.
 - DESTINATION Requests data based on the active flight plan destination (Direct-To destinations excluded). See the Flight Management section for more information about entering and activating flight plans.
 - FPL Requests data along an active flight plan, if one exists. Turn the small **FMS** Knob to select the desired flight plan look-ahead distance option (or choose 'REMAINING FPL' to request the remainder of the flight plan), then press the **ENT** Key.
 - WAYPOINT Requests data based on a waypoint (which may be off-route). Turn the large and small FMS
 Knobs to enter a waypoint, then press the ENT Key.
- 5) Turn the large **FMS** Knob highlight to the 'DIAMETER / RTE WIDTH' (diameter/route width) distance field and turn the small **FMS** Knob to select the desired diameter and route width of the request, then press the **ENT** Key.
- 6) Turn the large **FMS** Knob until the 'SEND REQ' button is highlighted. Press the **ENT** Key to initiate the request immediately or press the **FMS** Knob to return to the Weather Data Link (CNXT) Page without requesting weather data.

Figure 6-65 Weather Data Link (CNXT) Page Menu

Figure 6-66 Connext Data Request Window

Present Position Selected, 200 nm Diameter Requested



Destination Selected, 200 nm Diameter Requested

Next 80 nm of Flight Plan Selected, 200 nm Route Width Requested

Off-Route Waypoint Selected, 200 nm Diameter Reguested

Figure 6-67 Connext Weather Data Request Results with Precipitation and Infrared Satellite Displayed

During a Connext Data Request, the Request Status box displays "Processing..." and the 'CANCEL REQ' button is highlighted. A countdown timer will display the estimated time remaining for the data request. If desired, the Connext Data Request menu may be removed while the data request is processing by pressing the **FMS** Knob; the data request will continue to process in the background. Connext Data Requests typically take between 1 to 4 minutes to complete depending on the size of the selected weather coverage area, the amount of precipitation present, and the Iridium signal connection quality.

The system retrieves all available Garmin Connext Weather products within the selected coverage area during an initial Connext Data Request, regardless of which products (if any) are currently enabled for display. On subsequent requests, previously retrieved textual data (such as METARs and TAFS) is retained if it has not expired, while new textual weather data matching the current coverage area and all graphical weather data is downloaded during every data request.

At the completion of a successful weather data request, the Request Status Window (if still open) indicates 'OK'. Refer to the Abnormal Operations discussion later in this section for more information on the messages received if the request is unsuccessful.

Cancelling a Connext Weather Data Request in Progress:

- 1) Select the Weather Data Link (CNXT) Page.
- **2)** Press the **MENU** Key.
- 3) With 'Connext Data Request' highlighted, press the **ENT** Key.
- **4)** Turn the large **FMS** Knob to select 'CANCEL REQ' and press the **ENT** Key. The request status box indicates 'Request Cancelled'.
- 5) Press the **FMS** Knob to return to the Weather Data Link (CNXT) Page.

The pilot can schedule Connext Data Requests to recur automatically. Auto requests remain enabled until the pilot disables them, or the system power is cycled. The Request Status Window will indicate the number of minutes or seconds until the next automatic data request occurs.

NOTE: If automatic Connext Data Requests were enabled prior to the system entering Reversionary Mode, the automatic weather data requests will continue in Reversionary Mode, however the Connext Data Request Window and its associated options will not be available.

Enabling/disabling automatic Connext Data Requests:

- 1) Select the Weather Data Link (CNXT) Page.
- 2) Press the **MENU** Key.
- **3)** With 'Connext Data Request' highlighted, press the **ENT** Key.
- **4)** Choose the desired weather coverage options.
- 5) Turn the large **FMS** Knob to select the 'UPDATE RATE' setting. Then turn the small **FMS** Knob to highlight the desired automatic update frequency (OFF, 5 Min, 10 Min, 15 Min, 20 Min, 30 Min, 45 Min, or 60 Min), then press the **ENT** Key.
- **6)** The 'SEND REQ" button is highlighted and a timer is displayed in the 'REQUEST STATUS' based on the currently selected update rate. Press the **ENT** Key to immediately send an immediate Connext Data Request.

Or:

Press the **FMS** Knob to return to the Weather Data Link (CNXT) Page.

GARMIN CONNEXT WEATHER PRODUCTS

PRECIPITATION

NOTE: Precipitation data cannot be displayed simultaneously on the navigation map with terrain or the airborne weather radar overlay.

Precipitation (PRECIP) data is not real-time. The lapsed time between collection, processing, and dissemination of radar images can be significant and may not reflect the current radar synopsis. Due to the inherent delays and the relative age of the data, it should be used for long-range planning purposes only.

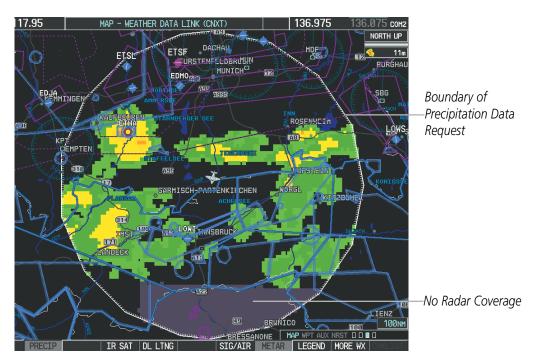


Figure 6-68 Precipitation Data on the Weather Data Link (CNXT) Page

Displaying Precipitation weather information:

- 1) Press the **MAP** Softkey (for the PFD Inset Map, select the **INSET** Softkey). This step is not necessary on the Weather Data Link (CNXT) Page.
- 2) Press the **PRECIP** Softkey.

The system displays either base or composite radar precipitation imagery, depending on the region.

Region	Reflectivity Type	
United States	Composite Reflectivity	
Australia, Canada, Western Europe	Base Reflectivity	

The base reflectivity radar data shows the radar returns from the perspective of a single antenna tilt angle. The composite reflectivity radar data shows the *highest* radar energy received from multiple antenna tilt angles. The display of the information is color-coded to indicate the intensity of the echoes and the type of precipitation. For the Precipitation legend (Figure 6-69), press the **LEGEND** Softkey when Precipitation is selected for display.

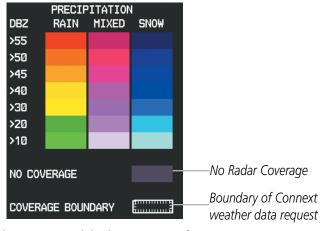


Figure 6-69 Precipitation Data Legend

The display of no radar coverage is enabled when Precipitation is selected for display. Areas where precipitation radar coverage is not currently available or is not being collected are indicated in gray shade of purple. A white tick-marked boundary line depicts the selected coverage area of the Connext Data Request. This boundary encloses the precipitation data when this weather product is displayed.

REFLECTIVITY

Reflectivity is the amount of transmitted power returned to the radar receiver. Colors on the Precipitation display directly correlate to the level of detected reflectivity. Reflectivity as it relates to hazardous weather can be very complex.

The role of radar is essentially to detect moisture in the atmosphere. Simply put, certain types of weather reflect radar better than others. The intensity of a radar reflection is not necessarily an indication of the weather hazard level. For instance, wet hail returns a strong radar reflection, while dry hail does not. Both wet and dry hail can be extremely hazardous.

The different radar echo intensities are measured in decibels (dB) relative to reflectivity (Z). Weather radars measure the reflectivity ratio, or the energy reflected *back to* the radar receiver (designated by the letter Z). The value of Z increases as the returned signal strength increases.

Precipitation Limitations

Radar images may have certain limitations:

• Radar composite reflectivity does not provide sufficient information to determine precipitation characteristics (wet hail vs. rain). For example, it is not possible to distinguish between wet snow, wet hail, and rain.

APPENDICES

- The radar beam may overshoot precipitation occurring below the lowest antenna beam tilt angle (0.5°), causing no precipitation to be displayed. An individual radar site cannot depict high altitude storms at close ranges. It has no information about storms directly over the radar site.
- When zoomed in to a range of 30 nm, each square block on the display represents an area of four square kilometers.

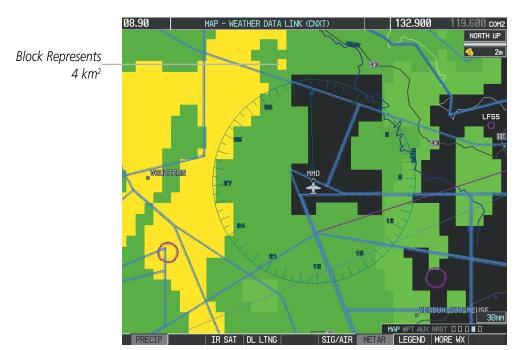


Figure 6-70 Precipitation Data - Zoomed

The following may cause abnormalities in displayed radar images:

- Ground clutter
- Strobes and spurious radar data
- Sun strobes (when the radar antenna points directly at the sun)
- Interference from buildings or mountains, which may cause shadows
- Metallic dust (chaff) from military aircraft, which can cause alterations in radar scans

INFRARED SATELLITE

Infrared Satellite (IR SAT) data (Figure 6-71) depicts cloud top temperatures from satellite imagery. Brighter cloud top colors indicate cooler temperatures occurring at higher altitudes.



Figure 6-71 Infrared Satellite Data on the Weather Data Link (CNXT) Page

Displaying Cloud Tops information:

- 1) Select the Weather Data Link (CNXT) Page.
- **2)** Press the **IR SAT** Softkey.

To display the Infrared Satellite legend (Figure 6-72), press the **LEGEND** Softkey when Infrared Satellite data is selected for display.

Figure 6-72 Infrared Satellite Legend

APPENDICES

GARMIN CONNEXT DATA LINK LIGHTNING

Data Link Lightning (DL LTNG) data (Figure 6-73) shows the approximate location of cloud-to-ground lightning strikes. A strike icon represents a strike that has occurred within a two-kilometer region. Neither cloud-to-cloud nor the exact location of the lightning strike is displayed.

If the aircraft is also equipped with an optional on-board lightning detection system, only one lightning product may be enabled for display at a time on a navigation map.

Figure 6-73 Garmin Connext Data Link Lightning

Displaying Garmin Connext Data Link Lightning information:

- 1) Press the MAP Softkey (for the PFD Inset Map, press the INSET Softkey). This step is not necessary on the Weather Data Link (CNXT) Page.
- **2)** Press the **DL LTNG** Softkey.

To display the Connext Data Link Lightning legend on the Weather Data Link (CNXT) Page (Figure 6-74), select the **LEGEND** Softkey when Connext Data Link Lightning is selected for display.

Figure 6-74 Connext Data Link Lightning Legend

SIGMETS AND AIRMETS

SIGMETs (SIGnificant METeorological Information) and AIRMETs (AIRmen's METeorological Information) are issued for potentially hazardous weather. A Convective SIGMET is issued for hazardous convective weather such as severe or widespread thunderstorms. A localized SIGMET can be displayed when significant weather conditions are not widespread.

The entire SIGMET or AIRMET is displayed as long as any portion of it is issued within the coverage area of the Connext Data Request.

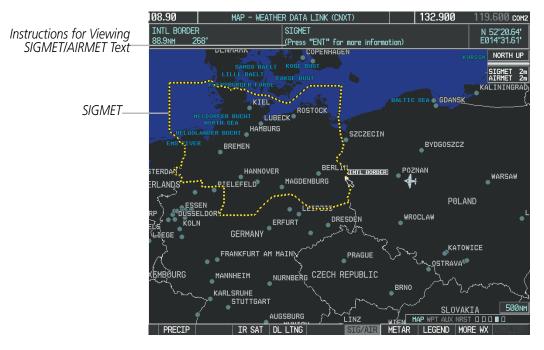


Figure 6-75 SIGMET/AIRMET Data

Displaying SIGMETs and AIRMETs:

- 1) Select the Weather Data Link (CNXT) Page.
- 2) Press the **SIG/AIR** Softkey.
- 3) To view the text of the SIGMET or AIRMET, press the **Joystick** and move the Map Pointer over the icon.
- 4) Press the **ENT** key. Figure 6-76 shows sample SIGMET text.

To display the SIGMET and AIRMET legend (Figure 6-77), press the **LEGEND** Softkey when SIGMETs and AIRMETs are selected for display.

Figure 6-76 Sample SIGMET Text

Figure 6-77 SIGMET/AIRMET Legend

METARS AND TAFS

NOTE: METAR information is only displayed within the installed navigation database service area.

METARs (METeorological Aerodrome Reports) typically contain information about the temperature, dewpoint, wind, precipitation, cloud cover, cloud base heights, visibility, and barometric pressure at an airport or observation station. They can also contain information on precipitation amounts, lightning, and other critical data. METARs reflect hourly observations; non-routine updates include the code "SPECI" in the report. METARs are shown as colored flags at airports that provide them.

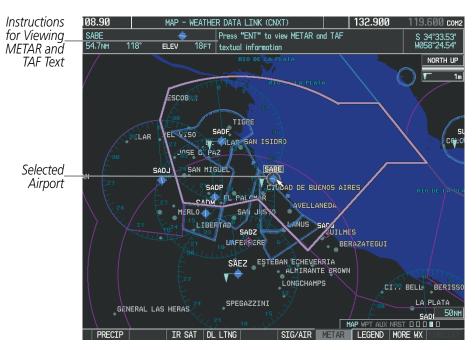


Figure 6-78 METAR Flags on the Weather Data Link (CNXT) Page

TAFs (Terminal Aerodrome Forecasts) are weather predictions for specific airports within a 24- hour period, and may span up to 36 hours. TAFs typically include forecast wind, visibility, weather phenomena, and sky conditions using METAR codes.

METAR and TAF text are displayed on the Weather Information Page. METAR data is displayed first in a decoded fashion, followed by the original text. Note the original text may contain additional information not found in the decoded text. TAF information is displayed only in its original form, when a TAF is available.

Displaying METAR and TAF text:

- 1) On the Weather Data Link (CNXT) Page, press the **METAR** Softkey.
- 2) Press the **Joystick** and pan to the desired airport.
- 3) Press the **ENT** Key. The Weather Information Page is shown with METAR and TAF text.
- **4)** Use the **FMS** Knob or the **ENT** Key to scroll through the METAR and TAF text. METAR text must be completely scrolled through before scrolling through the TAF text.
- 5) Press the **FMS** Knob or the **CLR** Key to return to the Weather Data Link (CNXT) Page.

Or:

340

- 1) Select the Weather Information Page.
 - **a)** Turn the large **FMS** Knob to select the Waypoint Page Group.
 - **b)** Press the **WX** Softkey to select the Weather Information Page.
- 2) Press the **FMS** Knob to display the cursor.
- 3) Use the **FMS** Knob to enter the desired airport and press the **ENT** Key.
- **4)** Use the **FMS** Knob or the **ENT** Key to scroll through the METAR and TAF text. Note that the METAR text must be completely scrolled through before scrolling through the TAF text.

Figure 6-79 METAR and TAF Text on the Weather Information Page

Original METAR text is also accessible while panning the map cursor over a METAR flag on any map page on which a METAR is displayed. The METAR text is shown in a box near the METAR flag.

In addition, METAR flags and their associated text are displayed on the Active Flight Plan Page on the MFD. METAR flags appears next to waypoints in the flight plan with an associated METAR.

Displaying raw METAR text on the Active Flight Plan Page:

- 1) Select the Active Flight Plan Page on the MFD.
- 2) Press the **FMS** Knob to activate the cursor.
- 3) Turn the large **FMS** Knob to highlight a waypoint with an associated METAR. The METAR text will appear in the 'SELECTED WAYPOINT WEATHER' window below.
- **4)** When finished, press the **FMS** Knob to remove the cursor or press the **FPL** Key to exit the Active Flight Plan Page.

To display the METAR legend on the Weather Data Link (CNXT) Page, press the **LEGEND** Softkey when METARs are selected for display.

The METAR flag color is determined by the information in the METAR text. The METAR flag is gray when the METAR text does not contain adequate information to determine the METAR category (e.g. VFR, IFR, etc.).

Figure 6-80 METAR Legend

WINDS ALOFT

Winds Aloft data (Figure 6-81) shows the forecasted wind speed and direction at the surface and at selected altitudes. Altitude can be displayed in 3,000-foot increments up to 42,000 feet MSL.

Displaying Winds Aloft data:

- 1) Select the Weather Data Link (CNXT) Page.
- **2)** Press the **MORE WX** Softkey.
- **3)** Press the **WIND** Softkey.
- **4)** Select the desired altitude level: SFC (surface) up to 42,000 feet. Press the **NEXT** or **PREV** Softkey to cycle through the altitude softkeys. The **WIND** Softkey label changes to reflect the altitude selected.

Figure 6-81 Winds Aloft Data at 9,000 Feet

To display the Winds Aloft legend (Figure 6-82), press the **LEGEND** Softkey when Winds Aloft is selected for display.

Figure 6-82 Winds Aloft Data with Legend

Figure 6-83 Winds Aloft Data Inside Profile View (Navigation Map Page)

Headwind and tailwind components aloft are available inside the Profile View on the Navigation Map Page (Figure 6-83). The displayed components are relative to current aircraft altitude and track, but not to aircraft speed.

Headwind Symbol	Tailwind Symbol	Headwind/Tailwind Component
None	None	Less than 5 knots
← ′	$ \longrightarrow $	5 knots
\leftarrow		10 knots
←	$\stackrel{\blacktriangle}{\longrightarrow}$	50 knots

Table 6-8 Profile View Headwind/Tailwind Component Symbols

GARMIN

APPENDICES

Enabling/disabling profile view (containing winds aloft data)

- 1) Select the Navigation Map Page.
- **2)** Press the **PROFILE** Softkey.

Or:

- 1) Press the **MENU** Key.
- 2) Turn the large FMS Knob to highlight 'Show Profile View' or 'Hide Profile View' (choice dependent on current state) and press the **ENT** Key.

Winds Aloft data inside the Profile View is enabled by default when the Profile View is displayed on the Navigation Map Page. This behavior can be changed on the Navigation Map Page.

Enabling/disabling winds aloft data display in Profile View:

- 1) Select the Navigation Map Page.
- 2) Press the **MENU** Key.
- **3)** With Map Setup highlighted, press the **ENT** Key (Figure 6-84).
- **4)** Turn the small **FMS** Knob to select the Profile Group and press the **ENT** Key (Figure 6-85).
- **5)** Turn the large **FMS** Knob to select 'Profile Winds' (Figure 6-86).
- **6)** Turn the small **FMS** Knob to select 'On' or 'Off'.
- 7) Press the **FMS** Knob or **CLR** Key to return to the Navigation Map Page with the changed settings.

Figure 6-84 Navigation Map Page Menu

Figure 6-86 Navigation Map Page Setup Menu, Weather Group

PIREPS

Pilot Weather Reports (PIREPs) describe in-flight weather encountered by pilots. A PIREP may contain adverse weather conditions, such as low in-flight visibility, icing conditions, wind shear, turbulence, and type of aircraft flown. PIREPs are issued as either Routine (UA) or Urgent (UUA).

Figure 6-87 PIREPs on the Weather Data Link (CNXT) Page

Displaying PIREP text:

- 1) Select the Weather Data Link (CNXT) Page.
- 2) Press the MORE WX Softkey.
- **3)** Press the **PIREPS** Softkey.
- **4)** Press the **Joystick** and pan to the desired weather report. A gray circle will appear around the weather report when it is selected.
- **5)** Press the **ENT** Key. The PIREP tex is first displayed in a decoded fashion, followed by the original text. Note the original text may contain additional information not present in the decoded version.
- **6)** Use the **FMS** Knob or the **ENT** Key to scroll through the PIREP text.
- 7) Press the **FMS** Knob or the **CLR** Key to close the PIREP text window and return to the Weather Data Link (CNXT) Page.

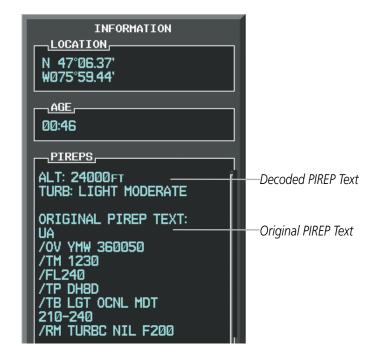


Figure 6-88 PIREP Text on the Weather Data Link (CNXT) Page

To display the PIREP legend (Figure 6-89), press the **LEGEND** Softkey when PIREPs are selected for display. The PIREP color is determined by the type (routine or urgent).

Figure 6-89 AIREPs & PIREPs Legend

TFRS

NOTE: Temporary Flight Restriction (TFR) data from Garmin Connext is only available in the United States (not including any U.S. territories.) Refer to sites.garmin.com/connext for Garmin Connext product coverage information.

In the United States, the Federal Aviation Administration (FAA) issues Temporary Flight Restrictions (TFRs) to designate areas where flight is restricted. TFRs are issued to restrict flight for a variety of reasons including national security, law enforcement, firefighting, natural disasters., airshows, and large sporting events. TFRs may be issued at any time, and TFR data displayed on the G1000 is only intended to supplement official TFR information obtained from Flight Service Stations (FSS), and air traffic control.

The age of TFR data is not shown; however, if TFR data is not available or has expired, the system displays 'TFR N/A' in the upper-left corner of maps on which TFRs can be displayed.

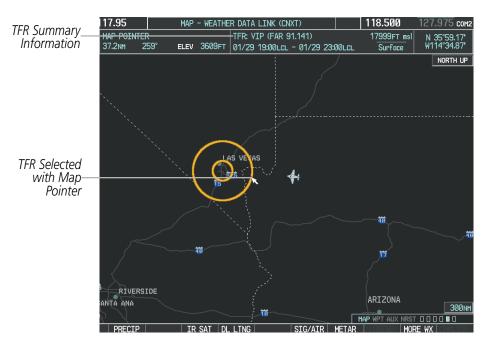


Figure 6-90 TFR Data on the Weather Data Link (CNXT) Page

Displaying TFR Data:

- 1) Select the Weather Data Link (CNXT) Page or Navigation Map Page.
- 2) Press the **Joystick** and pan the map pointer over a TFR to highlight it. The system displays TFR summary information above the map.
- **3)** Press the **ENT** Key. The system displays a pop-up menu.
- **4)** If necessary, turn the **FMS** Knob to select 'Review Airspaces' and press the **ENT** Key. The system displays the TFR Information window (Figure 6-91).
- 5) Press the **FMS** Knob or the **CLR** Key to remove the TFR Information window.

Figure 6-91 Full Text for Selected TFR

The setup menus for the Navigation Map Page control the map range settings above which TFR data is decluttered from the display. If a map range larger than the TFR product map range setting is selected, the TFR product data is removed from the map.

Maps other than the Navigation Map Page use settings based on those selected for the Navigation Map Page.

APPENDICES

Setting up and customizing TFR data for maps on which TFR data can be displayed:

- 1) Select the Navigation Map Page.
- **2)** Press the **MENU** Key.
- **3)** With Map Setup highlighted, press the **ENT** Key (Figure 6-92).
- 4) Turn the small **FMS** Knob to select the Aviation Group and press the **ENT** Key (Figure 6-93).
- **5)** Turn the large **FMS** Knob to scroll to the TFR product range setting (Figure 6-94).
- **6)** Turn the small **FMS** Knob to scroll through options (Off, range settings).
- **7)** Press the **ENT** Key to select an option.
- 8) Press the **FMS** Knob or **CLR** Key to return to the Navigation Map Page with the changed settings.

Figure 6-92 Navigation Map Page Menu

Figure 6-93 Navigation Map Page Setup Menu

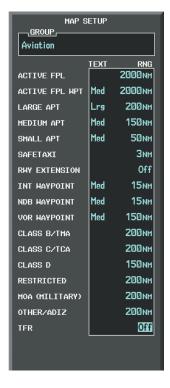


Figure 6-94 Navigation Map Page Setup Menu, Weather Group

ABNORMAL OPERATIONS

If the G1000 cannot complete a Connext Data Request, one or more messages will appear in the request status window.

Weather Request Status Message	Description	
Auto requests inhibited Send manual request to reset.	The system has disabled automatic weather data requests due to excessive errors. Automatic weather data requests have stopped. Send a manual weather data request to resume automatic updates.	
Auto update retry: ## Seconds	The system will attempt another automatic weather data request after an error occurred during the previous request. Displays estimated time until next automatic request occurs.	
Connext Comm Error [2]	A communications error has occurred with the GIA or GDL 59.	
Connext Comm Error [4]	This occurs if multiple weather data requests have recently failed, or the GIA or GDL 59 is off-line. If this error persists, the system should be serviced.	
Connext Comm Error [5]	The Iridium or Garmin Connext services are not accessible. Check Iridium signal strength. If this error persists, the system should be serviced.	
Connext Comm Error [6]	A communications error has occurred. If this error persists, the system should be serviced.	
Connext Comm Error [7]	The system halted the weather data request due to excessive delays while receiving weather data. Verify Iridium signal strength and re-try data request.	
Connext Comm Error [8]	A ground-based server error has occurred or invalid data received.	
Connext Login Invalid	There is a problem with the Garmin Connext registration. In the United States, contact Garmin at 1-866-739-5687. Outside the United States, call 913-397-8200, wait for the operator, and request extension 1135.	
Connext Server Temporarily Inop	The Garmin Connext weather data server is temporarily out of service, but is expected to return to service in less than 30 minutes.	
Connext Server Inop	The Garmin Connext weather data server will be out of service for at least 30 minutes.	
Invalid Coverage Area	The Connext Data Request does not sufficiently define a coverage area on which to retrieve weather data. Verify the selections in the Connext Weather Coverage Window, then issue another Connext Data Request.	
No Connext Subscription	The system is not currently subscribed to the Garmin Connext Weather service, or the access code is incorrect. Verify the access code. In the United States, contact Garmin at 1-866-739-5687. Outside the United States, call 913-397-8200, wait for the operator, and request extension 1135.	
Reduce Request Area	The weather data request area exceeds size limits. Reduce weather coverage area and re-send data request.	
Request Cancelled	The user has cancelled a weather data request.	
Request Failed - Try Again	The ground-based server halted the weather data request due to excessive delays. Re-send data request.	
Transfer Preempted	The Iridium voice telephone has interrupted the weather data request. Retry request when Iridium voice telephone is not in use.	

Table 6-9 Abnormal Weather Data Request Status Messages

GARMIN CONNEXT WEATHER IN REVERSIONARY MODE

When the G1000 is operating in Reversionary Mode, only those weather products which can be displayed on the PFD Inset map will be available for display (see Table 6-6 for a list of weather products and their associated map availability).

If manual weather data requests were enabled prior to entering Reversionary Mode, no new Garmin Connext weather data can be retrieved while operating in Reversionary Mode. If automatic weather data requests were enabled prior to Reversionary Mode operation, the system will continue the automatic data requests in Reversionary Mode (provided automatic requests have not been inhibited due to a system error).

6.3 AIRBORNE COLOR WEATHER RADAR

SYSTEM DESCRIPTION

The optional Garmin GWX 70 Airborne Color Weather Radar is a solid-state pulsed radar with forty watts of output power. The radar combines excellent range and adjustable scanning profiles with a high-definition target display. The radar has an effective pulse length of 27.31 microseconds (µs), and the system optimizes the pulse length to maximize resolution at each range setting.

The Diamond DA62 uses a 10-inch phased array antenna that is fully stabilized to accommodate 30° of pitch and roll.

To focus radar scanning on specific areas, Sector Scanning offers pilot-adjustable horizontal scan angles of 20°, 40°, 60°, or 90°. A vertical scanning function helps to analyze storm tops, gradients, and cell buildup activity at various altitudes.

Radar features include:

- Extended Sensitivity Time Constant (STC) logic that automatically correlates distance of the return echo with intensity, so cells do not suddenly appear to get larger as they get closer.
- WATCH® (Weather ATtenuated Color Highlight) helps identify possible shadowing effects of short-range cell activity, identifying areas where radar return signals are weakened or attenuated by intense precipitation (or large areas of lesser precipitation) and may not fully reflect the weather behind a storm.
- Weather Alert that looks ahead for intense cell activity in the 80-320 nm range, regardless of the selected map range.

PRINCIPLES OF PULSED AIRBORNE WEATHER RADAR

The term RADAR is an acronym for RAdio Detecting And Ranging. Pulsed radar locates targets by transmitting a microwave pulse beam that, upon encountering a target, is reflected back to the radar receiver as a return echo. The microwave pulses are focused and radiated by the antenna, with the most intense energy in the center of the beam and decreasing intensity near the edge. The same antenna is used for both transmitting and receiving. The system processes the returned signal and displays it on the MFD.

Radar detection is a two-way process that requires 12.36 µs for the transmitted microwave pulses to travel out and back for each nautical mile of target range. It takes 123.6 µs for a transmitted pulse to make the round trip if a target is ten nautical miles away.

Airborne weather radar information should be used to avoid severe weather, not for penetrating severe weather. The decision to fly into an area of radar targets depends on target intensity, spacing between the targets, aircraft capabilities, and pilot experience. Pulse type weather radar detects only precipitation, not clouds or turbulence. The display may indicate clear areas between intense returns, but this does not necessarily mean it is safe to fly between them. Only Doppler radar can detect turbulence.

Airborne weather radar has other capabilities beyond weather detection. It also has the ability to detect and provide distance to cities, mountains, coastlines, rivers, lakes, and oceans.

NEXRAD AND AIRBORNE WEATHER RADAR

Both airborne weather radar and NEXRAD measure weather reflectivity in decibels (dB). A decibel is a logarithmic expression of the ratio of two quantities. Airborne Weather Radar measures the ratio of power against the gain of the antenna, while NEXRAD measures the energy reflected back to the radar, or the radar reflectivity ratio.

Both systems use colors to identify the different echo intensities, but the colors are not interchangeable. Airborne color radar values used by the GWX 70 should not be confused with NEXRAD radar values.

ANTENNA BEAM ILLUMINATION

The radar beam is much like the beam of a spotlight. The further the beam travels, the wider it becomes. The radar is only capable of seeing what is inside the boundaries of the beam. The figure below depicts a radar beam's characteristics. The figure illustrates vertical dimensions of the radar beam, although the same holds true for the horizontal dimensions. In other words, the beam is as wide as it is tall. Note that it is possible to miss areas of precipitation on the radar display because of the antenna tilt setting. With the antenna tilt set to zero in this illustration, the beam overshoots the precipitation occurring at less than 15 nautical miles.

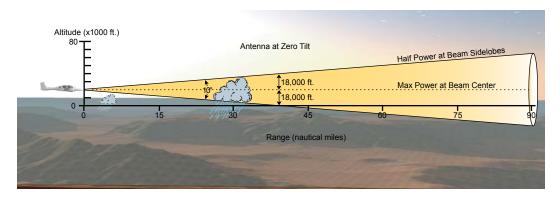


Figure 6-95 Radar Beam from a 12 inch Antenna

The curvature of the earth can also be a factor in missing areas of precipitation, especially at range settings of 150 nautical miles or more. Here the beam overshoots the precipitation at less than 320 nautical miles.

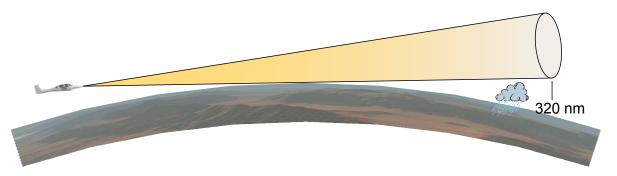


Figure 6-96 Radar Beam in Relation to the Curvature of the Earth

RADAR SIGNAL ATTENUATION

The phenomenon of radar signal attenuation affects the operation of weather radar. When the radar signal is transmitted, it is progressively absorbed and scattered, making the signal weaker. This weakening, or attenuation, is caused by two primary sources, distance and precipitation.

Attenuation because of distance is due to the fact that the radar energy leaving the antenna is inversely proportional to the square of the distance. The reflected radar energy from a target 40 miles away that fills the radar beam is one fourth the energy reflected from an equivalent target 20 miles away. This would appear to the operator that the storm is gaining intensity as the aircraft gets closer. Internal signal processing within the airborne weather radar system compensates for much of this distance attenuation.

Attenuation due to precipitation is not as predictable as distance attenuation. It is also more intense. As the radar signal passes through moisture, a portion of the radar energy is reflected back to the antenna. However, much of the energy is absorbed. If precipitation is very heavy, or covers a large area, the signal may not reach completely through the area of precipitation. The weather radar system cannot distinguish between an attenuated signal and an area of no precipitation. If the signal has been fully attenuated, the radar displays a radar shadow. This appears as an end to the precipitation when, in fact, the heavy rain may extend much further. A cell containing heavy precipitation may block another cell located behind the first, preventing it from being displayed on the radar. Never fly into these shadowed areas and never assume that all of the heavy precipitation is being displayed unless another cell or a ground target can be seen beyond the heavy cell. The WATCH® feature of the GWX 70 Weather Radar system can help in identifying these shadowed areas. Areas in question appear as shadowed or gray on the radar display. Proper use of the antenna tilt control can also help detect radar shadows.

Attenuation can also be due to poor maintenance or degradation of the radome. Even the smallest amount of wear and scratching, pitting, and pinholes on the radome surface can cause damage and system inefficiency.

RADAR SIGNAL REFLECTIVITY

Precipitation

Precipitation or objects more dense than water, such as the surface of the earth or solid structures, are detected by the weather radar. The weather radar does not detect clouds, thunderstorms, or turbulence directly. It detects precipitation associated with clouds, thunderstorms, and turbulence. The best radar signal reflectors are raindrops, wet snow, or wet hail. The larger the raindrop, the better the reflectivity. The size of the precipitation droplet is the most important factor in radar reflectivity. Because large drops in a small concentrated area are characteristic of a severe thunderstorm, the radar displays the storm as a strong return. Ice crystals, dry snow, and dry hail have low levels of reflectivity as shown in the illustration, and are often not displayed by the radar. Additionally, a cloud that contains only small raindrops, such as fog or drizzle, does not reflect enough radar energy to produce a measurable target return.

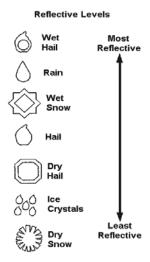


Figure 6-97 Precipitation Type and Reflectivity

GROUND RETURNS

The intensity of ground target returns depends upon the angle at which the radar beam strikes the ground target (Angle of Incidence) and the reflective properties of that target. The gain can be adjusted so shorelines, rivers, lakes, and cities are well-defined. Increasing the gain too much causes the display to fill in between targets, thus obscuring some landmarks.

Cities normally provide a strong return signal. While large buildings and structures provide good returns, small buildings can be shadowed from the radar beam by the taller buildings. As the aircraft approaches and shorter ranges are selected, details become more noticeable as the highly reflective regular lines and edges of the city become more defined.

Bodies of water such as lakes, rivers, and oceans are not good reflectors and normally do not provide good returns. The energy is reflected in a forward scatter angle with inadequate energy being returned. They can appear as dark areas on the display. However, rough or choppy water is a better reflector and provides stronger returns from the downwind sides of the waves.

Mountains also provide strong return signals to the antenna, but also block the areas behind. However, over mountainous terrain, the radar beam can be reflected back and forth in the mountain passes or off canyon walls, using up all or most of the radar energy. In this case, no return signal is received from this area, causing the display to show a dark spot which could indicate a pass where no pass exists.

Angle of Incidence

The angle at which the radar beam strikes the target is called the Angle of Incidence. The figure illustrates the incident angle ('A'). This directly affects the detectable range, the area of illumination, and the intensity of the displayed target returns. A large incident angle gives the radar system a smaller detectable range and lower display intensity due to minimized reflection of the radar energy.

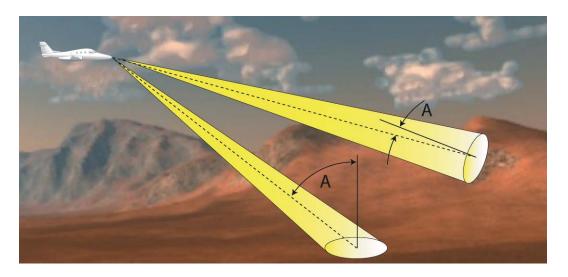


Figure 6-98 Angle of Incidence

A smaller incident angle gives the radar a larger detectable range of operation and the target display shows a higher intensity. Since more radar energy is reflected back to the antenna with a low incident angle, the resulting detectable range is increased for mountainous terrain.

SAFE OPERATING DISTANCE

The following information establishes a minimum safe distance from the antenna for personnel near operating weather radar. The minimum safe distance is based on the FCC's exposure limit at 9.3 to 9.5 GHz for general population/uncontrolled environments, which is 1 mW/cm2. See Advisory Circular 20-68B for more information on safe distance determination.

MAXIMUM PERMISSIBLE EXPOSURE LEVEL (MPEL)

The zone in which the radiation level exceeds the US Government standard of 1 mW/cm2 is the semicircular area of at least 9.16 feet from the 10-inch antenna. All personnel must remain outside of this zone. With a scanning or rotating beam, the averaged power density at the MPEL boundary is significantly reduced.

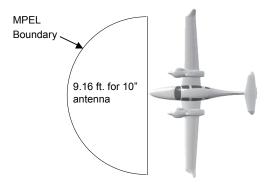


Figure 6-99 MPEL Boundary

BASIC ANTENNA TILT SETUP

The following discussion is a simple method for setting up the weather radar antenna tilt for most situations. It is not to be considered an all encompassing setup that works in all situations, but this method does provide good overall parameters for the monitoring of threats. Ultimately, it is desired to have the antenna tilted so the bottom of the radar beam is four degrees below parallel with the ground. The following example explains one way of achieving this.

With the aircraft flying level, adjust the antenna tilt so ground returns are displayed at a distance that equals the aircraft's current altitude (AGL) divided by 1,000. For example, if the aircraft is at 14,000 feet, adjust the tilt so the front edge of ground returns are displayed at 14 nautical miles. Note this antenna tilt angle setting. Now, raise the antenna tilt six degrees above this setting. The bottom of the radar beam is now angled down four degrees from parallel with the ground.

PRACTICAL APPLICATION USING THE BASIC TILT SETUP

With the antenna tilt set as previously described, any displayed target return should be scrutinized when flying at altitudes between 2,000 and 30,000 feet AGL. If the displayed target advances on the screen to within five nautical miles of the aircraft, avoid it. This may be either weather or ground returns that are 2,000 feet or less below the aircraft. Raising the antenna tilt four degrees can help separate ground returns from weather returns in relatively flat terrain. This aligns the bottom of the radar beam parallel with the ground. Return the antenna tilt to the previous setting after a few sweeps.

If the aircraft is above 29,000 feet, be cautious of any target return that gets to within 30 nautical miles. This is likely a thunderstorm that has a top high enough that the aircraft cannot fly over it safely.

If the aircraft altitude is 15,000 feet or lower, setting the displayed range to 60 miles may be more helpful. Closely monitor anything that enters the display.

Also, after setting up the antenna tilt angle as described previously, ground returns can be monitored for possible threats. The relationship between antenna tilt angle, altitude, and distance is one degree of tilt equals 100 feet of altitude for every one nautical mile.

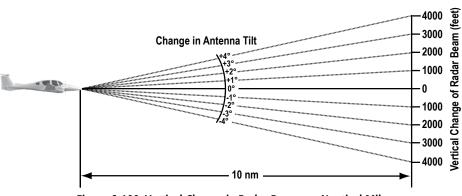


Figure 6-100 Vertical Change in Radar Beam per Nautical Mile

Therefore, with the antenna tilt set so that the bottom of the beam is four degrees below parallel with the ground, a target return at 10 nm is approximately 4,000 feet below the aircraft; at 20 nm, 8,000 feet; at 50 nm, 20,000 feet. In other words, at this tilt setting, a ground return (such as a mountain peak) being

displayed at 10 nm would have a maximum distance below the aircraft of 4,000 feet. A ground target return being displayed at five nm would have a maximum distance below the aircraft of 2,000 feet.

This setup provides a good starting point for practical use of the airborne weather radar. There are many other factors to consider in order to become proficient at using weather radar in all situations.

WEATHER MAPPING AND INTERPRETATION

WEATHER DISPLAY INTERPRETATION

When evaluating various target returns on the weather radar display, the colors denote precipitation intensity and rates shown in the table.

Weather Mode Color	Intensity	Approximate Precipitation Rate (in/hr.)
Black	< 23 dBZ	< .01.
Green	23 dBZ to < 32 dBZ	.01 - 0.1.
Yellow	32 dBZ to < 41 dBZ	0.1 - 0.5
Red	41 dBz and greater	0.5 and greater

Table 6-10 Precipitation Intensity Levels

A precipitation intensity scale appears on the Weather Radar Page (Figure 6-101). The colors shown on the scale correspond to the colors shown in Table 6-10.

NOTE: The system does not display magenta for precipitation, although magenta appears on the scale in Weather mode.

Figure 6-101 Precipitation Intensity Scale on the Weather Radar Page

THUNDERSTORMS

Updrafts and downdrafts in thunderstorms carry water through the cloud. The more severe the drafts, the greater the number and size of the precipitation droplets. With this in mind, the following interpretations can be made from what is displayed on the weather radar. Avoid these areas by an extra wide margin.

• In areas where the displayed target intensity is red (indicating large amounts of precipitation), the turbulence may be considered severe.

- Areas that show steep color gradients (intense color changes) over thin bands or short distances suggest irregular rainfall rate and strong turbulence.
- Areas that show red may be associated with hail or turbulence, as well as heavy precipitation. Vertical scanning and antenna tilt management may be necessary to identify areas of maximum intensity.

Along squall lines (multiple cells or clusters of cells in a line) individual cells may be in different stages of development. Areas between closely spaced, intense targets may contain developing clouds not having enough moisture to produce a return. However, these areas could have strong updrafts or downdrafts. Targets showing wide areas of green are generally precipitation without severe turbulence.

Irregularities in the target return may also indicate turbulence, appearing as hooks, fingers, or scalloped edges. These irregularities may be present in green areas with no yellow, red, and should be treated as highly dangerous areas.

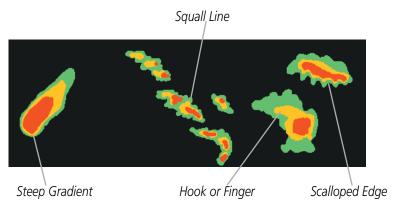


Figure 6-102 Cell Irregularities

Thunderstorm development is rapid. A course may become blocked within a short time. When displaying shorter ranges, periodically select a longer range to see if problems are developing further out. That can help prevent getting trapped in a blind alley or an area that is closed at one end by convective weather.

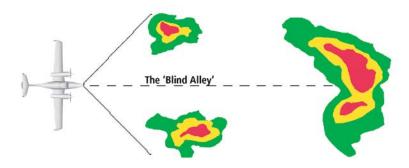



Figure 6-103 The Blind Alley - Horizontal Scan

In areas of multiple heavy cells, use the Vertical Scan feature along with antenna tilt management to examine the areas. Remember to avoid shadowed areas behind targets.

The Blind Alley at Close Range

The Large Storm Behind

Figure 6-104 The Blind Alley

TORNADOES

There are no conclusive radar target return characteristics which identify a tornado. However, tornadoes may be present if the following characteristics are observed:

- A narrow, finger-like portion extends and in a short time curls into a hook and closes on itself.
- A hook, which may be in the general shape of the numeral 6 (9 in the southern hemisphere), especially if bright and projecting from the southwest quadrant (northeast quadrant in the southern hemisphere) of a major thunderstorm.
- V-shaped notches.
- Doughnut shapes.

These shapes do not always indicate tornadoes, and tornado returns are not limited to these characteristics. Confirmed radar observations of tornadoes most often have not shown shapes different from those of a normal thunderstorm display.

HAIL

Hail results from updrafts carrying water high enough to freeze. Therefore, the higher the top of a thunderstorm, the greater the probability that it contains hail. Vertically scanning the target return can give the radar top of a thunderstorm that contains hail. Radar top is the top of a storm cell as detected by radar. It is not the actual top, or true top of the storm. The actual top of a storm cell is seen with the eyes in clear air and may be much higher than the radar top. The actual top does not indicate the top of the hazardous area.

Hail can fall below the minimum reflectivity threshold for radar detection. It can have a film of water on its surface, making its reflective characteristics similar to a very large water droplet. Because of this film of water, and because hail stones usually are larger than water droplets, thunderstorms with large amounts of wet hail return stronger signals than those with rain. Some hail shafts are extremely narrow (100 yards or less) and make poor radar targets. In the upper regions of a cell where ice particles are dry (no liquid coating), target returns are less intense.

Hail shafts are associated with the same radar target return characteristics as tornados. U-shaped cloud edges three to seven miles across can also indicate hail. These target returns appear quite suddenly along any edge of the cell outline. They also change in intensity and shape in a matter of seconds, making vigilant monitoring essential.

OPERATION IN WEATHER MODE

WARNING: Begin transmitting only when it is safe to do so. When transmitting while the aircraft is on the ground, no personnel or objects should be within 9.16 feet of the antenna.

CAUTION: In Standby mode, the antenna is parked at the center line. It is always a good idea to put the radar in Standby mode before taxiing the aircraft to prevent the antenna from bouncing on the bottom stop and possibly causing damage to the radar assembly.

When the weather radar system is in the Weather or Ground Map mode, the system automatically switches to Standby mode on landing.

In Reversionary mode, the weather radar system automatically switches to Standby mode. The system remains in Standby mode until both displays are restored. In Reversionary mode, the weather radar system cannot be controlled.

Figure 6-105 Horizontal Scan Display

APPENDICES

Displaying weather on the Weather Radar Page:

- 1) Select the Weather Radar Page in the Map Page Group with the FMS Knob.
- 2) Press the MODE Softkey.
- 3) While on the ground, press the **STANDBY** Softkey, and the radar enters the Standby Mode.
 - a) Press the **WEATHER** Softkey. A confirmation window is displayed.

Figure 6-106 Confirming Activating Radar

b) Turn the small **FMS** Knob to highlight **YES** and press the **ENT** Key to continue radar activation.

Or:

If the aircraft is airborne, press the **WEATHER** Softkey. The radar begins transmitting.

- **4)** Turn the **Joystick** to select the desired map range.
- **5)** The horizontal scan is initially displayed (Figure 6-107). If desired, press the **VERTICAL** Softkey to change to vertical scanning.

Vertically scanning a storm cell:

NOTE: Vertical scanning of a storm cell should be done with the aircraft wings level to avoid constant adjustment of the Bearing Line.

- 1) While in the Horizontal Scan view, press the **BRG** Softkey. This places the cursor in the BEARING field and displays the Bearing Line.
 - If the Bearing Line is not displayed, press the **MENU** Key and turn the large **FMS** Knob to select Show Bearing Line. Press the **ENT** Key.
- **2)** Press the **ENT** Key.
- 3) Turn the small **FMS** Knob to place the Bearing Line on the desired storm cell or other area to be vertically scanned.

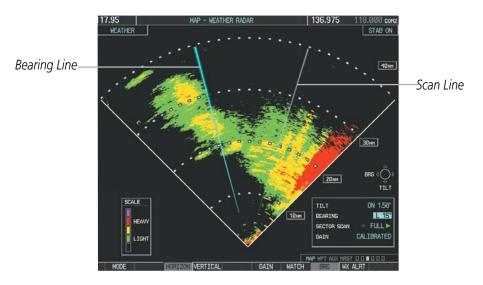


Figure 6-107 Bearing Line on Horizontal Scan

- 4) Press the **VERTICAL** Softkey. A vertical scan of the selected area is displayed (Figure 6-108).
- 5) The small **FMS** Knob may be used to move the scanned bearing line a few degrees right or left.
- **6)** Turn the **Joystick** to adjust the range.
- 7) Press the **FMS** Knob to remove the cursor.
- **8)** To select a new area to be vertically scanned, press the **HORIZON** Softkey to return to the Horizontal Scan view and repeat the previous steps.

The **Joystick** can also be used to adjust bearing from left to right.



Figure 6-108 Vertical Scan Display

ADJUSTING ANTENNA TILT ANGLE

GARMIN

In order to make an accurate interpretation of a storm cell, the radar beam should be pointed at the wet part of the weather cell to record the proper rainfall intensity (color level). The ideal aiming point is just below the freezing level of the storm. The best way to find this point is to use the Vertical Scan feature. The antenna tilt angle can be centered on the strongest return area in the vertical scan to get a more accurate view of the coverage and intensity of the target in the horizontal scan.

Adjusting antenna tilt on the Horizontal Scan display:

- 1) Press the **FMS** Knob to activate the cursor in the TILT field.
- 2) Turn the small **FMS** Knob to select the desired antenna tilt angle.
- 3) Press the ENT Key.
- 4) Press the **FMS** Knob to remove the cursor.

The **Joystick** can also be used to adjust tilt up and down.

APPENDICES

Adjusting antenna tilt on the Vertical Scan display:

- 1) Press the TILT Softkey to activate the cursor in the TILT field and display the Tilt Line.
 If the Tilt Line is not displayed, press the MENU Key and turn the large FMS Knob to select Show Tilt Line. Press the ENT Key.
- 2) Turn the small **FMS** Knob to adjust the antenna tilt angle. The selected tilt angle is implemented when Horizontal Scan is selected again.

The **Joystick** can also be used to adjust tilt.

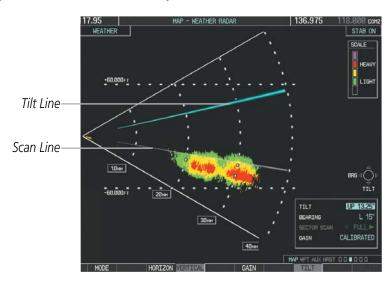
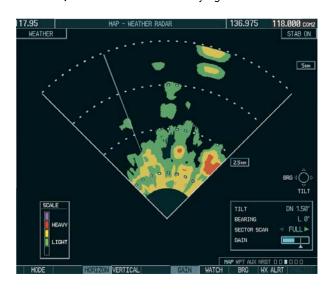
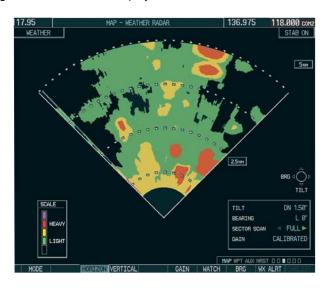


Figure 6-109 Adjusting Tilt on Vertical Scan Display


GARMIN


Adjusting Gain

WARNING: Changing the gain in weather mode causes precipitation intensity to be displayed as a color not representative of the true intensity. Remember to return the gain setting to Calibrated for viewing the actual intensity of precipitation.

- 1) Press the **GAIN** Softkey to activate the cursor in the GAIN field.
- 2) Turn the small **FMS** Knob to adjust the gain for the desirable level. The gain setting is visible in the GAIN field as a movable horizontal bar in a flashing box. The line pointer is a reference depicting the calibrated position.
- **3)** Press the **FMS** Knob to remove the cursor.
- 4) Press the **GAIN** Softkey again to recalibrate the gain. CALIBRATED is displayed in the GAIN field.

Manual Gain Set Below Calibrated

Calibrated Gain

Figure 6-110 Gain Calibration

SECTOR SCAN

- 1) While in horizontal scan mode, press the **BRG** Softkey to display the Bearing Line and place the cursor in the BEARING field. If the Bearing Line is not displayed, press the **MENU** Key and turn the large **FMS** Knob to select Show Bearing Line.
- 2) Press the ENT Key.

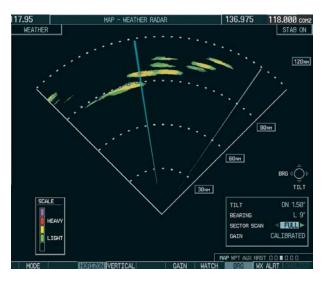


Figure 6-111 Selecting Sector Scan Position

- 3) Turn the small **FMS** Knob to place the Bearing Line in the desired position. The location of the Bearing Line becomes the center point of the Sector Scan.
- **4)** Turn the large **FMS** Knob to place the cursor in the SECTOR SCAN field.
- **5)** Turn the small **FMS** Knob to select FULL, 60°, 40°, or 20° scan.
- **6)** If desired, readjust the Bearing Line as discussed previously to change the center of the Sector Scan.
- 7) Press the **BRG** Softkey again to remove the Bearing Line and cursor. The bearing reference is reset to 0°.

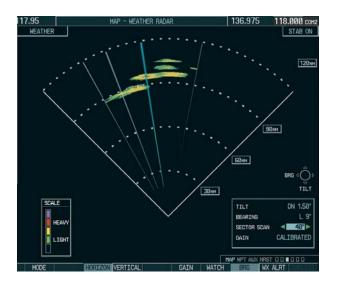


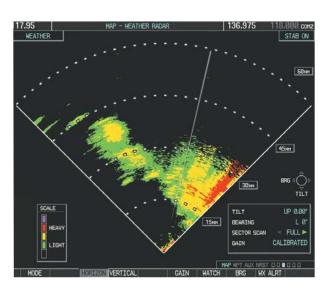
Figure 6-112 40° Sector Scan

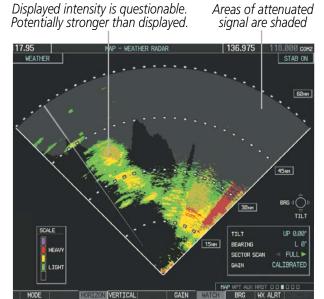
ANTENNA STABILIZATION

When radar stabilization is enabled, the radar tilt is corrected for pitch and roll, and therefore is kept steady with respect to an earth-fixed reference. The commanded tilt angle is kept constant with respect to the earth. When the stabilization is disabled, corrections are no longer made for pitch and roll, and the radar tilt angle is kept constant with respect to the aircraft reference system.

Enabling/disabling antenna stabilization:

- 1) To enable or disable the antenna stabilization, press the MODE Softkey.
- 2) Press the **STAB ON** Softkey to activate antenna stabilization or press the **STAB OFF** Softkey to deactivate. The current stabilization condition is shown in the upper right of the weather radar display.


WATCH® (Weather Attenuated Color Highlight)


WATCH® identifies deceptively strong or unknown intensity parts of a storm. While in horizontal scan mode, this feature can be used as a tool to determine areas of possible inaccuracies in displayed intensity due to weakening of the radar energy. This weakening is known as attenuation. The radar energy weakens as it passes through areas of intense precipitation, large areas of lesser precipitation, and distance. Issues with the radome attenuates the radar energy. All these factors have an effect on the return intensity. The more energy that dissipates, the lesser the displayed intensity of the return. Accuracy of the displayed intensity of returns located in the shaded areas are suspect. Make maneuvering decisions with this information in mind. Proper antenna tilt management should still be employed to determine the extent of attenuation in a shaded area.

To activate or deactivate the WATCH® feature, press the **WATCH** Softkey.

ADDITIONAL FEATURES

Horizontal Scan Without WATCH®

Horizontal Scan With WATCH®

Figure 6-113 Horizontal Scan Without and With WATCH®

WEATHER ALERT

The Weather Alert feature indicates the presence of heavy precipitation between the ranges of 80 and 320 nm regardless of the currently displayed range. Weather Alert targets appear as red target bands along the outer range ring at the approximate azimuth of the detected returns.

If a Weather Alert is detected within ±10° of the aircraft heading, an alert is displayed on the PFD in the Alerts Window.

If the antenna tilt is adjusted too low, a weather alert can be generated by ground returns. To avoid unwanted weather alerts, deselect the **WX ALRT** Softkey..

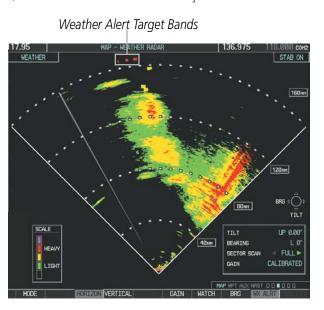


Figure 6-114 Weather Alert Indications

To activate or deactivate Weather Alerts, press the **WX ALRT** Softkey. Activating and deactivating enables or inhibits the alert on the PFD, and does not affect the display of the red weather alert target bands shown on the Weather Radar Page.

Figure 6-115 Weather Alert on PFD

GROUND MAPPING AND INTERPRETATION

A secondary use of the weather radar system is for the presentation of terrain. This can be a useful tool for verifying aircraft position. A picture of the ground is represented much like a topographical map that can be used as a supplement to the navigation map on the MFD.

Ground Map mode uses a different gain range than Weather mode. Different colors are also used to represent the intensity levels. The displayed intensity of ground target returns are defined in the table below. Use of the **GAIN** and **TILT** controls help improve contrast so that specific ground targets can be recognized more easily. As previously discussed, the type and orientation of the target in relation to the aircraft affects the intensity displayed.

When the weather radar system is in either the Weather or Ground Map mode, the system automatically switches to Standby mode upon landing.

Ground Map Mode Color	Intensity	
Black	0 dB	
Light blue	> 0 dB to < 9 dB	
Yellow	9 dB to < 18 dB	
Magenta	18 dB to < 27 dB	
Blue	27 dB and greater	

Table 6-11 Ground Target Return Intensity Levels

Operation in Ground Map Mode

- 1) Press the **MODE** Softkey.
- 2) Press the **GROUND** Softkey to place the radar in Ground Map mode.
- **3)** Press the **BACK** Softkey.
- **4)** Press the **FMS** Knob to activate the cursor.
- 5) Turn the large **FMS** Knob to place the cursor in the TILT field.
- **6)** Adjust the antenna tilt angle by turning the small **FMS** Knob to display ground returns at the desired distance.
- 7) Press the **FMS** Knob to remove the cursor.

WEATHER RADAR OVERLAY ON THE NAVIGATION MAP PAGE

The Map - Weather Radar Page is the principal map page for viewing airborne weather radar information. Weather radar information may also be shown as an overlay on the Navigation Map Page on the MFD as an additional reference.

When the airborne weather radar overlay is enabled, a weather radar information box appears in the upperright corner of the Navigation Map Page. It indicates the selected weather mode, radar bearing, and antenna tilt angle. The overlay is capable of showing radar information while the radar is in horizontal scan mode. If the radar is operating in vertical scan mode while the overlay is enabled, the system indicates 'N/A' in the information box to indicate the airborne weather radar overlay is not available until the horizontal scan mode is selected on the Weather Radar Page.

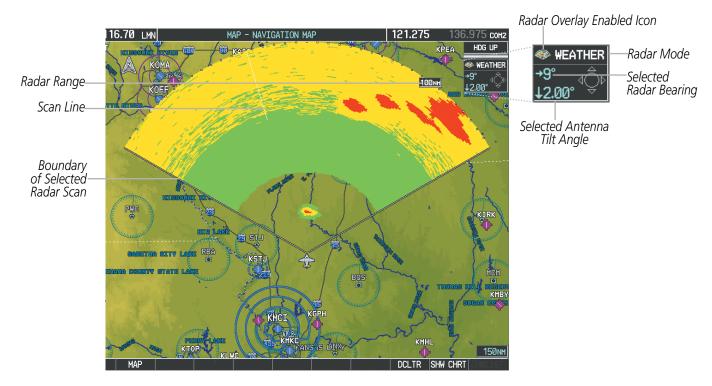


Figure 6-116 Airborne Weather Radar Overlay on the Navigation Map Page

Enabling/Disabling Airborne Weather Radar Overlay on the Navigation Map Page:

- 1) Select the Navigation Map Page.
- 2) Press the MAP Softkey.
- 3) Press the WX RADAR Softkey.

Or:

- **1)** On the Navigation Map Page, press the **MENU** Key.
- 2) With 'Map Setup' highlighted, press the ENT Key.
- 3) Turn the small **FMS** Knob to select the 'Weather' group, then press the **ENT** Key.
- 4) Turn the large **FMS** Knob to scroll through the product selections and highlight the WX RADAR overlay selection ('On' or 'Off'). Turn the small **FMS** knob to highlight the desired selection.
- **5)** To remove the menu, press the **FMS** Knob or **CLR** Key.

Weather radar controls on the Navigation Map Page are limited to adjustment of the radar range, bearing, and antenna tilt angle. The airborne weather radar overlay is viewable at Navigation Map Ranges between five and 800 nautical miles (ten to 1,500 kilometers). At map ranges beyond these limits, the system removes the weather radar information from the map. Adjusting the range on the Navigation Map Page simultaneously adjusts the range of the weather radar proportionally. This radar range is annunciated on the range arc that appears when the overlay is enabled and a radar scan is active. When the radar range is adjusted on the Navigation Map Page, system synchronizes the same range to the Weather Radar Page.

The radar bearing is adjustable in one degree increments on the Navigation Map Page by pushing the **Joystick** left or right when the overlay is enabled. A left or right arrow next to the bearing readout indicates the direction of the selected bearing. The cyan radar bearing line is only viewable on the Weather Radar Page. While the bearing line is not shown on the Navigation Map Page, adjusting the bearing on the Navigation Map Page while Sector Scan is enabled centers the radar scan on the selected bearing, and the radar scan boundaries adjust accordingly on the Navigation Map Page.

Radar antenna tilt angle is adjustable in 0.25 degree increments on the Navigation Map Page. Push the **Joystick** up to adjust the antenna tilt angle downward. Push the **Joystick** down to adjust the antenna tilt angle upward. An up or down arrow next to the antenna tilt angle setting indicates the direction of the antenna tilt angle.

The weather radar overlay uses the same colors as those shown on the Weather Radar Page to indicate the intensity of radar returns. However, the display of gray WATCH radar attenuation and red weather alert target bands is exclusive to the Weather Radar Page. Because terrain information uses similar colors, enabling the airborne weather radar overlay on the Navigation Map Page disables the display of terrain information for this page.

SYSTEM STATUS

The radar mode is annunciated in the upper left corner of the Weather Radar Page. Additional information may be displayed in the center of the Weather Radar Page as a banner annunciation.

Radar Mode	Radar Mode Annunciation Box†	Center Banner Annunciation
Standby	STANDBY	STANDBY
Weather	WEATHER	None
Ground Mapping	GROUND MAPPING	None
Off	OFF	OFF
Radar Failed*	FAIL	RADAR FAIL

[†] Annunciations in this column appear in white text in the Weather Radar Mode box on the Navigation Map Page.

Table 6-12 Radar Modes on the Weather Radar Page

^{*} See Table 6-14 for additional failure annunciations

APPENDICES

The system displays the status of the radar antenna stabilization feature in the upper right corner of the Weather Radar Page.

Radar Antenna Stabilization Status	Description	
STAB ON	Antenna stabilization is selected on.	
STAB OFF	Antenna stabilization is selected off.	
STAB INOP	The radar is not receiving pitch and roll information. The antenna stabilization feature is inoperative.	

Table 6-13 Antenna Stabilization Annunciations on the Weather Radar Page

If the unit fails, an annunciation as to the cause of the failure is shown as a banner in the center of the Weather Radar Page.

Weather Radar Page Center Banner Annunciation	Description
BAD CONFIG	The radar configuration is invalid. The radar should be serviced.
RDR FAULT	The radar unit is reporting a fault. The radar should be serviced.
RADAR FAIL	The system is not receiving valid data from the radar unit. The system should be serviced.

Table 6-14 Abnormal Radar Status Annunciations on the Weather Radar Page

6.4 LIGHTNING DETECTION SYSTEM

WARNING: Do not rely on information from the lightning detection system display as the sole basis for hazardous weather avoidance. Range limitations and interference may cause the system to display inaccurate or incomplete information. Refer to documentation from the lightning detection system manufacturer for detailed information about the system.

NOTE: Information from the on-board lightning detection system cannot be displayed simultaneously on the same navigation map as lightning information from data link weather lightning sources.

The following pages can display information from the optional on-board lightning detection system.

- Stormscope Page
- Navigation Map
- AUX Trip Planning Page

- AUX Video Page
- Nearest Pages

The Map - Stormscope Page is the principal page for viewing lightning detection system information. Lightning information can be displayed on navigation maps for additional reference. To display lightning detection information on the Navigation Map, AUX - Trip Planning Page, or any of the Nearest Pages, press the MAP Softkey, then press the STRMSCP Softkey. These pages can also display cell or strike data using the yellow lightning strike symbology shown in Table 6-15.

Lightning Age	Symbol
Strike is less than 6 seconds old	4
Strike is between 6 and 60 seconds old	47
Strike is between 1 and 2 minutes old	4
Strike is between 2 and 3 minutes old	ф

Table 6-15 Lightning Age and Symbols

SETTING UP LIGHTNING DETECTION INFORMATION ON THE NAVIGATION MAP

Setting up Stormscope options on the Navigation Map:

- 1) On the Navigation Map Page, press the **MENU** Key.
- 2) With 'Map Setup' selected (Figure 6-117), press the **ENT** Key.
- 3) Turn the small **FMS** Knob to display the group selection window. Turn the small **FMS** Knob to select 'Weather', and press the **ENT** Key.
- **4)** Turn the large **FMS** Knob to highlight and move between the product selections (Figure 6-118).
- **5)** When an item is highlighted, turn the small **FMS** Knob to select the option.
- **6)** Press the **ENT** Key.
- 7) Press the **FMS** Knob to return to the Navigation Map Page (Figure 6-119).

APPENDICES

The following options are available (Figure 6-117):

- **STRMSCP LTNG** Enables/disables the display of lightning information.
- **STRMSCP MODE** Selects the Cell or Strike mode of lightning activity. Cell mode identifies clusters or cells of electrical activity. Strike mode indicates the approximate location of lightning strikes.
- **STRMSCP SMBL** Selects the maximum map range to display lightning symbols. The system removes the lightning information when a map range greater than the STRMSCP SMBL value is selected.

Figure 6-117 Navigation Map Page Menu

Figure 6-118 Map Setup Menu

CELL AND STRIKE MODE ON THE NAVIGATION MAP

On the Navigation Map Page, cell mode identifies cells of lightning activity (Figure 6-119). The lightning detection system identifies clusters of electrical activity that indicate cells. Strike mode indicates the approximate location of lightning strikes.

Selecting the 'cell' or 'strike' mode on the Navigation Map:

- 1) Press the **MENU** Key.
- 2) With 'Map Setup' selected, press the ENT Key.
- 3) Select the 'Weather' group.
- **4)** Press the **ENT** Key. The cursor flashes on 'STRMSCP LTNG'.
- 5) Turn the large FMS Knob to select 'STRMSCP MODE'.
- **6)** Turn the small **FMS** Knob to change between 'CELL' and 'STRIKE' options. When an item is selected, press the **ENT** Key.
- 7) Press the FMS knob to return to the Navigation Map Page.

Figure 6-119 Navigation Map Page with Stormscope Lightning Data

If heading input is lost, strikes and/or cells must be cleared manually after the execution of each turn. This is to ensure that the strike and/or cell positions are depicted accurately in relation to the nose of the aircraft.

Manually clearing lightning symbols on the Navigation Map:

- 1) Press the **MENU** Key.
- 2) Select 'Clear Stormscope® Lightning' (Figure 6-120).
- 3) Press the ENT Key.

Figure 6-120 Navigation Map Page Options Menu

ZOOM RANGE ON THE NAVIGATION MAP

Lightning detection system information can be displayed up to 800 nm zoom range (in North up mode) on the Navigation Map Page. However, in the track up mode at the 500 nm range, a portion of the lightning data can be behind the aircraft and therefore not visible on the Navigation Map. Since the range for the lightning detection system is 400 nm diameter total (200 nm in front and 200 nm behind), the 500 nm range in North up mode shows all the data.

At a map range of less than 25 nm, lightning symbols do not appear on the maps, even if lightning is detected. The presence of lightning information is indicated by the annunciation 'LTNG < 25 nm' in the upper right corner of the Navigation Map Page (Figure 6-121).

Figure 6-121 Lightning Display Range Annunciation

Selecting a Stormscope range on the Navigation Map:

- Press the MENU Key.
- 2) Select 'MAP SETUP'.
- **3)** Select the 'Weather' group.
- **4)** Press the **ENT** Key.
- **5)** Turn the large **FMS** Knob to select 'STRMSCP SMBL'.
- **6)** Turn the small **FMS** Knob to select the maximum display range.
- **7)** Press the **ENT** Key.
- 8) Press the FMS Knob to return to the Navigation Map Page.

To change the display range on the Navigation Map Page, turn the **Joystick** clockwise to increase the map range or counter-clockwise to decrease the map range.

SELECTING THE STORMSCOPE PAGE

Lightning data can be displayed at the ranges of 25 nm, 50 nm, 100 nm, and 200 nm on the Stormscope Page.

Adjusting the Stormscope Map Range:

- 1) Turn the large **FMS** Knob to select the Map Page Group.
- **2)** Turn the small **FMS** Knob to select the Stormscope Page (Figure 6-122).
- **3)** To change the map range, turn the **Joystick** clockwise to increase the map range, or counter-clockwise to decrease the map range.

Figure 6-122 Stormscope Page

Changing between 'cell' and 'strike' mode on the Stormscope Page:

- **1)** Select the Stormscope Page.
- 2) Press the MODE Softkey. The CELL and STRIKE softkeys are displayed.
- 3) Press the **CELL** Softkey to display 'CELL' data or press the **STRIKE** Softkey to display 'STRIKE' data. 'CELL' or 'STRIKE' is displayed in the mode box in the upper left corner of the Stormscope Page.
- **4)** Press the **BACK** Softkey to return to the main Stormscope page.

Changing the viewing mode between 360° and 120° on the Stormscope Page:

- 1) Select the Stormscope Page.
- 2) Press the VIEW Softkey. The **360** and **ARC** softkeys are displayed. Press the **360** Softkey to display a 360° viewing area or press the **ARC** Softkey to display a 120° viewing area.
- **3)** Press the **BACK** Softkey to return to the Stormscope page.

6.5 TERRAIN PROXIMITY

WARNING: Do not use Terrain Proximity information for primary terrain avoidance. Terrain Proximity is intended only to enhance situational awareness.

NOTE: Terrain data is not displayed when the aircraft is outside of the installed terrain database coverage area.

G1000 Terrain Proximity is a terrain awareness system that does not comply with TSO-C151b certification standards. It increases situational awareness and aids in reducing controlled flight into terrain (CFIT). Do not confuse Terrain Proximity with a Terrain Awareness and Warning System (TAWS). TAWS is more sophisticated and robust, and it is TSO-C151b certified. Terrain Proximity does not provide warning annunciations or voice alerts. It only provides color indications on map displays when terrain and obstacles are within a certain altitude threshold from the aircraft. Although the terrain and obstacle color map displays are the same, TAWS uses more sophisticated algorithms to assess aircraft distance from terrain and obstacles.

Terrain Proximity requires the following components to operate properly:

- Valid 3-D GPS position
- Valid terrain/obstacle database

Terrain Proximity displays altitudes of terrain and obstructions relative to the aircraft position and altitude with reference to a database that may contain inaccuracies. Terrain and obstructions are shown only if they are in the database. Terrain and obstacle information should be used as an aid to situational awareness. They should never be used to navigate or maneuver around terrain.

Note that all obstructions may not be available in the terrain and obstacle database. No terrain and obstacle information is shown without a valid 3-D GPS position.

The G1000 GPS receiver provides the horizontal position and altitude. GPS altitude is derived from satellite position. GPS altitude is then converted to the height above geodetic sea level (GSL), which is the height above mean sea level calculated geometrically. GSL altitude is used to determine terrain and obstacle proximity. GSL altitude accuracy is affected by satellite geometry, but is not subject to variations in pressure and temperature that normally affect pressure altitude sensors. GSL altitude does not require local altimeter settings to determine MSL altitude. It is a widely-used MSL altitude source.

Terrain and obstacle databases are referenced to MSL. Using the GPS position and altitude, the Terrain Proximity feature portrays a 2-D picture of the surrounding terrain and obstacles relative to the position and altitude of the aircraft. GPS position and GSL altitude are used to calculate and predict the aircraft's flight path in relation to the surrounding terrain and obstacles. In this way, the pilot can view predicted dangerous terrain and obstacle conditions.

DISPLAYING TERRAIN PROXIMITY DATA

The Map - Terrain Proximity Page is the principal page for viewing terrain and obstacle information. The symbols and colors in the figure and table below are used to represent obstacles and aircraft altitude when the

Terrain Proximity Page is selected for display. Terrain Proximity uses black, yellow, and red to represent terrain information relative to aircraft altitude. The color of each obstacle is associated with the altitude of the aircraft.

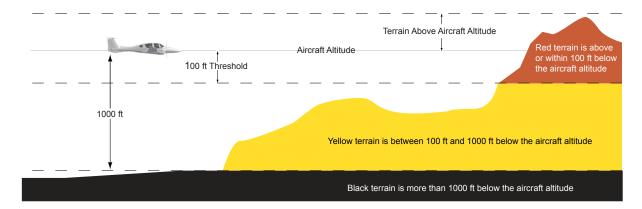


Figure 6-123 Terrain Altitude/Color Correlation for Terrain Proximity

Unlighted Obstacle		Lighted Obstacle		Obstacle Location	
< 1000' AGL	> 1000' AGL	< 1000' AGL	> 1000' AGL	Obstacle Location	
.		*	*	Red obstacle is above or within 100 ft below the aircraft altitude	
A		**	**	Yellow obstacle is between 100 ft and 1000 ft below the aircraft altitude	

Table 6-16 Terrain Proximity Terrain/Obstacle Colors and Symbology

Terrain and obstacle information can be displayed on the following pages:

- PFD Inset Map
- Navigation Map Page
- Terrain Proximity Page

- Trip Planning Page
- Flight Plan Page
- AUX Video Page

Displaying terrain and obstacle information (maps other than the Terrain Proximity Page):

- 1) Press the MAP Softkey (for the PFD Inset Map, press the INSET Softkey).
- 2) Press the **TERRAIN** Softkey to display terrain and obstacle data.

When Terrain Proximity is selected on maps other than the Terrain Proximity Page, an icon to indicate the feature is enabled for display and a legend for Terrain Proximity colors are shown (Figure 6-127).

The Navigation Map Page Setup Menu provides a means in addition to the softkey for enabling/disabling display of terrain and obstacles. The setup menu also controls the map range settings above which terrain and obstacle data are decluttered from the display. If a map range larger than the map range setting is selected, the data is removed from the map.

Terrain data can be selected for display independently of obstacle data; however, obstacles recognized by Terrain Proximity as yellow or red are shown when terrain is selected for display and the map range is within the setting limit.

Maps besides the Terrain Proximity Page use settings based on those selected for the Navigation Map Page. The maximum display ranges for obstacles on each map are dependent on the range setting made for the Navigation Map. If the maximum range for obstacle display on the Navigation Map is adjusted to below 20 nm, the highest obstacle display range settings on the other applicable maps are also adjusted proportionally.

Customizing terrain and obstacle display on the Navigation Map Page:

- 1) Select the Navigation Map Page.
- **2)** Press the **MENU** Key.
- 3) With 'Map Setup' highlighted, press the **ENT** Key (Figure 6-124).
- **4)** Turn the small **FMS** Knob to select the 'Map' Group and press the **ENT** Key (Figure 6-125).
- **5)** Turn the large **FMS** Knob or press the **ENT** Key to scroll through product selections (Figure 6-126).
 - TERRAIN DATA Turns the display of terrain data on or off and sets maximum range at which terrain is shown
 - OBSTACLE DATA Turns the display of obstacle data on or off and sets maximum range at which obstacles are shown
- **6)** Turn the small **FMS** Knob to scroll through options for each product (ON/OFF, range settings).
- **7)** Press the **ENT** Key to select an option.
- 8) Press the **FMS** Knob or **CLR** Key to return to the Navigation Map Page with the changed settings.

Figure 6-124 Navigation Map Page Menu

Figure 6-125 Navigation Map Page Setup Menu

Figure 6-126 Navigation Map Page Setup Menu, Map Group

Additional information about obstacles can be displayed by panning over the display on the map. The map panning feature is enabled by pressing the **Joystick**. The map range is adjusted by turning the **Joystick**. If the map range is adjusted while panning is enabled, the map is re-centered on the Map Pointer.

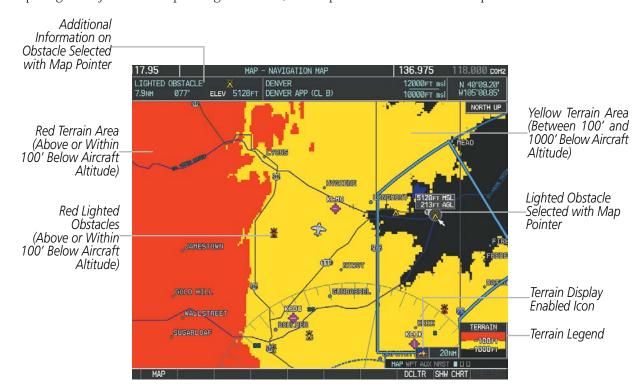


Figure 6-127 Terrain Information on the Navigation Map Page

TERRAIN PROXIMITY PAGE

The Terrain Proximity Page is specialized to show terrain and obstacle data in relation to the aircraft's current altitude, without clutter from the basemap. Aviation data (airports, VORs, and other NAVAIDs) can be displayed for reference.

Aircraft orientation on this map is always heading up unless there is no valid heading. Two views are available relative to the position of the aircraft: the 360° default display and the radar-like ARC (120°) display. Map range is adjustable with the **Joystick** from 1 to 200 nm, as indicated by the map range rings (or arcs).

Displaying the Terrain Proximity Page:

- 1) Turn the large FMS Knob to select the Map Page Group.
- **2)** Turn the small **FMS** Knob to select the Terrain Proximity Page.
- 3) To change the view,
 - a) Press the VIEW Softkey.
 - **b)** Press the **360** or **ARC** Softkey to select the desired view.

Or:

- **a)** Press the **MENU** Key.
- **b)** Select 'View Arc' or 'View 360°' (choice dependent on current state) and press the **ENT** Key to change the view.

Showing/hiding aviation information on the Terrain Proximity Page:

- 1) Press the **MENU** Key.
- 2) Select 'Show Aviation Data' or 'Hide Aviation Data' (choice dependent on current state) and press the **ENT** Key.

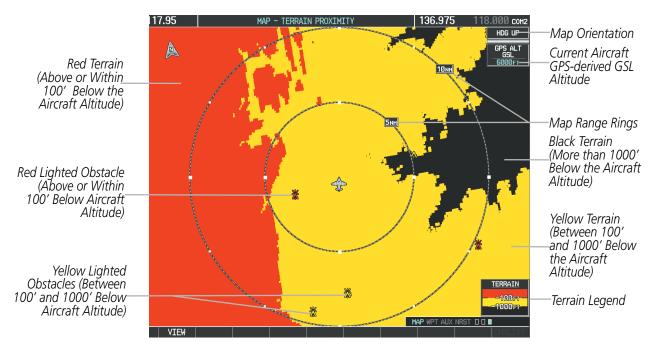


Figure 6-128 Terrain Proximity Page

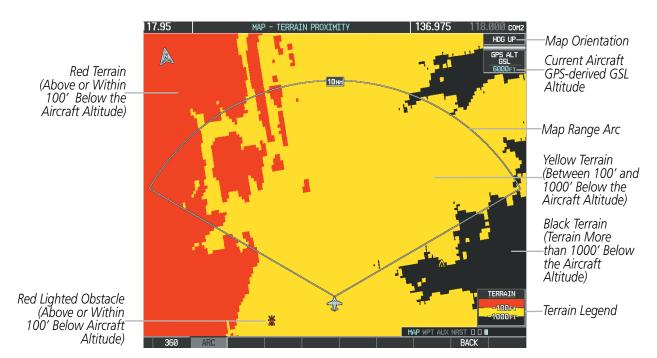


Figure 6-129 Terrain Proximity Page (ARC View)

6.6 PROFILE VIEW TERRAIN

WARNING: Do not use Profile View Terrain data for primary terrain avoidance. Profile View Terrain is intended only to enhance situational awareness.

NOTE: Terrain data is not displayed when the aircraft is outside of the installed terrain database coverage area.

The G1000 offers a Profile View of terrain and obstacles relative to the aircraft's current flight path and altitude on the Navigation Map Page of the MFD. Profile View does not provide terrain or obstacle caution or warning annunciations or voice alerts, nor does it display potential impact points inside the Profile View. The colors and symbols in Figure 6-130 and Table 6-17 are used to represent terrain and obstacles.

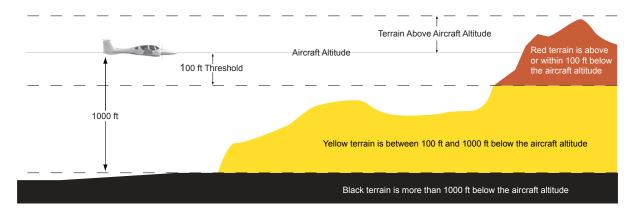


Figure 6-130 Terrain Altitude/Color Correlation for Profile View Terrain

Unlighted Obstacle		Lighted Obstacle		Obstacle Location	
< 1000' AGL	> 1000' AGL	< 1000' AGL	> 1000' AGL	Obstacle Location	
.		*	*	Red obstacle is above or within 100 ft below the aircraft altitude	
A		**	**	Yellow obstacle is between 100 ft and 1000 ft below the aircraft altitude	

Table 6-17 Profile View Terrain/Obstacle Colors and Symbology

Accessing Profile View:

- 1) Select the Navigation Map Page.
- **2)** Press the **MAP** Softkey.
- 3) Press the **PROFILE** Softkey to enable or disable Profile View.

Or:

384

- 1) Press the **MENU** Key.
- 2) Select 'Show Profile View' or 'Hide Profile View' (choice dependent on current state) and press the ENT Key.

Enabling/Disabling Profile View Terrain on the Navigation Map (when Profile View is enabled):

- 1) Select the Navigation Map Page.
- **2)** Press the **MAP** Softkey.
- **3)** Press the **TERRAIN** Softkey.

PROFILE VIEW DISPLAY

When the Profile View is enabled, it is displayed in a window below the Navigation Map. Altitude is shown along a vertical scale, with an aircraft icon positioned at the current altitude. Distance is represented horizontally along the bottom of the Profile View, and increases from left (present position) to right.

When the Navigation Map range is adjusted with the **Joystick**, the horizontal distance of the Profile View is adjusted proportionately to be 1/2 of the Navigation Map range distance down to 1 nm, at which point Profile View is no longer available ('PROFILE NOT AVAILABLE' is displayed). When Navigation Map range is adjusted to remove altitude-correlated colored terrain data (as shown in the Terrain Legend) or obstacles from the Navigation Map, these items are also removed from the Profile View; only an outline of the terrain will be displayed in black in the Profile View window. Refer to the Terrain Proximity or Terrain-SVS discussions for more information about displaying terrain or obstacles on the Navigation Map Page.

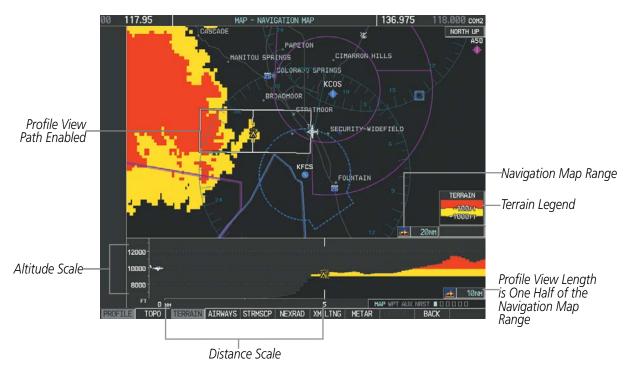


Figure 6-131 Profile View on Navigation Map with Terrain Display Enabled

Obstacles with heights greater than 200 feet AGL appear relative to aircraft altitude along the altitude scale. The top of the obstacle symbol on the scale represents the obstacle's height AGL. If the obstacle's height AGL

is higher than can be represented by the obstacle symbol itself (e.g. for unusually tall obstacles), a vertical line appears below the obstacle symbol in order to depict the top of the obstacle symbol at its height AGL, as shown in Figure 6-132.

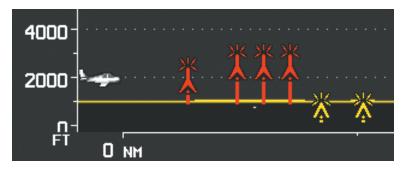


Figure 6-132 Profile View with Tall Obstacles

The Profile View is based on the current aircraft track (or heading if track is unavailable) and shows the *highest* known terrain or obstacles within a predetermined width from the present aircraft position to the end of the profile range. The width of the Profile View (Table 6-18) is determined by the phase of flight, as annunciated on the HSI. Refer to the Flight Instruments section for more information about flight phases.

Flight Phase	Total Profile View Width
Approach	0.6 nm
Departure	0.6 nm
Terminal	2.0 nm
Enroute	4.0 nm
Oceanic	4.0 nm

Table 6-18 Profile View Width Scale

PROFILE PATH

The Profile Path displays the horizontal and lateral boundaries of the Profile View. The path is shown as a white rectangle on the Navigation Map Page (Figure 6-131) and is only available when Profile View is enabled. White range markers both edges of the Profile Path rectangle match the range markers along the distance scale inside the Profile View display window whenever the profile range is at least 4 nm (or 7.5 km if configured for metric units).

The Profile Path rectangle may be configured on or off, and the Navigation Map range at which the Profile Path is removed from map display can be changed.

Customizing the Profile Path display on the Navigation Map Page:

- 1) Select the Navigation Map Page.
- **2)** Press the **MENU** Key.
- **3)** With 'Map Setup' highlighted, press the **ENT** Key (Figure 6-133).
- **4)** Turn the small **FMS** Knob to select the 'Profile' Group and press the **ENT** Key (Figure 6-134).
- **5)** Turn the large **FMS** Knob or press the **ENT** Key to scroll through product selections (Figure 6-135).
 - PROFILE PATH Turns the display of the Profile Path on or off and sets maximum map range at which the Profile Path is shown
- **6)** Turn the small **FMS** Knob to scroll through options (ON/OFF, range settings).
- **7)** Press the **ENT** Key to select an option.
- 8) Press the **FMS** Knob or **CLR** Key to return to the Navigation Map Page with the changed settings.

Figure 6-133 Navigation Map Page Menu

Figure 6-134 Navigation Map Page Setup Menu

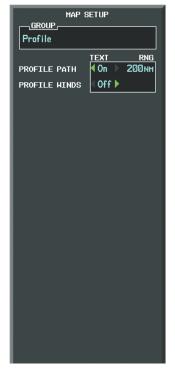


Figure 6-135 Navigation Map Page Setup Menu, Profile Group

6.7 TERRAIN-SVS

WARNING: Do not use Terrain-SVS information for primary terrain avoidance. Terrain-SVS is intended only to enhance situational awareness.

NOTE: Terrain data is not displayed when the aircraft is outside of the terrain database coverage area.

NOTE: Terrain-SVS is included with the SVS option. Terrain-SVS will take precedence over Terrain Proximity.

G1000 Terrain-SVS is a terrain awareness system available with the Synthetic Vision Technology System (SVT). Garmin SVT functionality is offered as an optional enhancement. Terrain-SVS is integrated within SVT to provide visual and auditory alerts to indicate the presence of threatening terrain relevant to the projected flight path. For detailed information regarding SVT, refer to the Additional Features section of the this pilot's guide.

Terrain-SVS does not comply with TSO-C151b certification standards. It increases situational awareness and aids in reducing controlled flight into terrain (CFIT). Do not confuse Terrain-SVS with a Terrain Awareness and Warning System (TAWS). TAWS is more sophisticated and robust, and it is TSO-C151b certified. Although the terrain and obstacle color map displays are the same, TAWS uses more sophisticated algorithms to assess aircraft distance from terrain and obstacles.

Terrain-SVS does not provide the following:

- Premature Descent Alerting (PDA)
- Excessive Descent Rate (EDR)
- Negative Climb Rate (NCR)
- Descent to 500 Feet Voice Callout (VCO)

Terrain-SVS requires the following components to operate properly:

- Valid 3-D GPS position
- Valid terrain/obstacle database

Terrain-SVS displays altitudes of terrain and obstructions relative to the aircraft position and altitude with reference to a database that may contain inaccuracies. Terrain and obstructions are shown only if they are in the database. Terrain and obstacle information should be used as an aid to situational awareness. They should never be used to navigate or maneuver around terrain.

Note that all obstructions may not be available in the terrain and obstacle database. No terrain and obstacle information is shown without a valid 3-D GPS position.

The G1000 GPS receiver provides the horizontal position and altitude. GPS altitude is derived from satellite position. GPS altitude is then converted to the height above geodetic sea level (GSL), which is the height above mean sea level calculated geometrically. GSL altitude is used to determine terrain and obstacle proximity. GSL altitude accuracy is affected by satellite geometry, but is not subject to variations in pressure and temperature that normally affect pressure altitude sensors. GSL altitude does not require local altimeter settings to determine MSL altitude. It is a widely-used MSL altitude source.

Terrain and obstacle databases are referenced to MSL. Using the GPS position and altitude, the Terrain-SVS feature portrays a 3-D picture of the surrounding terrain and obstacles relative to the position and altitude of the

aircraft. GPS position and GSL altitude are used to calculate and predict the aircraft's flight path in relation to the surrounding terrain and obstacles. In this way, the pilot can view predicted dangerous terrain and obstacle conditions.

DISPLAYING TERRAIN-SVS DATA

Terrain-SVS uses yellow (caution) and red (warning) to depict terrain and obstacles (with heights greater than 200 feet above ground level, AGL) alerts relative to aircraft altitude. Colors are adjusted automatically as the aircraft altitude changes. The colors and symbols in the figure and tables below are used to represent terrain, obstacles, and potential impact points.

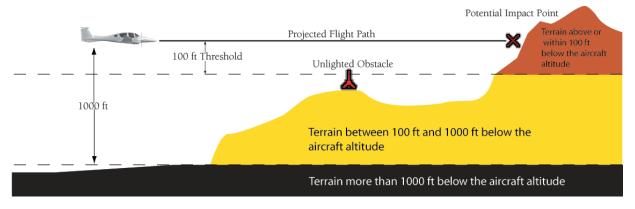


Figure 6-136 Terrain Altitude/Color Correlation for Terrain-SVS

Unlighted Obstacle		Lighted Obstacle		Obstacle Location	
< 1000' A	GL > 1000' AGL	< 1000' AGL	> 1000' AGL	Obstacle Location	
.		*	*	Red obstacle is above or within 100 ft below the aircraft altitude	
		*	**	Yellow obstacle is between 100 ft and 1000 ft below the aircraft altitude	

Table 6-19 Terrain-SVS Obstacle Colors and Symbology

Potential Impact Point Symbol	Alert Type	Example Annunciation	
×	Warning	TERRAIN	
×	Caution	TERRAIN	

Table 6-20 Terrain-SVS Potential Impact Point Symbols with Alert Types

The Map - Terrain-SVS Page is the principal page for viewing terrain and obstacle information. Terrain-SVS information can also be displayed on the following pages and maps as an additional reference:

- PFD Inset Map
- Navigation Map Page
- Trip Planning Page

- Flight Plan Pages
- AUX Video Page

Displaying terrain and obstacle information (maps other than the Terrain-SVS Page):

- 1) Press the MAP Softkey (for the PFD Inset Map, select the INSET Softkey).
- 2) Press the **TERRAIN** Softkey to display terrain and obstacle data.

When Terrain-SVS is selected on maps other than the Terrain-SVS Page, an icon to indicate the feature is enabled for display and a legend for Terrain-SVS terrain colors are shown (Figure 6-137).

Figure 6-137 Terrain-SVS Icon and Legend

The Navigation Map Page Setup Menu provides a means in addition to the softkey for enabling/disabling display of terrain and obstacles. The setup menu also controls the map range settings above which terrain and obstacle data are decluttered from the display. If a map range larger than the map range setting is selected, the data is removed from the map. For terrain data, the enable/disable function applies only to the MFD, while the range setting also affects the PFD Inset Map.

Terrain data can be selected for display independently of obstacle data; however, obstacles for which warnings and cautions are issued are shown when terrain is selected for display and the map range is within the setting limit.

Maps besides the Terrain-SVS Page use settings based on those selected for the Navigation Map Page. The maximum display ranges for obstacles on each map are dependent on the range setting made for the Navigation Map. If the maximum range for obstacle display on the Navigation Map is adjusted to below 20 nm, the highest obstacle display range settings on the other applicable maps are also adjusted proportionally.

Customizing terrain and obstacle display on the Navigation Map Page:

- 1) Select the Navigation Map Page.
- 2) Press the MENU Key.
- **3)** With 'Map Setup' highlighted, press the **ENT** Key (Figure 6-138).
- **4)** Turn the small **FMS** Knob to select the 'Map' Group and press the **ENT** Key (Figure 6-139).
- 5) Turn the large FMS Knob or press the ENT Key to scroll through product selections (Figure 6-140).
 - TERRAIN DATA Turns the display of terrain data on or off and sets maximum range at which terrain is shown
 - OBSTACLE DATA Turns the display of obstacle data on or off and sets maximum range at which obstacles are shown
- **6)** Turn the small **FMS** Knob to scroll through options for each product (ON/OFF, range settings).

- **7)** Press the **ENT** Key to select an option.
- 8) Press the **FMS** Knob or **CLR** Key to return to the Navigation Map Page with the changed settings.

Figure 6-138 Navigation Map Page Menu

Figure 6-139 Navigation Map Page Setup Menu

Figure 6-140 Navigation Map Page Setup Menu, Map Group

TERRAIN-SVS PAGE

The Terrain-SVS Page is specialized to show terrain, obstacle, and potential impact point data in relation to the aircraft's current altitude, without clutter from the basemap. It is the principal map page for viewing Terrain-SVS data. Aviation data (airports, VORs, and other NAVAIDs) can be displayed for reference. If an obstacle and the projected flight path of the aircraft intersect, the display automatically zooms in to the closest potential point of impact on the Terrain-SVS Page.

Aircraft orientation on this map is always heading up unless there is no valid heading. Two views are available relative to the position of the aircraft: the 360° default display and the radar-like ARC (120°) display. Map range is adjustable with the **Joystick** from 1 to 200 nm, as indicated by the map range rings (or arcs).

Displaying the Terrain-SVS Page:

- 1) Turn the large **FMS** Knob to select the Map Page Group.
- 2) Turn the small **FMS** Knob to select the Terrain-SVS Page.

Changing the Terrain-SVS Page view:

- **1)** Press the **VIEW** Softkey.
- 2) Press the **360** or **ARC** Softkey to select the desired view.

APPENDICES

Or:

- 1) Press the **MENU** Key.
- 2) Select 'View Arc' or 'View 360°' (choice dependent on current state) and press the ENT Key to change the view

Showing/hiding aviation information on the Terrain-SVS Page:

- 1) Press the **MENU** Key.
- 2) Select 'Show Aviation Data' or 'Hide Aviation Data' (choice dependent on current state) and press the **ENT** Key.

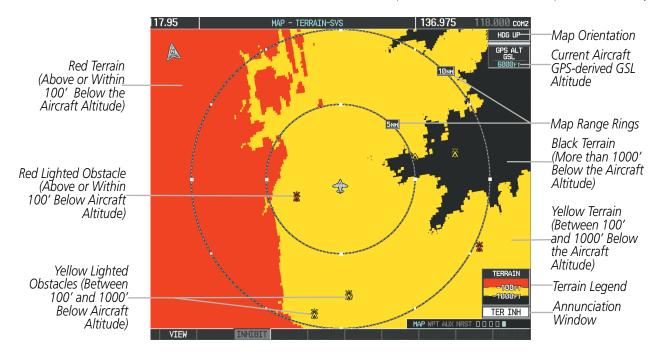


Figure 6-141 Terrain-SVS Page (360 View)

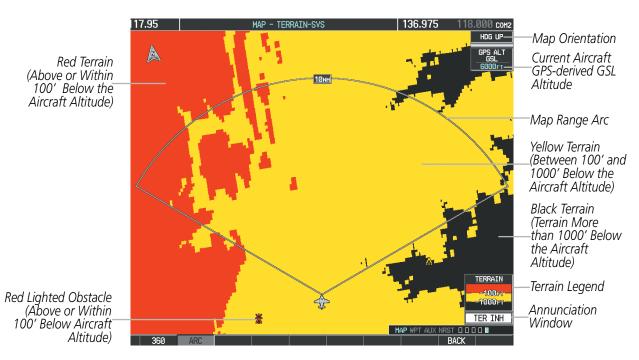


Figure 6-142 Terrain-SVS Page (ARC View)

TERRAIN-SVS ALERTS

Alerts are issued when flight conditions meet parameters that are set within Terrain-SVS software algorithms. Terrain-SVS alerts typically employ a CAUTION or a WARNING alert severity level, or both. When an alert is issued, visual annunciations are displayed with simultaneous voice alerts. Table 6-21 shows Terrain-SVS alert types with corresponding annunciations and voice alerts.

When an alert is issued, annunciations appear on the PFD and MFD. The Terrain-SVS Alert Annunciation is shown to the upper left of the Altimeter on the PFD and below the Terrain Legend on the MFD. If the Terrain-SVS Page is not displayed at the time, a pop-up alert appears on the MFD. To acknowledge the pop-up alert:

- Press the **CLR** Key (to remove the pop-up alert), or
- Press the **ENT** Key (to display the Terrain-SVS Page)

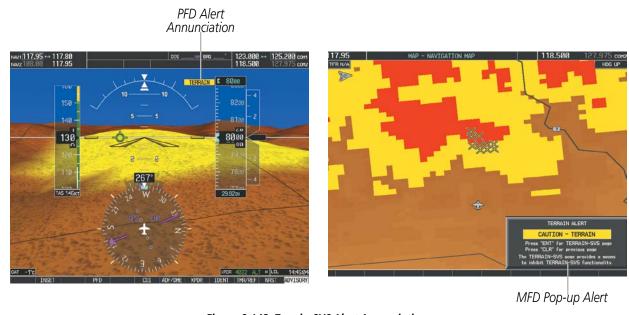


Figure 6-143 Terrain-SVS Alert Annunciations

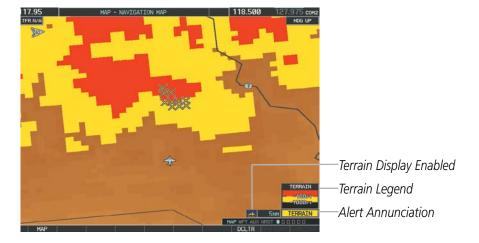


Figure 6-144 Navigation Map Page (After Terrain-SVS Pop-up Alert Acknowledgment)

APPENDICES

Alert Type	PFD/MFD* Alert Annunciation	MFD Pop-Up Alert (except Terrain-SVS Page)	Voice Alert
Reduced Required Terrain Clearance Warning (RTC)	TERRAIN	WARNING - TERRAIN	"Warning; Terrain, Terrain"
Imminent Terrain Impact Warning (ITI)	TERRAIN	WARNING - TERRAIN	"Warning; Terrain, Terrain"
Reduced Required Obstacle Clearance Warning (ROC)	TERRAIN	WARNING - OBSTACLE	"Warning; Obstacle, Obstacle"
Imminent Obstacle Impact Warning (IOI)	TERRAIN	WARNING - OBSTACLE	"Warning; Obstacle, Obstacle"
Reduced Required Terrain Clearance Caution (RTC)	TERRAIN	CAUTION - TERRAIN	"Caution; Terrain, Terrain"
Imminent Terrain Impact Caution (ITI)	TERRAIN	CAUTION - TERRAIN	"Caution; Terrain, Terrain"
Reduced Required Obstacle Clearance Caution (ROC)	TERRAIN	CAUTION - OBSTACLE	"Caution; Obstacle, Obstacle"
Imminent Obstacle Impact Caution (IOI)	TERRAIN	CAUTION - OBSTACLE	"Caution; Obstacle, Obstacle"

^{*} Annunciation is displayed on the MFD when terrain display is enabled.

Table 6-21 Terrain-SVS Alerts Summary

FORWARD LOOKING TERRAIN AVOIDANCE

The Forward Looking Terrain Avoidance (FLTA) feature of Terrain-SVS compares the projected flight path as derived from GPS data with terrain features and obstacles from the terrain and obstacle databases. The system issues visual and voice alerts when the projected flight path conflicts with terrain or obstacles.

The projected flight path is a calculated area ahead of, to the sides, and below the aircraft. The size of the projected flight path varies based on factors including ground speed (the path ahead is larger when the ground speed is higher), whether the aircraft is level, turning, or descending, and the proximity to the nearest runway along the current track. As the aircraft approaches the runway, the projected flight path becomes narrower until the system automatically disables FLTA alerts or the pilot manually inhibits them.

There are two types of FLTA alerts, Reduced Required Terrain/Obstacle Clearance (RTC or ROC respectively) and Imminent Terrain/Obstacle Impact (ITI or IOI respectively).

Reduced Required Terrain Clearance (RTC) and **Reduced Required Obstacle Clearance (ROC)** alerts are issued when the aircraft flight path is above terrain, yet is projected to come within the minimum clearance values in Figure 6-145. When an RTC alert is issued, a potential impact point is displayed on the TAWS-B Page.

Imminent Terrain Impact (ITI) and **Imminent Obstacle Impact (IOI)** alerts are issued when the aircraft is below the elevation of a terrain or obstacle in the aircraft's projected path. ITI and IOI alerts are accompanied by a potential impact point displayed on the TAWS-B Page. The alert is annunciated when the projected vertical flight path is calculated to come within minimum clearance altitudes in Figure 6-145.

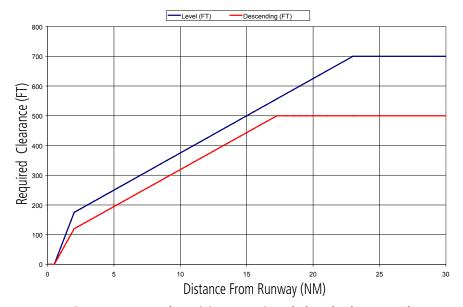


Figure 6-145 FLTA Alert Minimum Terrain and Obstacle Clearance Values

FLTA alerts are automatically inhibited when the aircraft is less than 200 feet above the destination runway elevation while within 0.5 nm of the approach runway or the aircraft is between runway ends. When Terrain-SVS alerts are inhibited, the annunciation 'TER INH' is shown on the PFD and in the MFD terrain annunciation window.

FLTA visual annunciations and voice alerts can also be manually inhibited. Discretion should be used when inhibiting Terrain-SVS, and the system should be enabled when appropriate. When Terrain-SVS is inhibited, the annunciation 'TER INH' is shown on the PFD and in the Terrain-SVS annunciation window on the MFD (Figure 6-146).

TER INH

Figure 6-146 Terrain-SVS Alerting Disabled (Terrain-SVS Inhibited) Annunciation

Inhibiting/enabling Terrain-SVS alerting:

- 1) Select the Terrain-SVS Page.
- 2) Press the **INHIBIT** Softkey to inhibit or enable Terrain-SVS (choice dependent on current state).
 - Or:
- a) Press the MENU Key.
- **b)** Select 'Inhibit Terrain-SVS' or 'Enable Terrain-SVS' (choice dependent on current state) and press the **ENT** Key.

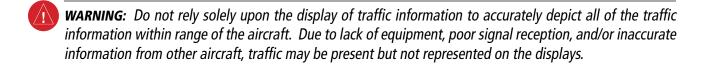
If Terrain-SVS alerts are inhibited when the Final Approach Fix is the active waypoint on a GPS SBAS approach, a 'LOW ALT' annunciation may appear on the PFD next to the Altimeter if the current aircraft altitude is at least 164 feet below the prescribed altitude at the Final Approach Fix. See the Flight Instruments Section for details.

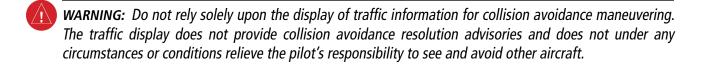
SYSTEM STATUS

During power-up, Terrain-SVS conducts a test of its alerting capabilities. A voice alert is issued at test completion.

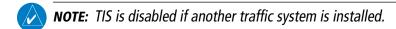
Terrain-SVS continually monitors several system-critical items such as database validity, hardware status, and GPS status. If the terrain/obstacle database is not available, the voice alert, "Terrain System Failure" is generated along with the 'TER FAIL' alert annunciation.

Terrain-SVS requires a 3-D GPS navigation solution along with specific vertical accuracy minimums. Should the navigation solution become degraded or if the aircraft is out of the database coverage area, the annunciation 'TER N/A' is generated in the annunciation window and on the Terrain-SVS Page. The voice alert, "Terrain System Not Available" is generated. When sufficient GPS signal is returns and the aircraft is within the database coverage area, the voice alert, "Terrain System Available" is generated.


Alert Type	PFD/MFD ⁺ Alert Annunciation	Terrain-SVS Page Center Banner Annunciation	Voice Alert
System Test in Progress	TER TEST	TERRAIN TEST	None
System Test Pass	None	None	"Terrain System Test OK"
Terrain Alerting Inhibited	TER INH	None	None
No GPS position	TER N/A	NO GPS POSITION	"Terrain System Not Available" *
Excessively degraded GPS signal; or Out of database coverage area	TER N/A	None	"Terrain System Not Available"*
Terrain System Test Fail; Terrain or Obstacle database unavailable or invalid; Invalid software configuration; or System audio fault	TER FAIL	TERRAIN FAIL	"Terrain System Failure"
MFD Terrain or Obstacle database unavailable or invalid, and Terrain-SVS operating with PFD Terrain or Obstacle databases	None	TERRAIN DATABASE FAILURE	None


Table 6-22 Terrain-SVS System Status Annunciations


[†] Annunciation is shown on Terrain-SVS Page and the Navigation Map Page when Terrain is enabled. * "Terrain System Available" will be heard when sufficient GPS signal is received, or Terrain database coverage area reentered.



6.8 TRAFFIC INFORMATION SERVICE (TIS)

Traffic Information Service (TIS) is designed to help in detection and avoidance of other aircraft. TIS uses the Mode S transponder for the traffic data link. TIS receives traffic information from ground stations, and is updated every 5 seconds. The G1000 displays up to eight traffic targets within a 7.5-nm radius, from 3000 feet below to 3500 feet above the requesting aircraft. Traffic is displayed using the symbology shown in Table 6-23.

TIS Symbol	Description	
	Non-Threat Traffic	
0	Traffic Advisory (TA)	
	Traffic Advisory Off Scale	

Table 6-23 TIS Traffic Symbols

A Traffic Advisory (TA) indicates that the current track of the intruder could result in a collision. When traffic meets the advisory criteria for the TA, a solid yellow circle symbol is generated. A TA which is detected, but is outside the range of the map, is indicated with a message in the lower left corner of the map and a half TA symbol at the relative bearing of the intruder.

TIS also provides a vector line showing the direction in which the traffic is moving, to the nearest 45°. Traffic information for which TIS is unable to determine the bearing (non-bearing traffic) is displayed in the center of the Traffic Map Page (Figure 6-151) or in a banner at the lower left corner of maps other than the Traffic Map Page on which traffic can be displayed (Figure 6-147).

The altitude difference between the requesting aircraft and other intruder aircraft is displayed above/below the traffic symbol in hundreds of feet. If the other aircraft is above the requesting aircraft, the altitude separation

APPENDICES

appears above the traffic symbol; if below, the altitude separation appears below. Altitude trend is displayed as an up/down arrow (for speeds greater than 500 fpm in either direction) to the right of the target symbol. Traffic symbols for aircraft without altitude reporting capability appear without altitude separation or climb/descent information.

DISPLAYING TRAFFIC DATA

The Map - Traffic Map Page is the principal page for viewing traffic information. Additional displays of traffic information are available as map overlays while TIS is operating, and serve as additional reference to the Traffic Map Page. Traffic information can be displayed on the following maps and pages:

- PFD Inset Map
- Navigation Map Page
- Traffic Map Page
- Trip Planning Page

- Nearest Pages
- Active Flight Plan Page
- AUX Video Page
- Displaying traffic information (maps other than the Traffic Map Page):
- 1) Press the MAP Softkey.
- 2) Press the **TRAFFIC** Softkey.

When traffic is selected on maps other than the Traffic Map Page, an icon is shown to indicate the feature is enabled for display.

Figure 6-147 TIS Traffic on the Navigation Map Page

Displaying traffic information (PFD Inset Map):

- 1) Press the **INSET** Softkey.
- **2)** Press the **TRAFFIC** Softkey to display traffic data on the inset map (TRFC-1).
- **3)** Press the softkey again to display the traffic-only inset (TRFC-2).
- **4)** Press the softkey again to remove traffic data.

The Navigation Map Page Setup Menu provides a means in addition to the softkey for enabling/disabling display of traffic. The setup menu also controls the map range settings above which traffic data (symbols and labels) are decluttered from the display. If a map range larger than the map range setting is selected, the data is removed from the map. Maps besides the Traffic Map Page use settings based on those selected for the Navigation Map Page.

Customizing traffic display on the Navigation Map Page:

- 1) Select the Navigation Map Page.
- 2) Press the **MENU** Key.
- **3)** With 'Map Setup' highlighted, press the **ENT** Key (Figure 6-148).
- **4)** Turn the small **FMS** Knob to select the 'Traffic' Group and press the **ENT** Key (Figure 6-149).
- **5)** Turn the large **FMS** Knob or press the **ENT** Key to scroll through product selections (Figure 6-150).
 - TRAFFIC Turns the display of traffic data on or off
 - TRAFFIC MODE Selects the traffic mode for display; select from:
 - All Traffic Displays all traffic
 - TA/PA Displays Traffic Alerts and Proximity Advisories
 - TA ONLY Displays Traffic Alerts only
 - TRAFFIC SMBL Selects the maximum range at which traffic symbols are shown
 - TRAFFIC LBL Selects the maximum range at which traffic labels are shown (with the option to turn off)
- **6)** Turn the small **FMS** Knob to scroll through options for each product (ON/OFF, range settings, etc.).
- **7)** Press the **ENT** Key to select an option.
- 8) Press the **FMS** Knob or **CLR** Key to return to the Navigation Map Page with the changed settings.

Figure 6-148 Navigation Map Page Menu

Figure 6-149 Navigation Map Page Setup Menu

Figure 6-150 Navigation Map Page Setup Menu, Traffic Group

TRAFFIC MAP PAGE

The Traffic Map Page is specialized to show surrounding TIS traffic data in relation to the aircraft's current position and altitude, without clutter from the basemap. It is the principal page for viewing TIS data. Aircraft orientation on this map is always heading up unless there is no valid heading. Map range is adjustable with the **Joystick** from 2 to 12 nm, as indicated by the map range rings.

The traffic mode is annunciated in the upper left corner of the Traffic Map Page. When the aircraft is on the ground, TIS automatically enters Standby Mode. Once the aircraft is airborne, TIS switches from Standby to Operating Mode and the system begins to display traffic information. Refer to the System Status discussion for more information.

Displaying traffic on the Traffic Map Page:

- 1) Turn the large **FMS** Knob to select the Map Page Group.
- 2) Turn the small FMS Knob to select the Traffic Map Page.
- 3) Confirm TIS is in Operating Mode:
 Press the OPERATE Softkey to begin displaying traffic.
 - Or:
 - a) Press the **MENU** Key.
 - **b)** Select 'Operate Mode' (shown if TIS is in Standby Mode) and press the **ENT** Key.

APPENDICES

TIS ALERTS

When the number of TAs on the Traffic Map Page increases from one scan to the next, the following occur:

- A single "Traffic" voice alert is generated.
- A 'TRAFFIC' Annunciation appears to the top left of the Attitude Indicator on the PFD, flashing for 5 seconds and remaining displayed until no TAs are detected in the area.
- The PFD Inset Map is automatically displayed with traffic.

To reduce the number of nuisance alerts due to proximate aircraft, the "*Traffic*" voice alert is generated only when the number of TAs increases. For example, when the first TA is displayed, a voice and visual annunciation are generated. As long as a single TA remains on the display, no additional voice alerts are generated. If a second TA appears on the display or if the number of TAs initially decreases and then subsequently increases, another voice alert is generated.

Figure 6-152 Traffic Annunciation (PFD)

A "TIS Not Available" (TNA) voice alert is generated when the TIS service becomes unavailable or is out of range. TIS may be unavailable in the radar coverage area due to the following:

- Radar site TIS Mode S sensor is not operational or is out of service
- Traffic or requesting aircraft is beyond the maximum range of the TIS-capable Mode S radar site.
- Traffic or requesting aircraft is above the radar site in the cone of silence and out of range of an adjacent site.
- Traffic or requesting aircraft is below radar coverage. In flat terrain, the coverage extends from about 3000 feet upward at 55 miles. Terrain and obstacles around the radar site can further decrease radar coverage in all directions.
- Traffic does not have an operating transponder.

The "TIS Not Available" (TNA) voice alert can be manually muted to reduce nuisance alerting. TNA muting status is shown in the upper left corner of the Traffic Map Page.

Muting the "TIS Not Available" voice alert:

- 1) Select the Traffic Map Page.
- 2) Press the TNA MUTE Softkey. The status is displayed in the upper left corner of the Traffic Map Page.
 Or:
 - a) Press the **MENU** Key.
 - b) Select "'Not Available" Mute On' (shown if TNA muting is currently off) and press the ENT Key.

SYSTEM STATUS

The G1000 performs an automatic test of TIS during power-up. If TIS passes the test, TIS enters Standby Mode (on the ground) or Operating Mode (in the air). If TIS fails the power up test, an annunciation is shown in the center of the Traffic Map Page.

Traffic Map Page Annunciation	Description	
NO DATA	Data is not being received from the transponder*	
DATA FAILED	Data is being received from the transponder, but a failure is detected in the data stream*	
FAILED	The transponder has failed*	
UNAVAILABLE	TIS is unavailable or out of range	

^{*} Contact a service center or Garmin dealer for corrective action

Table 6-24 TIS Failure Annunciations

Figure 6-153 TIS Power-up Test Failure

The traffic mode is annunciated in the upper left corner of the Traffic Map Page. When the aircraft is on the ground, TIS automatically enters Standby Mode. If traffic is selected for display on another map while Standby Mode is selected, the traffic display enabled icon is crossed out (also the case whenever TIS has failed). Once the aircraft is airborne, TIS switches to Operating Mode and traffic information is displayed. The mode can be changed manually using softkeys or the page menu.

APPENDICES

Mode	Traffic Mode Annunciation (Traffic Map Page)	Traffic Display Enabled Icon (Other Maps)
TIS Operating	OPERATING	<u>•</u>
TIS Standby	STANDBY (also shown in white in center of page)	※
TIS Failed*	FAIL	×

^{*} See Table 6-26 for additional failure annunciations

Table 6-25 TIS Modes

Switching between TIS modes:

- 1) Select the Traffic Map Page.
- 2) Press the STANDBY or OPERATE Softkey to switch between modes. The mode is displayed in the upper left corner of the Traffic Map Page.

Or:

- a) Press the **MENU** Key.
- b) Select 'Operate Mode' or 'Standby Mode' (choice dependent on current state) and press the ENT Key. The annunciations to indicate the status of traffic information appear in a banner at the lower left corner of maps on which traffic can be displayed (Table 6-26).

Traffic Status Banner Annunciation	Description	
TA OFF SCALE	A Traffic Advisory is outside the selected display range* Annunciation is removed when traffic comes within the selected display range	
TA X.X ± XX 	System cannot determine bearing of Traffic Advisory** Annunciation indicates distance in nm, altitude separation in hundreds of feet, and altitude trend arrow (climbing/descending)	
AGE MM:SS	Appears if traffic data is not refreshed within 6 seconds If after another 6 seconds data is not received, traffic is removed from the display The quality of displayed traffic information is reduced as the age increases	
TRFC COAST	The displayed data is not current (6 to 12 seconds since last message) The quality of displayed traffic information is reduced when this message is displayed	
TRFC RMVD	Traffic is removed because it is too old for coasting (12 to 60 seconds since last message) Traffic may exist within the selected display range, but it is not displayed	
TRFC FAIL	Traffic data has failed	
NO TRFC DATA	Traffic data has not been detected	
TRFC UNAVAIL	The traffic service is unavailable or out of range	

^{*}Shown as symbol on Traffic Map Page **Shown in center of Traffic Map Page

Table 6-26 TIS Traffic Status Banner Annunciations

6.9 AVIDYNE TAS600 TRAFFIC

- **WARNING:** Do not rely solely upon the display of traffic information to accurately depict all of the traffic within range of the aircraft. Due to lack of equipment, poor signal reception, and/or inaccurate information from aircraft or ground stations, traffic may be present that is not represented on the display.
- **WARNING:** Do not rely solely upon the display of traffic information for collision avoidance maneuvering. The traffic display does not provide collision avoidance resolution advisories and does not under any circumstances or conditions relieve the pilot's responsibility to see and avoid other aircraft.
- **NOTE:** Pilots should be aware of TAS system limitations. TAS systems require transponders of other aircraft to respond to system interrogations. If the transponders do not respond to interrogations due phenomena such as antenna shading or marginal transponder performance, traffic may be displayed intermittently, or not at all. Aircraft without altitude reporting capability are shown without altitude separation data or climb descent indication. Pilots should remain vigilant for traffic at all times.
- **NOTE:** Refer to the Avidyne TAS600 Series Pilot's Guide for a detailed discussion of the Avidyne TAS600 system.
- **NOTE**: TIS is disabled if a traffic advisory system (TAS) is installed.

TAS SYMBOLOGY

The optional Traffic Advisory System (TAS) is designed to help in detection and avoidance of other aircraft. TAS uses an on-board interrogator-processor and the Mode S transponder for the air-to-air traffic data link. Traffic is displayed using the symbols shown in Table 6-27.

TAS Symbol	Description	
	Non-Threat Traffic	
\Diamond	Proximity Advisory (PA)	
0	Traffic Advisory (TA)	
	Traffic Advisory Off Scale	

Table 6-27 TAS Symbol Description

APPENDICES

A Non-threat Advisory, shown as an open white diamond, indicates that an intruding aircraft is at greater than ±1200 feet relative altitude or the distance is beyond 5 nm.

A Proximity Advisory indicates that the intruding aircraft is within ±1200 feet and is within 5 nm range, but is still not considered a threat.

A Traffic Advisory (TA) alerts the crew to a potentially hazardous intruding aircraft. Closing rate, distance, and vertical separation meet TA criteria. A Traffic Advisory that is beyond the selected display range is indicated by a half TA symbol at the edge of the screen at the relative bearing of the intruder.

DISPLAYING TRAFFIC DATA

The Map - Traffic Map Page is the principal page for viewing traffic information. Traffic information can displayed on the following maps as an additional reference:

- PFD Inset Map
- Navigation Map Page
- Trip Planning Page

- Nearest Pages
- Active Flight Plan Page
- AUX Video Page

Displaying traffic on the Traffic Map Page:

- 1) Turn the large **FMS** Knob to select the Map Page Group.
- 2) Turn the small **FMS** Knob to select the Traffic Map Page.
- 3) Turn the **Joystick** clockwise to display a larger area or counter-clockwise to display a smaller area.

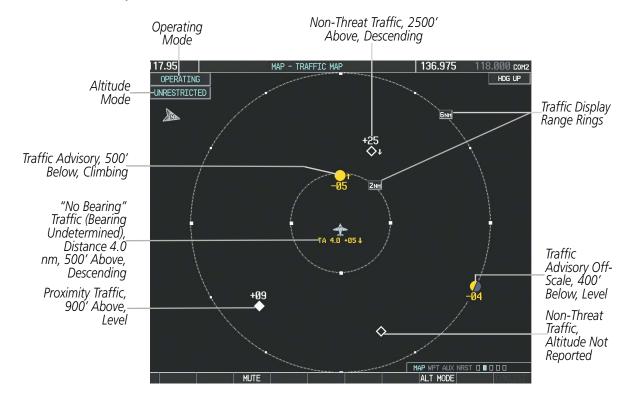


Figure 6-154 Traffic Map Page

The Traffic Map Page shows surrounding TAS traffic data in relation to the aircraft's current position and altitude, without basemap clutter. Aircraft orientation is always heading up unless there is no valid heading. Map range is adjustable with the **Joystick** from 2 to 24 nm, as indicated by the map range rings.

The traffic mode and altitude display mode are annunciated in the upper left corner.

Displaying traffic information (maps other than the Traffic Map Page):

- 1) Select the MAP Softkey.
- 2) Select the **TRAFFIC** Softkey to display traffic data.

When traffic is selected on maps other than the Traffic Map Page, a traffic icon is shown to indicate TAS is enabled for display.

Figure 6-155 TAS Traffic on Navigation Map Page

Displaying traffic information (PFD Inset Map):

- 1) Select the **INSET** Softkey.
- 2) Select the **TRAFFIC** Softkey to display traffic data on the inset map (TRFC-1).
- 3) Select the softkey again to display the traffic-only inset (TRFC-2).
- **4)** Select the softkey again to remove traffic data.

ALTITUDE DISPLAY

The Pilot can select the volume of airspace in which traffic is displayed. Traffic Advisories (TAs) outside of these limits will still be shown. Refer to the TAS600 Series Pilot's Guide for specific display thresholds.

Changing the altitude display mode:

- 1) On the Traffic Page, select the **ALT MODE** Softkey.
- **2)** Select one of the following Softkeys:
 - BELOW
 - NORMAL
 - ABOVE
 - UNREST (unrestricted)
- **3)** To return to the Traffic Page, select the **BACK** Softkey.

Or:

- 1) Press the **MENU** Key.
- 2) Turn the small **FMS** Knob to select one of the following:
 - BELOW
 - NORMAL
 - ABOVE
 - UNREST (unrestricted)
- **3)** Select the **ENT** Softkey.

TRAFFIC MAP PAGE DISPLAY RANGE

The display range on the Traffic Map Page can be changed at any time. Map range is adjustable with the **Joystick** from 2 to 24 nm, as indicated by the map range rings.

Changing the display range on the Traffic Page:

- 1) Turn the **Joystick**.
- **2)** The following range options are available:
 - 2 nm
 - 2 and 6 nm
 - 6 and 12 nm
 - 12 and 24 nm

The Navigation Map Page Setup Menu also controls the display of traffic. The setup menu controls the map range settings. Traffic data symbols and labels can be decluttered from the display. If a map range larger than the map range setting is selected, the data is removed from the map. Maps besides the Traffic Map Page use settings based on those selected for the Navigation Map Page.

Customizing the traffic display on the Navigation Map Page:

- 1) Select the Navigation Map Page.
- **2)** Press the **MENU** Key.
- **3)** With Map Setup highlighted, press the **ENT** Key (Figure 6-156).
- **4)** Turn the small **FMS** Knob to select the Traffic Group and press the **ENT** Key (Figure 6-157).
- **5)** Turn the large **FMS** Knob or press the **ENT** Key to scroll through the selections (Figure 6-158).
 - TRAFFIC Turns the display of traffic data on or off
 - TRAFFIC MODE Selects the traffic mode for display; select from:
 - All Traffic Displays all traffic
 - TA/PA Displays Traffic Alerts and Proximity Advisories
 - TA ONLY Displays Traffic Alerts only
 - TRAFFIC SMBL Selects the maximum range at which traffic symbols are shown
 - TRAFFIC LBL Selects the maximum range at which traffic labels are shown with the option to turn off
- **6)** Turn the small **FMS** Knob to scroll through options (ON/OFF, range settings, etc.).
- **7)** Press the **ENT** Key to select an option.
- 8) Press the **FMS** Knob or **CLR** Key to return to the Navigation Map Page.

Figure 6-156 Navigation Map Page Menu

Figure 6-157 Navigation Map Page Setup Menu

Figure 6-158 Navigation Map Page Setup Menu, Traffic Group

APPENDICES

TAS ALERTS

NOTE: Refer to the TAS600 documentation for information on alerts generated by the TAS equipment.

When the number of TAs on the Traffic Map Page increases from one scan to the next, the following occur:

- A "Traffic" voice alert is generated followed by the clock position, relative altitude and range of the TA.
- A TRAFFIC Annunciation appears at the top right of the airspeed on the PFD, flashes for five seconds, and remains displayed until no TAs are detected in the area.
- The PFD Inset Map is automatically displayed with TA traffic.

Figure 6-159 Traffic Annunciation (PFD)

TAS VOICE ALERTS

To listen to an update of Traffic Advisories select the **MUTE** Softkey twice.

Muting the TAS voice alert in progress:

- 1) Select the Traffic Map Page.
- 2) Select the **MUTE** Softkey while the voice alert is playing. Subsequent voice alerts will be heard.

SYSTEM STATUS

NOTE: Refer to the TAS600 documentation for information on the operating mode.

The traffic mode is annunciated in the upper left corner of the Traffic Map Page.

Mode	Traffic Mode Annunciation (Traffic Map Page)	Traffic Display Enabled Icon (Other Maps)
TAS Operating	OPERATING	<u>o</u> t
TAS Failed*	FAIL	※

^{*} See Table 6-29 for additional failure annunciations

Table 6-28 TAS Modes

If the unit fails, an annunciation as to the cause of the failure is shown in the center of the Traffic Map Page.

Traffic Map Page Annunciation	Description
NO DATA	Data is not being received from the TAS unit
DATA FAILED	Data is being received from the TAS unit, but the unit is self-reporting a failure
FAILED	Incorrect data format received from the TAS unit

Table 6-29 TAS Failure Annunciations

The annunciations to indicate the status of traffic information appear in a banner at the lower left corner of maps on which traffic can be displayed.

Traffic Status Banner Annunciation	Description
TA OFF SCALE	A Traffic Advisory is outside the selected display range* Annunciation is removed when traffic comes within the selected display range
TA X.X ± XX 	System cannot determine bearing of Traffic Advisory** Annunciation indicates distance in nm, altitude separation in hundreds of feet, and altitude trend arrow (climbing/descending)
TRFC FAIL	TAS unit has failed (unit is self-reporting a failure or sending incorrectly formatted data)
NO TRFC DATA	Data is not being received from the TAS unit

Table 6-30 TAS Traffic Status Annunciations

^{*}Shown as symbol on Traffic Map Page **Shown in center of Traffic Map Page

BLANK PAGE

SECTION 7 AUTOMATIC FLIGHT CONTROL SYSTEM

NOTE: The approved Aircraft Flight Manual Supplement (AFMS) always supersedes the information in this Pilot's Guide.

NOTE: A failure of the primary (#1) Integrated Avionics Unit (IAU) results in loss of the Flight Director. Any IAU failure results in loss of the autopilot and manual electric trim.

The Garmin AFCS is a digital Automatic Flight Control System (AFCS), fully integrated within the G1000 System avionics architecture. The System Overview section provides a block diagram (Figure 1-1) to support this system description. Garmin AFCS functionality in Diamond DA62 aircraft is distributed across the following Line Replaceable Units (LRUs):

- GDU 1040 Primary Flight Display (PFD)
- GDU 1045 Multi-Function Display (MFD)
- GIA 63W Integrated Avionics Units (2)
- GSA 80 AFCS Yaw Damper Servo (1)
- GSA 81 AFCS Servo (3)
- GSM 86 Servo Mounts (4)

The Garmin AFCS can be divided into these main operating functions:

- **Flight Director (FD)** Flight Director operation takes place within the primary (#1) IAU. Flight Director commands are displayed on the PFD. The Flight Director provides:
 - Command Bars showing pitch/roll guidance
 - Pitch/roll mode selection and processing
 - Autopilot communication
- **Autopilot (AP)** Autopilot operation occurs within the pitch, roll, and pitch trim servo and provides servo monitoring and automatic flight control in response to Flight Director steering commands, AHRS attitude and rate information, and airspeed.
- Yaw Damper (YD) The yaw servo is self-monitoring and provides Dutch roll damping and turn coordination in response to yaw rate, roll angle, vertical acceleration, and airspeed.
- **Manual Electric Trim (MET)** The pitch trim servo provides manual electric trim capability when the autopilot is not engaged.

7.1 AFCS CONTROLS

The following dedicated AFCS keys are located on the bezel of the MFD:

(1)	AP Key	Engages/disengages the autopilot

(2) **FD Key** Activates/deactivates the Flight Director only

Pressing once turns on the Flight Director in the default pitch and roll modes. Pressing again deactivates the Flight Director and removes the Command Bars. If the

autopilot is engaged, the key is disabled.

3 NAV Key	Selects/deselects Navigation Mode
4 ALT Key	Selects/deselects Altitude Hold Mode
5 VS Key	Selects/deselects Vertical Speed Mode

6 FLC Key Selects/deselects Flight Level Change Mode

YD Key Engages/disengages the yaw damper
 HDG Key Selects/deselects Heading Select Mode
 APR Key Selects/deselects Approach Mode

10) VNV Key Selects/deselects Vertical Path Tracking Mode for Vertical Navigation flight control

11 NOSE UP/NOSE Control the mode reference in Pitch Hold, Vertical Speed, and Flight Level Change

DN Keys modes

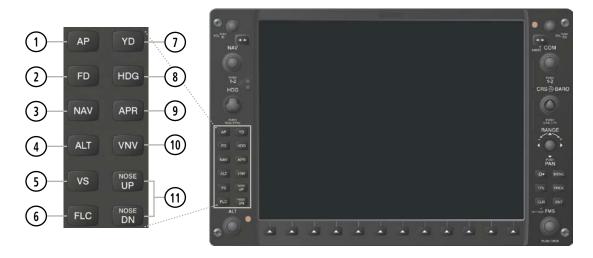


Figure 7-1 Dedicated MFD AFCS Controls

The following AFCS controls are located in the cockpit separately from the MFD:

AP DISC Switch (Autopilot Disconnect)

Disengages the autopilot and interrupts pitch trim operation

This switch may be used to mute the aural autopilot disconnect alert.

The **AP DISC** Switch is located on each control stick.

CWS Button (Control Wheel Steering)

While pressed, allows manual control of the aircraft while the autopilot is engaged and synchronizes the Flight Director's Command Bars with the current aircraft pitch (if not in Glideslope Mode) and roll (if in Roll Hold Mode)

Upon release of the **CWS** Button, the Flight Director may establish new reference points, depending on the current pitch and roll modes. CWS operation details are discussed in the Flight Director modes section.

The **CWS** Button is located on the top of the left control stick.

GO AROUND Button

Disengages the autopilot and selects Flight Director Takeoff (on ground) or Go Around (in air) Mode

If an approach procedure is loaded this switch also activates the missed approach when the selected navigation source is GPS or when the navigation source is VOR/LOC and a valid frequency has been tuned.

The **GO AROUND** Button is located on the left hand throttle

AP TRIM Switch (Autopilot Trim)

Used to command manual electric trim (MET)

This composite switch is split into left and right sides. The left switch is the ARM contact and the right switch controls the DN (forward) and UP (rearward) contacts. The **AP TRIM** ARM switch can be used to disengage the autopilot and to acknowledge an autopilot disconnect alert and mute the associated aural tone.

Manual trim commands are generated only when both sides of the switch are operated simultaneously. If either side of the switch is active separately for more than three seconds, MET function is disabled and 'PTRM' is displayed as the AFCS Status Annunciation on the PFD. The function remains disabled until both sides of the switch are inactivated.

The **AP TRIM** Switch is located on the left control stick.

416

7.2 FLIGHT DIRECTOR OPERATION

The Flight Director function provides pitch and roll commands to the AFCS and displays them on the PFD. With the Flight Director activated, the aircraft can be hand-flown to follow the path shown by the Command Bars. Maximum commanded pitch (-15°/+16°) and roll (22°) angles, vertical acceleration, and roll rate are limited to established values. The Flight Director also provides commands to the autopilot.

ACTIVATING THE FLIGHT DIRECTOR

An initial press of a key listed in Table 7-1 (when the Flight Director is not active) activates the Flight Director in the listed modes. The Flight Director may be turned off and the Command Bars removed from the display by pressing the **FD** Key again. The **FD** Key is disabled when the autopilot is engaged.

Control Pressed	Modes Selected			
Control Pressed	Lateral		Vertical	
FD Key	Roll Hold (default)	ROL	Pitch Hold (default)	PIT
AP Key	Roll Hold (default)	ROL	Pitch Hold (default)	PIT
CWS Button	Roll Hold (default)	ROL	Pitch Hold (default)	PIT
GO-AROUND	Takeoff (on ground)	TO	Takeoff (on ground)	TO
Button	Go Around (in air)	GA	Go Around (in air)	GA
ALT Key	Roll Hold (default)	ROL	Altitude Hold	ALT
VS Key	Roll Hold (default)	ROL	Vertical Speed	VS
VNV Key	Roll Hold (default)	ROL	Vertical Path Tracking*	VPTH
NAV Key	Navigation**	GPS VOR LOC BC	Pitch Hold (default)	PIT
APR Key	Approach**	GPS VOR LOC	Pitch Hold (default)	PIT GP GS
HDG Key	Heading Select	HDG	Pitch Hold (default)	PIT

^{*}Valid VNV flight plan must be entered before **VNV** Key press activates the Flight Director.

Table 7-1 Flight Director Activation

^{**}The selected navigation receiver must have a valid VOR or LOC signal or active GPS course before **NAV** or **APR** Key press activates the Flight Director.

AFCS STATUS BOX

Flight Director mode annunciations are displayed on the PFD when the Flight Director is active. Autopilot status is displayed in the center of the AFCS Status Box. Lateral Flight Director modes are displayed on the left and Vertical Modes on the right. Armed modes are annunciated in white and active in green.

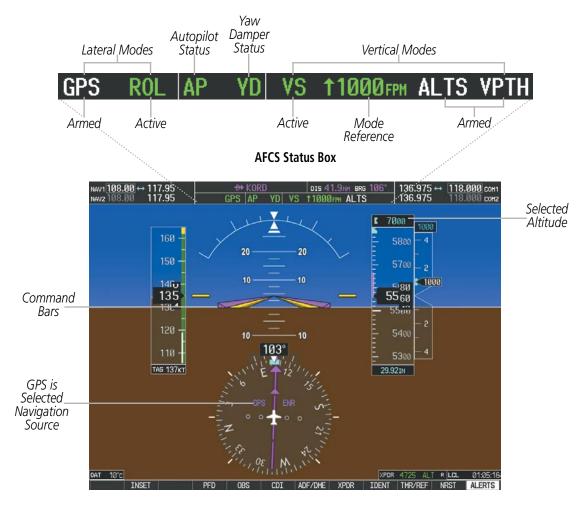


Figure 7-2 PFD AFCS Display

COMMAND BARS

Upon activation of the Flight Director, Command Bars are displayed on the PFD as a single magenta cue. The Command Bars move together vertically to indicate pitch commands and bank left or right to indicate roll commands. The Command Bars do not override the aircraft symbol.

If the attitude information sent to the Flight Director becomes invalid or unavailable, the Command Bars are removed from the display. The Flight Director Command Bars also disappear if either pitch exceeds +30°/-20° or bank exceeds 65°.

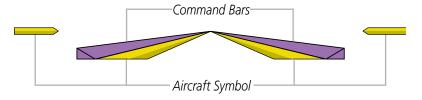


Figure 7-3 Command Bars

FLIGHT DIRECTOR MODES

Flight Director modes are normally selected independently for the pitch and roll axes. Unless otherwise specified, all mode keys are alternate action (i.e., press on, press off). In the absence of specific mode selection, the Flight Director reverts to the default pitch and/or roll mode(s).

Armed modes are annunciated in white and active in green in the AFCS Status Box. Under normal operation, when the control for the active Flight Director mode is pressed, the Flight Director reverts to the default mode(s) for the axis(es). Automatic transition from armed to active mode is indicated by the white armed mode annunciation moving to the green active mode field and flashing for 10 seconds.

If the information required to compute a Flight Director mode becomes invalid or unavailable, the Flight Director automatically reverts to the default mode for that axis. A flashing yellow mode annunciation and annunciator light indicate loss of sensor (ADC) or navigation data (VOR, LOC, GPS, VNV, SBAS) required to compute commands. When such a loss occurs, the system automatically begins to roll the wings level (enters Roll Hold Mode) or maintain the pitch angle (enters Pitch Hold Mode), depending on the affected axis. The flashing annunciation stops when the affected mode key is pressed or another mode for the axis is selected. If after 10 seconds no action is taken, the flashing annunciation stops.

Figure 7-4 Loss of VOR Signal

The Flight Director is automatically disabled if the attitude information required to compute the default Flight Director modes becomes invalid or unavailable.

7.3 VERTICAL MODES

Table 7-2 lists the vertical modes with their corresponding controls and annunciations. The mode reference is displayed next to the active mode annunciation for Altitude Hold, Vertical Speed, and Flight Level Change modes. The **NOSE UP/NOSE DN** Keys can be used to change the vertical mode reference while operating under Pitch Hold, Vertical Speed, or Flight Level Change Mode. Increments of change and acceptable ranges of values for each of these references using the **NOSE UP/NOSE DN** Keys are also listed in the table.

Vertical Mode	Description	Control	Annunciation		Annunciation		Reference Range	Reference Change Increment
Pitch Hold	Holds aircraft pitch attitude; may be used to climb/descend to the Selected Altitude	(default)	PIT		-15° to +16°	0.5°		
Selected Altitude Capture	Captures the Selected Altitude	*	ALTS					
Altitude Hold	Holds current Altitude Reference	ALT Key	ALT	nnnnnft				
Vertical Speed	Holds aircraft vertical speed; may be used to climb/descend to the Selected Altitude	VS Key	VS	nnnnfpm	-3000 to +1500 fpm	100 fpm		
Flight Level Change	Maintains the current aircraft airspeed while the aircraft is climbing/descending to the Selected Altitude	FLC Key	FLC	nnnkt	90 to 185 kt	1 kt		
Vertical Path Tracking	Captures and tracks descent legs of an active vertical profile	VNV Key	VPTH					
VNV Target Altitude Capture	Captures the Vertical Navigation (VNV) Target Altitude	**	ALTV					
Glidepath***	Captures and tracks the SBAS glidepath on approach	GP GP		GP				
Glideslope	Captures and tracks the ILS glideslope on approach	APR Key	GS					
Takeoff	Commands a constant pitch angle and wings level on the ground in preparation for takeoff	GO- AROUND	ТО		6°			
Go Around	Commands a constant pitch angle and wings level	Button	GA		6°			

ALTS is armed automatically when PIT, VS, FLC, or GA is active, and under VPTH when the Selected Altitude is to be captured
instead of the VNV Target Altitude.

Table 7-2 Flight Director Vertical Modes

^{**} ALTV is armed automatically under VPTH when the VNV Target Altitude is to be captured instead of the Selected Altitude.

^{***}GP is available in installations with GIA 63W IAUs when SBAS is available.

PITCH HOLD MODE (PIT)

When the Flight Director is activated (the **FD** Key is pressed), Pitch Hold Mode is selected by default. Pitch Hold Mode is indicated as the active pitch mode by the green annunciation 'PIT'. This mode may be used for climb or descent to the Selected Altitude (shown above the Altimeter), since Selected Altitude Capture Mode is automatically armed when Pitch Hold Mode is activated.

In Pitch Hold Mode, the Flight Director maintains a constant pitch attitude, which is the pitch reference. The pitch reference is set to the aircraft pitch attitude at the moment of mode selection. If the aircraft pitch attitude exceeds the Flight Director pitch command limitations, the Flight Director commands a pitch angle equal to the nose-up/down limit.

CHANGING THE PITCH REFERENCE

When operating in Pitch Hold Mode, the pitch reference can be adjusted by:

- Using the **NOSE UP/NOSE DN** Keys
- Pressing the **CWS** Button, hand-flying the aircraft to establish a new pitch reference, then releasing the **CWS** Button

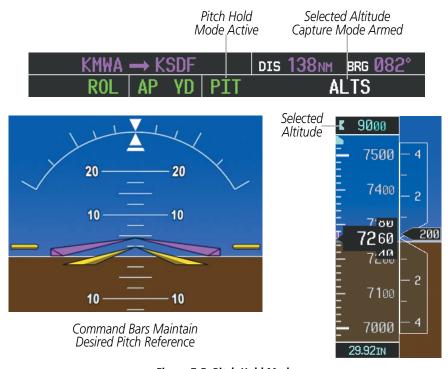


Figure 7-5 Pitch Hold Mode

SELECTED ALTITUDE CAPTURE MODE (ALTS)

Selected Altitude Capture Mode is automatically armed with activation of the following modes:

- · Pitch Hold
- Vertical Speed
- Flight Level Change

- Takeoff/Go Around
- Vertical Path Tracking (if the Selected Altitude is to be captured instead of the VNV Target Altitude)

The white 'ALTS' annunciation indicates Selected Altitude Capture Mode is armed (see Figure 7-5 for example). The **ALT** Knob is used to set the Selected Altitude (shown above the Altimeter) until Selected Altitude Capture Mode becomes active.

As the aircraft nears the Selected Altitude, the Flight Director automatically transitions to Selected Altitude Capture Mode with Altitude Hold Mode armed (Figure 7-6). This automatic transition is indicated by the green 'ALTS' annunciation flashing for up to 10 seconds and the appearance of the white 'ALT" annunciation. The Selected Altitude is shown as the Altitude Reference beside the 'ALTS' annunciation.

At 50 feet from the Selected Altitude, the Flight Director automatically transitions from Selected Altitude Capture to Altitude Hold Mode and holds the Selected Altitude (shown as the Altitude Reference). As Altitude Hold Mode becomes active, the white 'ALT' annunciation moves to the active pitch mode field and flashes green for 10 seconds to indicate the automatic transition.

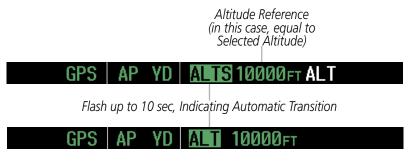


Figure 7-6 Automatic Mode Transitions During Altitude Capture

CHANGING THE SELECTED ALTITUDE

NOTE: Pressing the **CWS** Button while in Selected Altitude Capture Mode does not cancel the mode.

Use of the **ALT** Knob to change the Selected Altitude while Selected Altitude Capture Mode is active causes the Flight Director to revert to Pitch Hold Mode with Selected Altitude Capture Mode armed for the new Selected Altitude.

ALTITUDE HOLD MODE (ALT)

Altitude Hold Mode can be activated by pressing the **ALT** Key; the Flight Director maintains the current aircraft altitude (to the nearest 10 feet) as the Altitude Reference. The Flight Director's Altitude Reference, shown in the AFCS Status Box, is independent of the Selected Altitude, displayed above the Altimeter. Altitude Hold Mode active is indicated by a green 'ALT' annunciation in the AFCS Status Box.

Altitude Hold Mode is automatically armed when the Flight Director is in Selected Altitude Capture Mode (see Figure 7-6). Selected Altitude Capture Mode automatically transitions to Altitude Hold Mode when the altitude error is less than 50 feet. In this case, the Selected Altitude becomes the Flight Director's Altitude Reference.

CHANGING THE ALTITUDE REFERENCE

NOTE: Turning the **ALT** Knob while in Altitude Hold Mode changes the Selected Altitude, but not the Flight Director's Altitude Reference, and does not cancel the mode.

With the **CWS** Button depressed, the aircraft can be hand-flown to a new Altitude Reference. When the **CWS** Button is released at the desired altitude, the new altitude is established as the Altitude Reference.

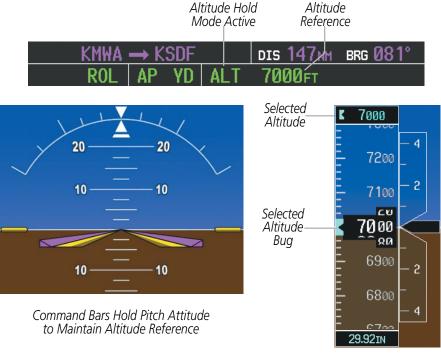


Figure 7-7 Altitude Hold Mode

VERTICAL SPEED MODE (VS)

In Vertical Speed Mode, the Flight Director acquires and maintains a Vertical Speed Reference. Current aircraft vertical speed (to the nearest 100 fpm) becomes the Vertical Speed Reference at the moment of Vertical Speed Mode activation. This mode may be used for climb or descent to the Selected Altitude (shown above the Altimeter) since Selected Altitude Capture Mode is automatically armed when Vertical Speed Mode is selected.

When Vertical Speed Mode is activated by pressing the **VS** Key, 'VS' is annunciated in green in the AFCS Status Box along with the Vertical Speed Reference. The Vertical Speed Reference is also displayed above the Vertical Speed Indicator. A Vertical Speed Reference Bug corresponding to the Vertical Speed Reference is shown on the indicator.

CHANGING THE VERTICAL SPEED REFERENCE

The Vertical Speed Reference (shown both in the AFCS Status Box and above the Vertical Speed Indicator) may be changed by:

- Using the **NOSE UP/NOSE DN** Keys
- Pressing the **CWS** Button, hand-flying the aircraft to attain a new Vertical Speed Reference, then releasing the **CWS** Button

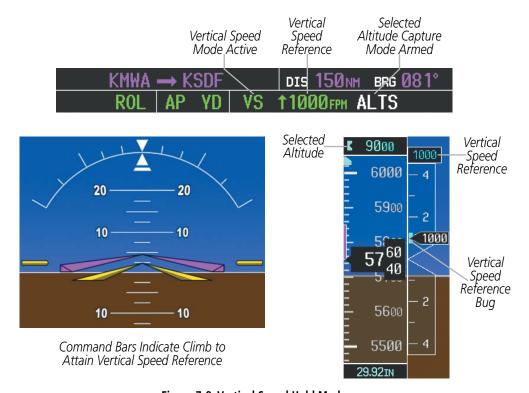


Figure 7-8 Vertical Speed Hold Mode

FLIGHT LEVEL CHANGE MODE (FLC)

NOTE: The Selected Altitude should be set before selecting Flight Level Change Mode.

Flight Level Change Mode is selected by pressing the **FLC** Key. This mode acquires and maintains the Airspeed Reference while climbing or descending to the Selected Altitude (shown above the Altimeter). When Flight Level Change Mode is active, the flight director continuously monitors Selected Altitude, airspeed, and altitude.

The Airspeed Reference is set to the current airspeed upon mode activation. Flight Level Change Mode is indicated by a green 'FLC' annunciation beside the Airspeed Reference in the AFCS Status Box. The Airspeed Reference is also displayed directly above the Airspeed Indicator, along with a bug corresponding to the Airspeed Reference along the tape.

Engine power must be adjusted to allow the autopilot to fly the aircraft at a pitch attitude corresponding to the desired flight profile (climb or descent) while maintaining the Airspeed Reference. The Flight Director maintains the current altitude until either engine power or the Airspeed Reference are adjusted and does not allow the aircraft to climb or descend away from the Selected Altitude.

CHANGING THE AIRSPEED REFERENCE

The Airspeed Reference (shown in both the AFCS Status Box and above the Airspeed Indicator) may be adjusted by:

- Using the NOSE UP/NOSE DN Keys
- Pressing the **CWS** Button, hand-flying the aircraft to a new airspeed, then releasing the **CWS** Button to establish the new Airspeed Reference

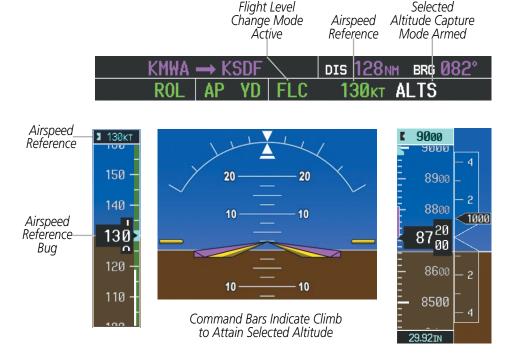


Figure 7-9 Flight Level Change Mode

VERTICAL NAVIGATION MODES (VPTH, ALTV)

NOTE: VNV is disabled when parallel track or dead reckoning mode is active.

NOTE: The Selected Altitude takes precedence over any other vertical constraints.

Vertical Navigation (VNV) flight control is available for enroute/terminal cruise and descent operations any time that VNV flight planning is available. Refer to the Flight Management Section for more information on VNV flight plans. Conditions for availability include, but are not limited to:

- The selected navigation source is GPS.
- A VNV flight plan (with at least one altitude-constrained waypoint) or vertical direct-to is active.
- VNV is enabled (**VNV ENBL** Softkey pressed on the MFD).
- Crosstrack error is valid and within certain limits.
- Desired/actual track are valid or track angle error is within certain limits.
- The VNV Target Altitude of the active waypoint is no more than 250 ft above the current aircraft altitude.

The Flight Director may be armed for VNV at any time, but no target altitudes are captured during a climb. The Command Bars provide vertical profile guidance based on specified altitudes (entered manually or loaded from the database) at waypoints in the active flight plan or vertical direct-to. The appropriate VNV flight control modes are sequenced by the Flight Director to follow the path defined by the vertical profile. Upon reaching the last waypoint in the VNV flight plan, the Flight Director transitions to Altitude Hold Mode and cancels any armed VNV modes.

VERTICAL PATH TRACKING MODE (VPTH)

NOTE: If another pitch mode key is pressed while Vertical Path Tracking Mode is selected, Vertical Path Tracking Mode reverts to armed.

NOTE: Pressing the **CWS** Button while Vertical Path Tracking Mode is active does not cancel the mode. The autopilot guides the aircraft back to the descent path upon release of the **CWS** Button.

When a vertical profile (VNV flight plan) is active and the **VNV** Key is pressed, Vertical Path Tracking Mode is armed in preparation for descent path capture. 'VPTH' (or '/V' when Glidepath or Glideslope Mode is concurrently armed) is annunciated in white in addition to previously armed modes. If applicable, the appropriate altitude capture mode is armed for capture of the next VNV Target Altitude (ALTV) or the Selected Altitude (ALTS), whichever is greater.

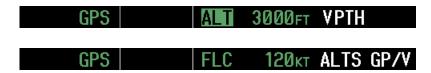
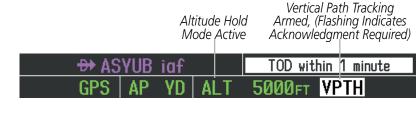


Figure 7-10 Vertical Path Tracking Armed Annunciations

APPENDICES



Prior to descent path interception, the Selected Altitude must be set below the current aircraft altitude by at least 75 feet. For the Flight Director to transition from Altitude Hold to Vertical Path Tracking Mode, acknowledgment is required within 5 minutes of descent path interception by:

- Pressing the **VNV** Key
- Adjusting the Selected Altitude

If acknowledgment is not received within 1 minute of descent path interception, the white 'VPTH' annunciation starts to flash. Flashing continues until acknowledged or the descent path is intercepted. If the descent is not confirmed by the time of interception, Vertical Path Tracking Mode remains armed and the descent is not captured.

In conjunction with the "TOD (top of descent) within 1 minute" annunciation in the Navigation Status Box and the "Vertical track" voice message, VNV indications (VNV Target Altitude, vertical deviation, and vertical speed required) appear on the PFD in magenta (Figure 7-11).

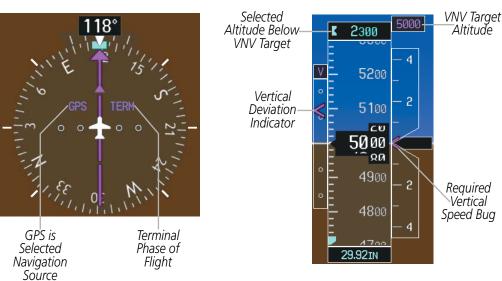


Figure 7-11 Vertical Path Capture

When a descent leg is captured, Vertical Path Tracking becomes active and tracks the descent profile. An altitude capture mode ('ALTS' or 'ALTV') is armed as appropriate.

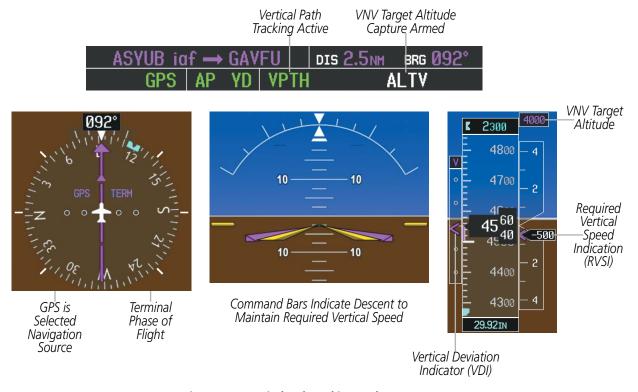


Figure 7-12 Vertical Path Tracking Mode

If the Altimeter's barometric setting is adjusted while Vertical Path Tracking is active, the Flight Director increases/decreases the descent rate by up to 500 fpm to re-establish the aircraft on the descent path (without commanding a climb). Adjusting the altimeter barometric setting creates discontinuities in VNV vertical deviation, moving the descent path. For large adjustments, it may take several minutes for the aircraft to reestablish on the descent path. If the change is made while nearing a waypoint with a VNV Target Altitude, the aircraft may not re-establish on the descent path in time to meet the vertical constraint.

AUTOMATIC REVERSION TO PITCH HOLD MODE

Several situations can occur while Vertical Path Tracking Mode is active which cause the Flight Director to revert to Pitch Hold Mode:

- Vertical deviation exceeds 200 feet during an overspeed condition.
- Vertical deviation experiences a discontinuity that both exceeds 200 feet in magnitude and results in the vertical deviation exceeding 200 feet in magnitude. Such discontinuities are usually caused by flight plan changes that affect the vertical profile.
- Vertical deviation becomes invalid (the Vertical Deviation Indicator is removed from the PFD).
- A display enters Reversionary Mode (this does not apply to an active vertical direct-to).

Unless VNV is disabled, Vertical Path Tracking Mode and the appropriate altitude capture mode become armed following the reversion to Pitch Hold Mode to allow for possible profile recapture.

Non-Path Descents

Pitch Hold, Vertical Speed, and Flight Level Change modes can also be used to fly non-path descents while VNV flight control is selected. If the **VS** or **FLC** Key is pressed while Vertical Path Tracking Mode is selected, Vertical Path Tracking Mode reverts to armed along with the appropriate altitude capture mode to allow profile re-capture.

Figure 7-13 Flight Level Change VNV Non-Path Descent

To prevent immediate profile re-capture, the following must be satisfied prior to profile re-capture:

- At least 10 seconds have passed since the non-path transition was initiated
- Vertical deviation from the profile has exceeded 250 feet, but is now less than 200 feet
 Pressing the VNV Key twice re-arms Vertical Path Tracking for immediate profile re-capture.

VNV TARGET ALTITUDE CAPTURE MODE (ALTV)

NOTE: Armed VNV Target Altitude and Selected Altitude capture modes are mutually exclusive. However, Selected Altitude Capture Mode is armed implicitly (not annunciated) whenever VNV Target Altitude Capture Mode is armed.

VNV Target Altitude Capture is analogous to Selected Altitude Capture Mode and is armed automatically after the **VNV** Key is pressed and the next VNV Target Altitude is to be intercepted before the Selected Altitude. The annunciation 'ALTV' indicates that the VNV Target Altitude is to be captured. VNV Target Altitudes are shown in the active flight plan or vertical direct-to, and can be entered manually or loaded from a database (see the Flight Management Section for details). At the same time as "TOD within 1 minute" is annunciated in the Navigation Status Box, the active VNV Target Altitude is displayed above the Vertical Speed Indicator (see Figure 7-11).

As the aircraft nears the VNV Target Altitude, the Flight Director automatically transitions to VNV Target Altitude Capture Mode with Altitude Hold Mode armed. This automatic transition is indicated by the green 'ALTV' annunciation flashing for up to 10 seconds and the appearance of the white 'ALT' annunciation. The VNV Target Altitude is shown as the Altitude Reference beside the 'ALTV' annunciation and remains displayed above the Vertical Speed Indicator. The Required Vertical Speed Indication (RVSI) is removed once VNV Target Altitude Capture Mode becomes active.

At 50 feet from the VNV Target Altitude, the Flight Director automatically transitions from VNV Target Altitude Capture to Altitude Hold Mode and tracks the level leg. As Altitude Hold Mode becomes active, the white 'ALT' annunciation moves to the active vertical mode field and flashes green for 10 seconds to indicate the automatic transition. The Flight Director automatically arms Vertical Path Tracking, allowing upcoming descent legs to be captured and subsequently tracked.

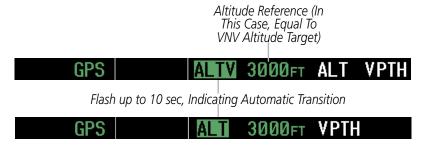


Figure 7-14 Automatic Mode Transitions During Altitude Capture

CHANGING THE VNV TARGET ALTITUDE

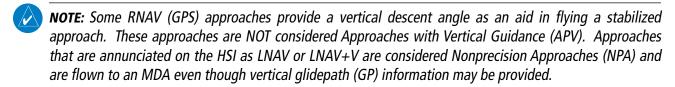
NOTE: Pressing the **CWS** Button while in VNV Target Altitude Capture Mode does not cancel the mode.

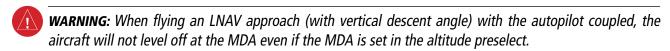
Changing the current VNV Target Altitude while VNV Target Altitude Capture Mode is active causes the Flight Director to revert to Pitch Hold Mode. Vertical Path Tracking and the appropriate altitude capture mode are armed in preparation to capture the new VNV Target Altitude or the Selected Altitude, depending on which altitude is to be intercepted first.

VNV target altitudes can be changed while editing the active flight plan (see the Flight Management Section for details).

GLIDEPATH MODE (GP) (SBAS ONLY)

NOTE: Refer to the Aircraft Flight Manual (AFM) to determine whether SBAS functionality is approved.

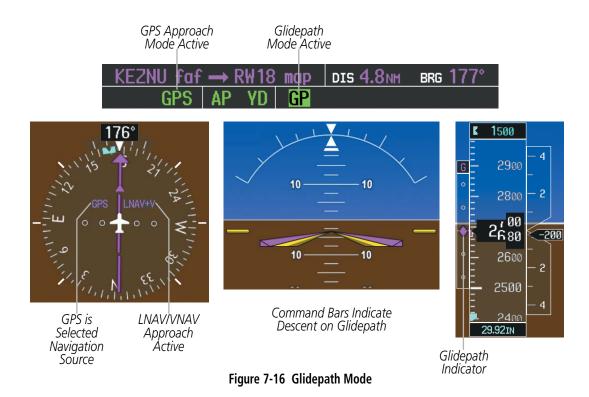



NOTE: Pressing the **CWS** Button while Glidepath Mode is active does not cancel the mode. The autopilot guides the aircraft back to the glidepath upon release of the **CWS** Button.

Glidepath Mode is available only in installations with GIA 63W IAUs when SBAS is available. Glidepath Mode is used to track the SBAS-based glidepath. When Glidepath Mode is armed, 'GP' is annunciated in white in the AFCS Status Box.

Selecting Glidepath Mode:

- 1) Ensure a GPS approach with vertical guidance (LPV, LNAV/VNAV, LNAV+V) is loaded into the active flight plan. The active waypoint must be part of the flight plan (cannot be a direct-to a waypoint not in the flight plan).
- 2) Ensure that GPS is the selected navigation source (use the CDI Softkey to cycle through navigation sources).
- 3) Press the APR Key.


Upon reaching the glidepath, the Flight Director transitions to Glidepath Mode and begins to capture and track the glidepath.

GPS | AP YD | VPTH | ALTS GP

Figure 7-15 Glidepath Mode Armed

Once the following conditions have been met, the glidepath can be captured:

- The active waypoint is at or after the final approach fix (FAF)
- Vertical deviation is valid
- The CDI is at less than full scale deviation
- Automatic sequencing of waypoints has not been suspended (no 'SUSP' annunciation on the HSI)

GARMIN.

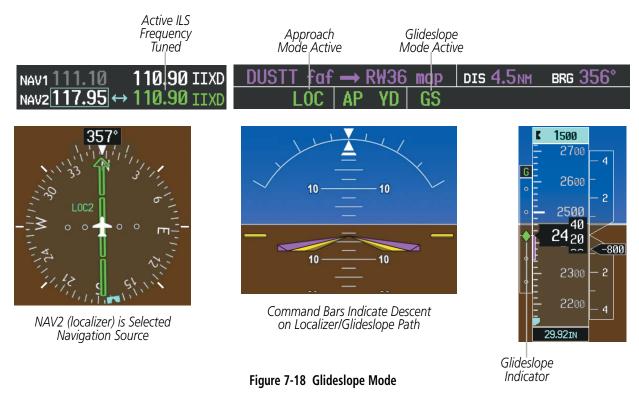
GLIDESLOPE MODE (GS)

NOTE: Pressing the **CWS** Button while Glideslope Mode is active does not cancel the mode. The autopilot quides the aircraft back to the glideslope upon release of the **CWS** Button.

Glideslope Mode is available for ILS approaches to capture and track the glideslope. When Glideslope Mode is armed (annunciated as 'GS' in white), LOC Approach Mode is armed as the lateral Flight Director mode.

Selecting Glideslope Mode:

- 1) Ensure a valid localizer frequency is tuned.
- 2) Ensure that LOC is the selected navigation source (use the CDI Softkey to cycle through navigation sources).
- **3)** Press the **APR** Key.

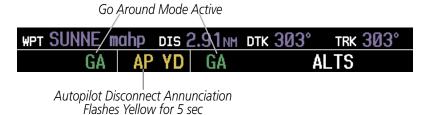

Or:

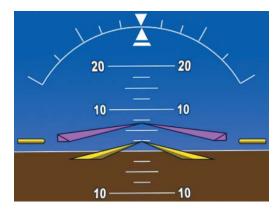
- 1) Ensure that GPS is the selected navigation source (use the CDI Softkey to cycle through navigation sources).
- **2)** Ensure an ILS approach is loaded into the active flight plan.
- 3) Ensure the corresponding LOC frequency is tuned.
- 4) Press the APR Key.

LOC HDG AP YD ALT 10000FT GS

Figure 7-17 Glideslope Mode Armed

Once LOC is the navigation source, the localizer and glideslope can be captured. Upon reaching the glideslope, the Flight Director transitions to Glideslope Mode and begins to capture and track the glideslope.




TAKEOFF (TO) AND GO AROUND (GA) MODES

In Takeoff and Go Around modes, the Flight Director commands a constant set pitch attitude. The **GO-AROUND** Switch is used to select both modes. The mode entered by the Flight Director depends on whether the aircraft is on the ground. Selected Altitude Capture Mode is automatically armed when Takeoff or Go Around Mode is selected.

Takeoff Mode provides an attitude reference during rotation and takeoff. This mode can be selected only while on the ground by pushing the **GO-AROUND** Switch. The Flight Director Command Bars assume a wings-level, pitch-up attitude. Autopilot engagement is inhibited while Takeoff Mode is active and the aircraft is on the ground.

Pressing the **GO-AROUND** Switch while in the air activates the Flight Director in a wings-level, pitch-up attitude, allowing the execution of a missed approach or a go around. Selecting Go Around Mode disengages the autopilot; however subsequent autopilot engagement is allowed. Attempts to modify the aircraft attitude (i.e., with the **NOSE UP/DN** Wheel or **CWS** Button) result in reversion to Pitch Hold Mode.

Command Bars Indicate Climb

Figure 7-19 Go Around Mode

Figure 7-20 Takeoff Mode

7.4 LATERAL MODES

The Garmin AFCS offers the lateral modes listed in Table 7-3. Refer to the Vertical Modes section for more information on Take-off and Go Around Modes.

Lateral Mode	Description	Control	Annunciation	Maximum Roll Command Limit
Roll Hold	Holds the current aircraft roll attitude or rolls the wings level, depending on the commanded bank angle	(default)	ROL	25°
Heading Select	Captures and tracks the Selected Heading	HDG Key	HDG	25°
Navigation, GPS		NAV Key	GPS	25°
Navigation, VOR Enroute Capture/Track	Captures and tracks the selected navigation source		VOR	25° Capture 10° Track
Navigation, LOC Capture/Track (No Glideslope)	(GPS, VOR, LOC)		LOC	25° Capture 10° Track
Navigation Backcourse Capture/Track	Captures and tracks a localizer signal for backcourse approaches		ВС	25° Capture 10° Track
Approach, GPS		APR Key	GPS	25°
Approach, VOR Capture/Track	Captures and tracks the selected navigation source		VAPP	25° Capture 10° Track
Approach, LOC Capture/Track (Glideslope Mode automatically armed)	(GPS, VOR, LOC)		LOC	25° Capture 10° Track
Takeoff	Commands a constant pitch	GO- AROUND Button	TO	Wings Level
Go Around	angle and wings level		GA	

The Garmin AFCS limits turn rate to 3 degrees per second (standard rate turn).

Table 7-3 Flight Director Lateral Modes

The **CWS** Button does not change lateral references for Heading Select, Navigation, Backcourse, or Approach modes. The autopilot guides the aircraft back to the Selected Heading/Course upon release of the **CWS** Button.

ROLL HOLD MODE (ROL)

NOTE: If Roll Hold Mode is activated as a result of a mode reversion, the Flight Director rolls the wings level.

When the Flight Director is activated, Roll Hold Mode is selected by default. This mode is annunciated as 'ROL' in the AFCS Status Box. The current aircraft bank angle is held, subject to the bank angle conditions listed in Table 7-4.

ROL PIT ALTS

Figure 7-21 Roll Hold Mode Annunciation

Bank Angle	Flight Director Response
< 6°	Rolls wings level
6 to 25°	Maintains current aircraft roll attitude
> 25°	Limits bank to 25°

Table 7-4 Roll Hold Mode Responses

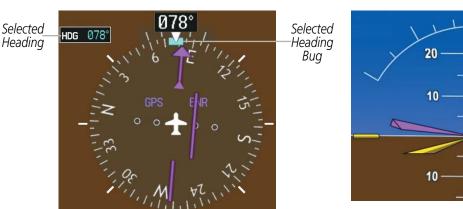
CHANGING THE ROLL REFERENCE

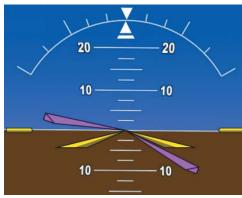
The roll reference can be changed by pressing the **CWS** Button, establishing the desired bank angle, then releasing the **CWS** Button.

HEADING SELECT MODE (HDG)

Heading Select Mode is activated by pressing the **HDG** Key. Heading Select Mode acquires and maintains the Selected Heading. The Selected Heading is shown by a cyan bug on the HSI and in the box to the upper left of the HSI.

CHANGING THE SELECTED HEADING




NOTE: Pressing the **HDG** Knob synchronizes the Selected Heading to the current heading.

The Selected Heading is adjusted using the **HDG** Knob. Pressing the **CWS** Button and hand-flying the aircraft does not change the Selected Heading. The autopilot guides the aircraft back to the Selected Heading upon release of the **CWS** Button.

Turns are commanded in the same direction as Selected Heading Bug movement, even if the bug is turned more than 180° from the present heading (e.g., a 270° turn to the right). However, Selected Heading changes of more than 340° at a time result in turn reversals.

Command Bars Track Selected Heading

Figure 7-22 Heading Select Mode

NAVIGATION MODES (GPS, VOR, LOC, BC)

NOTE: The selected navigation receiver must have a valid VOR or LOC signal or active GPS course for the Flight Director to enter Navigation Mode.

NOTE: When intercepting a flight plan leg, the Flight Director gives commands to capture the active leg at approximately a 45° angle to the track between the waypoints defining the active leg. The Flight Director does not give commands to fly to the starting waypoint of the active leg.

NOTE: When making a backcourse approach, set the Selected Course to the localizer front course.

Pressing the **NAV** Key selects Navigation Mode. Navigation Mode acquires and tracks the selected navigation source (GPS, VOR, LOC). The Flight Director follows GPS roll steering commands when GPS is the selected navigation source. When the navigation source is VOR or LOC, the Flight Director creates roll steering commands from the Selected Course and deviation. Navigation Mode can also be used to fly non-precision GPS and LOC approaches where glideslope capture is not required.

Backcourse Navigation Mode is selected when the localizer front course is greater than 105° from the aircraft heading. Backcourse Navigation Mode captures and tracks a localizer signal in the backcourse direction. The annunciation 'BC' in the AFCS Status Box indicates Backcourse Navigation Mode.

If the Course Deviation Indicator (CDI) shows greater than one dot when the **NAV** Key is pressed, the selected mode is armed. If the CDI is less than one dot, Navigation Mode is automatically captured when the **NAV** Key is pressed. The armed annunciation appears in white to the left of the active roll mode.

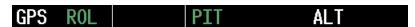


Figure 7-23 GPS Navigation Mode Armed

When the CDI has automatically switched from GPS to LOC during a LOC/ILS approach, GPS Navigation Mode remains active, providing GPS steering guidance until the localizer signal is captured. LOC Navigation Mode is armed when the automatic navigation source switch takes place. If the **APR** Key is pressed prior to the automatic navigation source switch, LOC Navigation Mode is armed.

If Navigation Mode is active and any of the following occur, the Flight Director reverts to Roll Hold Mode (wings rolled level):

- Different VOR tuned while in VOR Navigation Mode (VOR Navigation Mode reverts to armed)
- Navigation source manually switched (with the **CDI** Softkey)
- During a LOC/ILS approach the FAF is crossed while in GPS Navigation Mode after the automatic navigation source switch from GPS to LOC

APPENDICES

CHANGING THE SELECTED COURSE

The Selected Course is controlled using the **CRS** Knob (while in VOR, LOC, or OBS Mode). Pressing the **CWS** Button and hand-flying the aircraft does not change the Selected Course while in Navigation Mode. The autopilot guides the aircraft back to the Selected Course (or GPS flight plan) when the **CWS** Button is released.

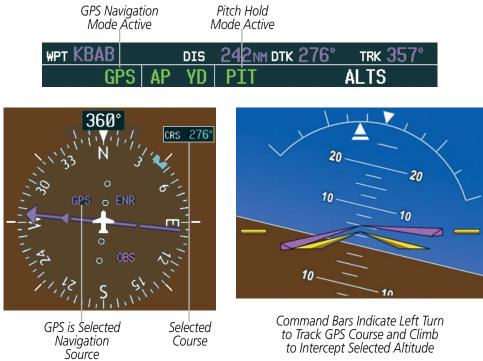


Figure 7-24 Navigation Mode

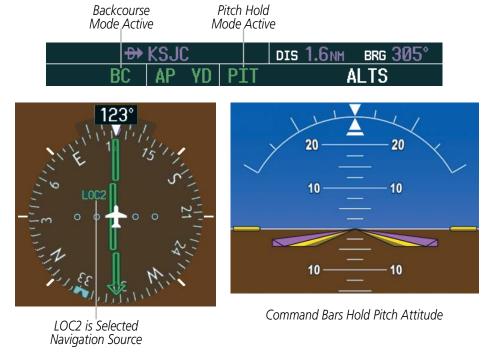


Figure 7-25 Backcourse Mode

APPROACH MODES (GPS, VAPP, LOC)

NOTE: The selected navigation receiver must have a valid VOR or LOC signal or active GPS course for the Flight Director to enter Approach Mode.

Approach Mode is activated when the **APR** Key is pressed. Approach Mode acquires and tracks the selected navigation source (GPS, VOR, or LOC), depending on loaded approach. This mode uses the selected navigation receiver deviation and desired course inputs to fly the approach. Pressing the **APR** Key when the CDI is greater than one dot arms the selected approach mode (annunciated in white to the left of the active lateral mode). If the CDI is less than one dot, the LOC is automatically captured when the **APR** Key is pressed.

VOR Approach Mode (VAPP) provides greater sensitivity for signal tracking than VOR Navigation Mode.

Selecting VOR Approach Mode:

- 1) Ensure a valid VOR frequency is tuned
- **2)** Ensure that VOR is the selected navigation source (use the **CDI** Softkey to cycle through navigation sources if necessary).
- **3)** Press the **APR** Key.

When GPS Approach Mode is armed, Glidepath Mode is also armed.

Selecting GPS Approach Mode:

- 1) Ensure a GPS approach is loaded into the active flight plan. The active waypoint must be part of the flight plan (cannot be a direct-to a waypoint not in the flight plan).
- **2)** Ensure that GPS is the selected navigation source (use the **CDI** Softkey to cycle through navigation sources if necessary).
- **3)** Press the **APR** Key.

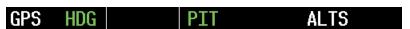


Figure 7-26 GPS Approach Mode Armed

LOC Approach Mode allows the autopilot to fly an LOC/ILS approach with a glideslope. When LOC Approach Mode is armed, Glideslope Mode is also armed automatically. LOC captures are inhibited if the difference between aircraft heading and localizer course exceeds 105°.

Selecting LOC Approach Mode:

- 1) Ensure a valid localizer frequency is tuned.
- **2)** Ensure that LOC is the selected navigation source (use the **CDI** Softkey to cycle through navigation sources if necessary).
- 3) Press the APR Key.

Or:

- 1) Ensure that GPS is the selected navigation source (use the **CDI** Softkey to cycle through navigation sources if necessary).
- 2) Ensure a LOC/ILS approach is loaded into the active flight plan.
- 3) Ensure the corresponding LOC frequency is tuned.
- 4) Press the APR Key.

If the following occurs, the Flight Director reverts to Roll Hold Mode (wings rolled level):

- Approach Mode is active and a Vectors-To-Final is activated
- Approach Mode is active and Navigation source is manually switched
- During a LOC/ILS approach, GPS Navigation Mode is active and the FAF is crossed after the automatic navigation source switch from GPS to LOC

CHANGING THE SELECTED COURSE

The Selected Course is controlled using the **CRS** Knob (while in VOR, LOC, or OBS Mode). Pressing the **CWS** Button and hand-flying the aircraft does not change the Selected Course while in Approach Mode. The autopilot guides the aircraft back to the Selected Course (or GPS flight plan) when the **CWS** Button is released.

INTERCEPTING AND FLYING A DME ARC

The AFCS will intercept and track a DME arc that is part of the active flight plan provided that GPS Navigation Mode is engaged, GPS is the active navigation source on the CDI, and the DME arc segment is the active flight plan leg. It is important to note that automatic navigation of DME arcs is based on GPS. Thus, even if the APR key is pressed and LOC or VOR Approach Mode is armed prior to reaching the Initial Approach Fix (IAF), Approach Mode will not activate until the arc segment is completed.

If the pilot decides to intercept the arc at a location other than the published IAF (i.e. ATC provides vectors to intercept the arc) and subsequently selects Heading Mode or Roll Mode, the AFCS will not automatically intercept or track the arc unless the pilot activates the arc leg of the flight plan and arms GPS Navigation Mode. The AFCS will not intercept and fly a DME arc before reaching an IAF that defines the beginning of the arc segment. Likewise, if at any point while established on the DME arc the pilot deselects GPS Navigation Mode, the AFCS will no longer track the arc.

7.5 AUTOPILOT AND YAW DAMPER OPERATION

NOTE: Refer to the AFM for specific instructions regarding emergency procedures.

The autopilot and yaw damper operate flight control surface servos to provide automatic flight control. The autopilot controls the aircraft pitch and roll attitudes following commands received from the Flight Director. Pitch autotrim provides trim commands to the pitch trim servo to relieve any sustained effort required by the pitch servo. The yaw damper reduces Dutch roll tendencies and coordinates turns.

FLIGHT CONTROL

Pitch and roll commands are provided to the servos, based on the active Flight Director modes. Servo motor control limits the maximum servo speed and torque. The servo mounts are equipped with slip-clutches set to certain values. This allows the servos to be overridden in case of an emergency.

PITCH AXIS AND PITCH TRIM

The autopilot pitch axis uses pitch rate to stabilize the aircraft pitch attitude during upsets and Flight Director maneuvers. Flight Director pitch commands are rate and attitude-limited, combined with pitch damper control, and sent to the pitch servo motor. The pitch servo measures the output effort (torque) and provides this signal to the pitch trim servo. The pitch trim servo commands the motor to reduce the average pitch servo effort.

When the autopilot is not engaged, the pitch trim servo may be used to provide manual electric trim. This allows the aircraft to be trimmed using a control stick switch rather than the trim wheel. Manual trim commands are generated only when both halves of the **MEPT** Switch are operated simultaneously. Trim speeds are scheduled with airspeed to provide more consistent response.

ROLL AXIS

The autopilot roll axis uses roll rate to stabilize aircraft roll attitude during upsets and Flight Director maneuvers. The Flight Director roll commands are rate- and attitude-limited, combined with roll damper control, and sent to the roll servo motor.

YAW AXIS

The yaw damper uses yaw rate and roll attitude to dampen the aircraft's natural Dutch roll response. It also uses lateral acceleration to coordinate turns. Yaw damper operation is independent of autopilot engagement.

ENGAGING THE AUTOPILOT AND YAW DAMPER

NOTE: Autopilot engagement/disengagement is not equivalent to servo engagement/disengagement. Use the **CWS** Button to disengage the pitch and roll servos while the autopilot remains active.

When the **AP** Key is pressed, the autopilot, yaw damper, and Flight Director are activated (if not already engaged). The Flight Director engages in Pitch and Roll Hold modes when initially activated. When the **YD** Key is pressed, the system engages the yaw damper independently of the autopilot (if not already engaged). Autopilot and yaw damper status are displayed in the center of the AFCS Status Box. Engagement is indicated by green 'AP' and 'YD' annunciations, respectively.

Figure 7-27 Autopilot and Yaw Damper Engaged

CONTROL WHEEL STEERING

During autopilot operation, the aircraft may be hand-flown without disengaging the autopilot. Pressing and holding the **CWS** Button disengages the pitch and roll servos from the flight control surfaces and allows the aircraft to be hand-flown. At the same time, the Flight Director is synchronized to the aircraft attitude during the maneuver. CWS activity has no effect on yaw damper engagement. The 'AP' annunciation is temporarily replaced by 'CWS' in white for the duration of CWS maneuvers.

In most scenarios, releasing the **CWS** Button reengages the autopilot with a new reference. Refer to the Flight Director modes section for CWS behavior in each mode.

Figure 7-28 CWS Annunciation

DISENGAGING THE AUTOPILOT AND YAW DAMPER

The autopilot is manually disengaged by pushing the **AP DISC** Switch, **AP TRIM** ARM Switch, or the **AP** Key on the MFD. Manual disengagement is indicated by a five-second flashing yellow 'AP' annunciation and a two-second autopilot disconnect aural alert. After manual disengagement, the autopilot disconnect aural alert may be cancelled by pushing the **AP TRIM** ARM or **AP DISC** Switch (**AP DISC** Switch also cancels the flashing 'AP' annunciation).

The **YD** Key or **AP DISC** Switch can be used to disengage the yaw damper. The 'YD' annunciation turns yellow and flashes for five seconds upon disengagement.

Figure 7-29 Manual Autopilot Disengagement

Automatic autopilot disengagement is indicated by a flashing red 'AP' annunciation and by the autopilot disconnect aural alert, which continue until acknowledged by pushing the **AP DISC** or **AP TRIM** ARM Switch.

Automatic disengagement occurs due to:

• System failure

- Invalid sensor data
- Inability to compute default flight director modes (FD also disengages automatically)
- Stall Warning

Figure 7-30 Automatic Autopilot Disengagement

Automatic yaw damper disengagement occurs when autopilot disengagement is caused by a failure in a parameter also affecting the yaw damper. This means that the yaw damper can remain operational in some cases where the autopilot automatically disengages. The yaw damper also disengages upon a localized failure in the yaw damper system.

Figure 7-31 Automatic Autopilot Disengagement

UNDERSPEED PROTECTION

Underspeed Protection is available when the optional Electronic Stability and Protection (ESP) system is installed and the autopilot is on. It is designed to discourage aircraft operation below minimum established airspeeds.

When the aircraft airspeed reaches speeds between 90 kts and 95 kts, a flashing yellow 'MINSPD' annunciation (Figure 7-32) will appear above the airspeed indicator. When the airspeed trend vector reaches a predetermined airspeed (specific to each flap setting), a single aural "AIRSPEED" will sound, alerting the pilot to the impending underspeed condition.

- Flaps UP 85 kts
- Flaps T/O 82 kts
- Flaps LDG 78 kts

Figure 7-32 MINSPD Annunciation

If the aircraft continues to decelerate, Underspeed Protection becomes active. How Underspeed Protection functions depends on which vertical Flight Director mode is selected. For the purpose of this discussion, the vertical Flight Director modes can be divided into two categories: Those in which it is important to maintain altitude for as long as possible (altitude-critical modes), and those in which maintaining altitude is less crucial (non-altitude critical modes).

ALTITUDE-CRITICAL MODES (ALT, GS, GP, TO, GA, FLC)

When the aircraft decelerates to stall warning, the lateral and vertical Flight Director modes will change from active to armed (Figure 7-33), and the autopilot will provide input causing the aircraft to pitch down and the wings to level.

Figure 7-33 Lateral and Vertical Flight Director Modes Armed

An aural "AIRSPEED" alert will sound every five seconds and a red "USP ACTIVE" annunciation (Figure 7-34) will appear to the right of the Vertical Speed Indicator. The pitch down force will continue until the aircraft reaches a pitch attitude at which IAS equals the IAS at which stall warning turns off, plus two knots.

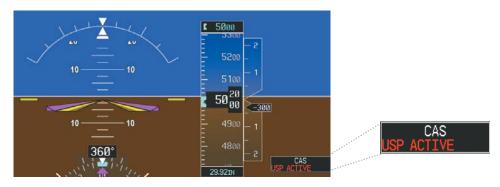


Figure 7-34 Underspeed Protect Active Annunciation

When airspeed increases (as a result of adding power/thrust) to above the IAS at which stall warning turns off, plus two knots, the autopilot will cause the aircraft to pitch up until recapturing the vertical reference and the vertical and lateral Flight Director modes will change from armed to active.

NON-ALTITUDE CRITICAL MODES (PIT, VS, VNAV, IAS)

When the aircraft decelerates to an IAS below the minimum commandable autopilot airspeed, a red "USP ACTIVE" annunciation (Figure 7-34) will appear to the right of the Vertical Speed Indicator. The vertical Flight Director mode will change from active to armed (Figure 7-35), and the autopilot will cause the aircraft to pitch down until reaching a pitch attitude at which IAS equals the minimum commandable autopilot airspeed.

Figure 7-35 Vertical Flight Director Mode Armed

When airspeed increases (as a result of adding power/thrust) to an IAS above the minimum commandable autopilot airspeed, the autopilot will cause the aircraft to pitch up until recapturing the vertical reference and the vertical Flight Director mode will change from armed to active.

7.6 EXAMPLE FLIGHT PLAN

NOTE: The following example flight plan and diagrams (not to be used for navigation) in this section are for instructional purposes only and should be considered not current. Numbered portions of accompanying diagrams correspond to numbered procedure steps.

This scenario-based set of procedures (based on the example flight plan found in the Flight Management Section) shows various Garmin AFCS modes used during a flight. In this scenario, the aircraft departs Charles B. Wheeler Downtown Airport (KMKC), enroute to Colorado Springs Airport (KCOS). After departure, the aircraft climbs to 12,000 ft and airway V4 is intercepted, following ATC vectors.

Airway V4 is flown to Salina VOR (SLN) using VOR navigation, then airway V244 is flown using GPS navigation. The ILS approach for runway 35L and LPV (WAAS) approach for runway 35R are shown and a missed approach is executed.

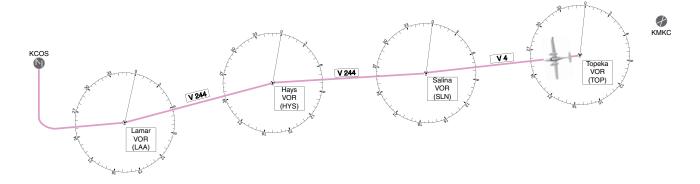


Figure 7-36 Flight Plan Overview

DEPARTURE

Climbing to the Selected Altitude and flying an assigned heading:

- 1) Before takeoff, set the Selected Altitude to 12,000 feet using the **ALT** Knob.
- 2) In this example, Vertical Speed Mode is used to capture the Selected Altitude (Pitch Hold, Vertical Speed, or Flight Level Change Mode may be used).
 - a) Press the **VS** Key to activate Vertical Speed Mode.

The Vertical Speed Reference may be adjusted after Vertical Speed Mode is selected using the **NOSE UP/ NOSE DN** Keys or pushing the **CWS** Button while hand-flying the aircraft to establish a new Vertical Speed Reference.

GARMIN

b) Press the **AP** Key to engage the autopilot in a climb using Vertical Speed Mode.

ROL AP YD VS 1 500 FPM ALTS

3) Use the **HDG** Knob to set the Selected Heading, complying with ATC vectors to intercept Airway V4.

Press the **HDG** Key to activate Heading Select Mode while the autopilot is engaged in the climb. The autopilot follows the Selected Heading Bug on the HSI and turns the aircraft to the desired heading.

HDG AP YD VS 1 500 FPM ALTS

4) As the aircraft nears the Selected Altitude, the Flight Director transitions to Selected Altitude Capture Mode, indicated by the green 'ALTS' annunciation flashing for up to 10 seconds.

HDG AP YD ALTS 12000 FT ALT

At 50 feet from the Selected Altitude, the green 'ALT' annunciation flashes for up to 10 seconds; the autopilot transitions to Altitude Hold Mode and levels the aircraft.

Figure 7-37 Departure

INTERCEPTING A VOR RADIAL

During climb-out, the autopilot continues to fly the aircraft in Heading Select Mode. Airway V4 to Salina VOR (SLN) should now be intercepted. Since the enroute flight plan waypoints correspond to VORs, Flight Director Navigation Mode using either VOR or GPS as the navigation source may be used. In this scenario, VOR Navigation Mode is used for navigation to the first VOR waypoint in the flight plan.

Intercepting a VOR radial:

- 1) Arm VOR Navigation Mode:
- a) Tune the VOR frequency.
- **b)** Press the **CDI** Softkey to set the navigation source to VOR.
- c) Use the **CRS** Knob to set the Selected Course to 255°. Note that at this point, the Flight Director is still in Heading Select Mode and the autopilot continues to fly 290°.
- **d)** Press the **NAV** Key. This arms VOR Navigation Mode and the white 'VOR' annunciation appears to the left of the active lateral mode.

VOR HDG AP YD ALT 12000FT

2) As the aircraft nears the Selected Course, the Flight Director transitions from Heading Select to VOR Navigation Mode and the 'VOR' annunciation flashes green. The autopilot begins turning to intercept the Selected Course.

VOR AP YD ALT 12000FT

3) The autopilot continues the turn until the aircraft is established on the Selected Course.

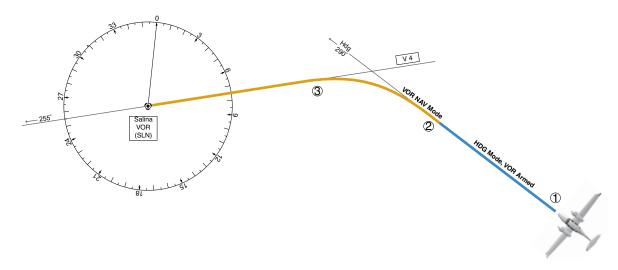


Figure 7-38 Intercepting a VOR Radial

FLYING A FLIGHT PLAN/GPS COURSE

NOTE: Changing the navigation source cancels Navigation Mode and causes the Flight Director to revert back to Roll Hold Mode (wings rolled level).

As the aircraft closes on Salina VOR, GPS is used to navigate the next leg, airway V244. The aircraft is currently tracking inbound on Airway V4.

Flying a GPS flight plan:

- 1) Transition from VOR to GPS Navigation Mode:
- a) Press the CDI Softkey until GPS is the selected navigation source.
- **b)** Press the **NAV** Key to activate GPS Navigation Mode. The autopilot guides the aircraft along the active flight plan leg.

GPS AP YD ALT 12000FT

2) Following the flight plan, the autopilot continues to steer the aircraft under GPS guidance. Note that in GPS Navigation Mode, course changes defined by the flight plan are automatically made without pilot action required.

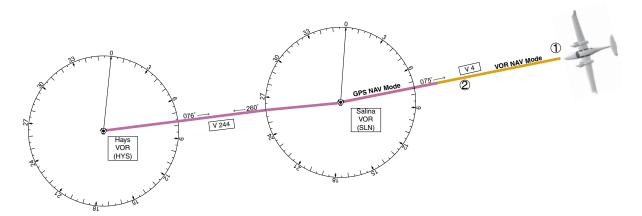


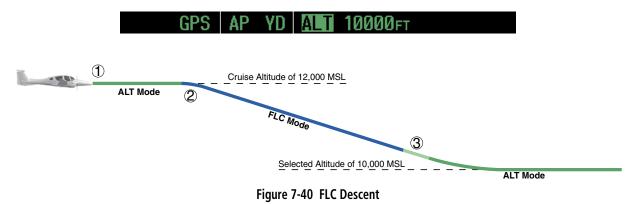
Figure 7-39 Transition to GPS Flight Plan

DESCENT

While flying the arrival procedure, the aircraft is cleared for descent in preparation for the approach to KCOS. Three methods are presented for the descent:

- Flight Level Change descent Flight Level Change Mode can be used to descend to the Selected Altitude at a constant airspeed. This descent method does not account for flight plan waypoint altitude constraints.
- Vertical Path Tracking descent Vertical Path Tracking Mode is used to follow the vertical descent path
 defined in the GPS flight plan. Altitude constraints correspond to waypoints in the flight plan. Before VNV
 flight control can provide vertical profile guidance, a VNV flight plan must be entered and enabled.
- Non-path descent in a VNV scenario A VNV flight plan is entered and enabled, however Pitch Hold, Vertical Speed, or Flight Level Change Mode can be used to descend to the VNV Target Altitude prior to reaching the planned TOD. Flight Level Change Mode is used in the example.

Flight Level Change descent:


- 1) Select Flight Level Change Mode:
 - a) Using the ALT Knob, set the Selected Altitude to 10,000 feet.
- **b)** Press the **FLC** Key to activate Flight Level Change Mode. The annunciation 'FLC' appears next to the Airspeed Reference, which defaults to the current aircraft airspeed. Selected Altitude Capture Mode is armed automatically.

GPS | AP YD | FLC | 130kt ALTS

- 2) Use the **NOSE UP/NOSE DN** Keys or push the **CWS** Button while hand-flying the aircraft to adjust the commanded airspeed while maintaining the same power, or reduce power to allow descent in Flight Level Change Mode while the autopilot maintains the current airspeed.
- **3)** As the aircraft nears the Selected Altitude, the Flight Director transitions to Selected Altitude Capture Mode, indicated by the green 'ALTS' annunciation flashing for up to 10 seconds.

GPS | AP YD | ALTS 10000 FT ALT

The green 'ALT' annunciation flashes for up to 10 seconds upon reaching 50 feet from the Selected Altitude; the autopilot transitions to Altitude Hold Mode and levels the aircraft.

Vertical Path Tracking descent to VNV Target Altitude:

- **1)** Select VNV flight control:
 - a) Press the **VNV** Key to arm Vertical Path Tracking Mode. The white annunciation 'VPTH' appears.

GPS AP YD ALT 12000 FT VPTH

- **b)** Using the **ALT** Knob, set the Selected Altitude below the flight plan's VNV Target Altitude of 10,000 feet.
 - If the Selected Altitude is not at least 75 ft below the VNV Target Altitude, the Flight Director captures the Selected Altitude rather than the VNV Target Altitude once Vertical Path Tracking Mode becomes active (ALTS is armed rather than ALTV).
- c) If Vertical Path Tracking Mode is armed more than 5 minutes prior to descent path capture, acknowledgment is required for the Flight Director to transition from Altitude Hold to Vertical Path Tracking Mode. To proceed with descent path capture if the white 'VPTH' annunciation begins flashing, do one of the following
 - Press the **VNV** Key
 - Turn the **ALT** Knob to adjust the Selected Altitude

If the descent is not confirmed by the time of interception, Vertical Path Tracking Mode remains armed and the descent is not captured.

2) When the top of descent (TOD) is reached, the Flight Director transitions to Vertical Path Tracking Mode and begins the descent to the VNV Target Altitude. Intention to capture the VNV Target Altitude is indicated by the white 'ALTV' annunciation.

GPS | AP YD | VPTH ALTV

3) As the aircraft nears the VNV Target Altitude, the Flight Director transitions to VNV Target Altitude Capture Mode, indicated by the green 'ALTV' annunciation flashing for up to 10 seconds.

GPS AP YD MENV10000FT ALT

The green 'ALT' annunciation flashes for up to 10 seconds upon reaching 50 feet from the VNV Target Altitude; the autopilot transitions to Altitude Hold Mode and levels the aircraft at the vertical waypoint.

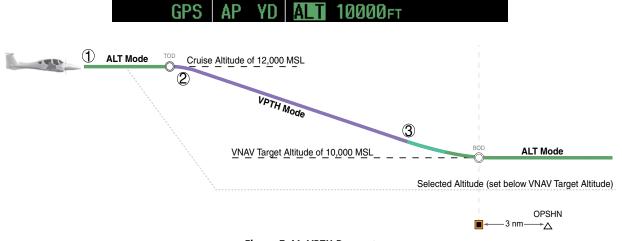


Figure 7-41 VPTH Descent

Non-path descent using Flight Level Change Mode:

- 1) Using Flight Level Change Mode, command a non-path descent to an intermediate altitude above the next VNV flight plan altitude:
 - **a)** Using the **ALT** Knob, set the Selected Altitude below the current aircraft altitude to an altitude (in this case 9,400 feet) at which to level off between VNV flight plan altitudes.
 - **b)** Press the **FLC** Key before the planned TOD during an altitude hold while VPTH is armed. The Airspeed Reference defaults to the current aircraft airspeed. Vertical Path Tracking and Selected Altitude Capture Mode are armed automatically.

GPS | AP YD | FLC 130kt ALTS VPTH

- 2) Reduce power to allow descent in Flight Level Change Mode. The autopilot maintains the Airspeed Reference.
- **3)** As the aircraft nears the Selected Altitude, the Flight Director transitions to Selected Altitude Capture Mode, indicated by the green 'ALTS' annunciation flashing for up to 10 seconds.

GPS AP YD ALTS 9400ft ALT VPTH

The green 'ALT' annunciation flashes for up to 10 seconds upon reaching 50 feet from the Selected Altitude; the autopilot transitions to Altitude Hold Mode and levels the aircraft. After leveling off, reset Selected Altitude at or below 9,000 ft.

GPS AP YD ALT 9400FT VPTH

4) When the next TOD is reached, Vertical Path Tracking becomes active (may require acknowledgment to allow descent path capture).

GPS | AP YD | VPTH | ALTV

5) As the aircraft nears the VNV Target Altitude, the Flight Director transitions to VNV Target Altitude Capture Mode, indicated by the green 'ALTV' annunciation flashing for up to 10 seconds.

GPS AP YD ALTV 9000FT ALT

The green 'ALT' annunciation flashes for up to 10 seconds upon reaching 50 feet from the VNV Target Altitude; the autopilot transitions to Altitude Hold Mode and levels the aircraft at the vertical waypoint.

GPS AP YD A 9000FT

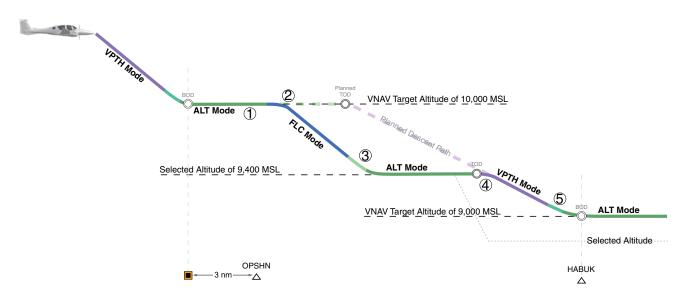


Figure 7-42 Non-path Descent

GARMIN

APPROACH

Flying an ILS approach:

- 1) Transition from GPS Navigation Mode to Heading Select Mode.
 - **a)** Select the Runway 35L ILS approach for KCOS and select 'VECTORS' for the transition. Load and activate the approach into the flight plan.
- **b)** Use the **HDG** Knob to set the Selected Heading after getting vectors from ATC.
- c) Press the **HDG** Key. The autopilot turns the aircraft to the desired heading.
- **d)** Use Heading Select Mode to comply with ATC vectors as requested.

HDG AP YD ALT 9000FT

- 2) Arm LOC Approach and Glideslope modes.
 - a) Ensure the appropriate localizer frequency is tuned.
 - **b)** Press the **APR** Key when cleared for approach to arm Approach and Glideslope modes. 'LOC' and 'GS' appear in white as armed mode annunciations.

LOC HDG AP YD ALT 9000FT GS

- **c)** The navigation source automatically switches to LOC. After this switch occurs, the localizer signal can be captured and the Flight Director determines when to begin the turn to intercept the final approach course. The Flight Director now provides guidance to the missed approach point.
- 3) There are two options available at this point, as the autopilot flies the ILS approach:
 - Push the **AP DISC** Switch at the decision height and land the aircraft.
- Use the **GA** Button to execute a missed approach.

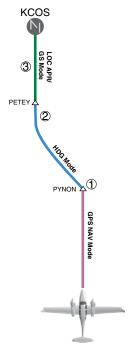


Figure 7-43 ILS Approach to KCOS

NOTE: Refer to the AFM to determine whether SBAS functionality is approved. Support for SBAS precision approaches is available only in installations with GIA 63Ws when SBAS is available.

Flying a RNAV GPS approach with vertical guidance:

- 1) Arm Flight Director modes for a RNAV GPS approach with vertical guidance:
- **a)** Make sure the navigation source is set to GPS (use **CDI** Softkey to change navigation source).
- **b)** Select the Runway 35R LPV approach for KCOS. Load and activate the approach into the flight plan.
- **2)** Press the **APR** Key once clearance for approach has been received. GPS Approach Mode is activated and Glidepath Mode is armed.

GPS | AP YD | VPTH ALTS GP

3) Once the glidepath is captured, Glidepath Mode becomes active. The Flight Director now provides guidance to the missed approach point.

GPS AP YD GP

- **4)** There are two options available at this point, as the autopilot flies the approach:
 - Push the **AP DISC** Switch at the Decision height and land the aircraft.
 - Use the **GA** Button to execute a missed approach.

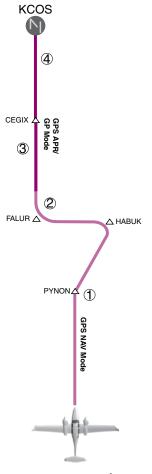


Figure 7-44 LPV Approach to KCOS

GO AROUND/MISSED APPROACH

NOTE: As a result of calculations performed by the system while flying the holding pattern, the display may re-size automatically and the aircraft may not precisely track the holding pattern as depicted on the PFD and MFD.

Flying a missed approach:

1) Push the **GO-AROUND** Button at the Decision Height and apply go around power to execute a missed approach. The Flight Director Command Bars establish a nose-up climb to follow. If flying an ILS or LOC approach the CDI also switches to GPS as the navigation source.

GA AP YD GA ALT

2) Start the climb to the prescribed altitude in the published Missed Approach Procedure (in this case, 10,000 ft). Press the **NAV** Key to have the autopilot fly to the hold.

GPS AP YD PIT ALT

3) Use the ALT Knob to set a Selected Altitude to hold.
To hold the current airspeed during the climb, press the FLC Key.

GPS AP YD FLC 100 kt ALTS

As the aircraft nears the Selected Altitude, the Flight Director transitions to Selected Altitude Capture Mode, indicated by the green 'ALTS' annunciation flashing for up to 10 seconds.

GPS | AP YD | ALTS 10000FT ALT

The green 'ALT' annunciation flashes for up to 10 seconds upon reaching 50 feet from the Selected Altitude; the autopilot transitions to Altitude Hold Mode and levels the aircraft.

GPS AP YD ALT 9000FT

4) The autopilot flies the holding pattern after the missed approach is activated. Annunciations are displayed in the Navigation Status Box, above the AFCS Status Box.

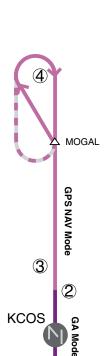


Figure 7-45 Go Around/Missed Approach

GARMIN

7.7 AFCS ANNUNCIATIONS AND ALERTS

AFCS STATUS ALERTS

The annunciations in Table 7-5 (listed in order of increasing priority) can appear on the PFD above the Airspeed and Attitude indicators. Only one annunciation may occur at a time, and messages are prioritized by criticality.

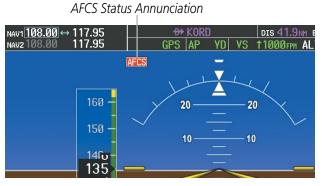


Figure 7-46 AFCS Status Annunciation

Alert Condition	Annunciation	Description
Rudder Mistrim Right	RUD→	Yaw servo providing sustained force in the indicated direction
Rudder Mistrim Left	← RUD	
Aileron Mistrim Right	AIL→	Roll servo providing sustained force in indicated direction
Aileron Mistrim Left	←AIL	
Elevator Mistrim Down	↓ELE	Pitch servo providing sustained force in the indicated direction
Elevator Mistrim Up	↑ELE	
Pitch Trim Failure		If AP engaged, take control of the aircraft and disengage AP
(or Stuck AP TRIM Switch)	PTRM	If AP disengaged, move AP TRIM switches separately to unstick
Yaw Damper Failure	WAY	YD control failure
Roll Failure	ROLL	Roll axis control failure; AP inoperative
Pitch Failure	PTCH	Pitch axis control failure; AP inoperative
System Failure	AFCS	AP and MET are unavailable; FD may still be available
Preflight Test	PFT	Performing preflight system test; aural alert sounds at completion Do not press the AP DISC Switch during servo power-up and preflight system tests. Doing so may cause the preflight system test to fail or never to start. Cycle power to the servos if this occurs.
	PFT	Preflight system test failed; aural alert sounds at failure

Table 7-5 AFCS Status Alerts

OVERSPEED PROTECTION

NOTE: Overspeed protection is not active in Altitude Hold, Glideslope or Glidepath Modes.

While Pitch Hold, Vertical Speed, Flight Level Change, Vertical Path Tracking, or an altitude capture mode is active, airspeed is monitored by the Flight Director and pitch commands are limited for overspeed protection. Overspeed protection is provided in situations where the Flight Director cannot acquire and maintain the mode reference for the selected vertical mode without exceeding the certified maximum autopilot airspeed.

When an autopilot overspeed condition occurs, the Airspeed Reference appears in a box above the Airspeed Indicator, flashing a yellow 'MAXSPD' annunciation. Engine power should be reduced and/or the pitch reference adjusted to slow the aircraft. The annunciation disappears when the overspeed condition is resolved.

Figure 7-47 Overspeed Annunciation

BLANK PAGE

SECTION 8 ADDITIONAL FEATURES

NOTE: Regardless of the availability of SafeTaxi®, ChartView, or FliteCharts®, it may be necessary to carry another source of charts on-board the aircraft.

Additional features of the G1000 include the following:

- Synthetic Vision Technology (SVT) (Optional)
- SafeTaxi[®] diagrams
- ChartView (optional) and FliteCharts[®] electronic charts
- Airport Directory
- SiriusXM Satellite Radio entertainment (Optional)
- Iridium Satellite Telephone and SMS text messaging (Optional)

- Electronic Stability and Protection (Garmin ESP[™]) System (Optional)
- Scheduler
- Electronic Checklists (Optional)
- Flight Data Logging
- Auxiliary Video (Optional)

The optional Synthetic Vision Technology (SVT) provides a three-dimensional forward view of terrain features on the PFD. SVT imagery shows the pilot's view of relevant features in relation to the aircraft attitude, as well as the flight path pertaining to the active flight plan.

SafeTaxi diagrams provide detailed taxiway, runway, and ramp information at more than 700 airports in the United States. By decreasing range on an airport that has a SafeTaxi diagram available, a close up view of the airport layout can be seen.

The FliteCharts and optional ChartView provide on-board electronic terminal procedures charts. Electronic charts offer the convenience of rapid access to essential information. Either ChartView or FliteCharts may be configured in the system, but not both.

The AOPA and optional AC-U-KWIK Airport Directories offer detailed information for a selected airport, such as available services, hours of operation, and lodging options. Either the AOPA or AC-U-KWIK database may be installed, but not both simultaneously.

The optional SiriusXM Satellite Radio entertainment audio feature of the GDL 69A Data Link Receiver handles more than 170 channels of music, news, and sports. SiriusXM Satellite Radio offers more entertainment choices and longer range coverage than commercial broadcast stations.

Satellite telephone is an optional subscription service offered through Garmin Flight Data Services and Iridium Satellite LLC. Voice and SMS messaging communications are through the Iridium Satellite Network.

The optional Garmin Electronic Stability and Protection (Garmin ESP^{TM}) system discourages aircraft operation outside the normal flight envelope.

The Scheduler feature can be used to enter and display short term or long term reminder messages such as Switch fuel tanks, Change oil, or Altimeter-Transponder Check in the Alerts Window on the PFD.

Optional checklists help to quickly find the proper procedure on the ground or during flight.

The Flight Data Logging feature automatically stores critical flight and engine data on an SD data card. Approximately 1,000 flight hours can be recorded for each 1GB of available space on the card.

The G1000 system provides a control and display interface to an optional auxiliary video system.

8.1 SYNTHETIC VISION TECHNOLOGY (SVT) (OPTIONAL)

WARNING: Use appropriate primary systems for navigation, and for terrain, obstacle, and traffic avoidance. SVT is intended as an aid to situational awareness only and may not provide either the accuracy or reliability upon which to solely base decisions and/or plan maneuvers to avoid terrain, obstacles, or traffic.

The optional Synthetic Vision Technology (SVT) is a visual enhancement to the G1000 Integrated Flight Deck. SVT depicts a forward-looking attitude display of the topography immediately in front of the aircraft. The field of view is 30 degrees to the left and 35 degrees to the right. SVT information is shown on the Primary Flight Display (PFD), or on the Multifunction Display (MFD) in Reversionary Mode (Figure 8-114). The depicted imagery is derived from the aircraft attitude, heading, GPS three-dimensional position, and a nine arc-second database of terrain, obstacles, and other relevant features. The terrain data resolution of nine arc-seconds, meaning that the terrain elevation contours are stored in squares measuring nine arc-seconds on each side, is required for the operation of SVT. Loss of any of the required data, including temporary loss of the GPS signal, will cause SVT to be disabled until the required data is restored.

The SVT terrain display shows land contours (colors are consistent with those of the topographical map display), large water features, towers, and other obstacles over 200' AGL that are included in the obstacle database. Cultural features on the ground such as roads, highways, railroad tracks, cities, and state boundaries are not displayed even if those features are found on the MFD map. The terrain display also includes a north–south east–west grid with lines oriented with true north and spaced at one arc-minute intervals to assist in orientation relative to the terrain.

The Terrain-SVS is integrated within SVT to provide visual and auditory alerts to indicate the presence of terrain and obstacle threats relevant to the projected flight path. Terrain alerts are displayed in red and yellow shading on the PFD.

The terrain display is intended for situational awareness only. It may not provide the accuracy or fidelity on which to base decisions and plan maneuvers to avoid terrain or obstacles. Navigation must not be predicated solely upon the use of the Terrain–SVT terrain or obstacle data displayed by the SVT.

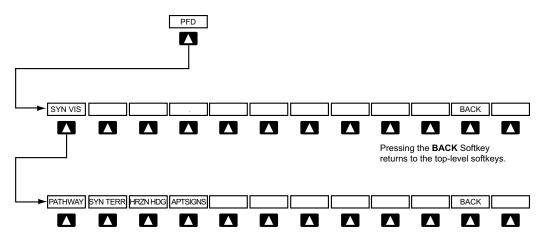
The following SVT enhancements appear on the PFD:

- Pathways
- Flight Path Marker
- Horizon Heading Marks
- Traffic Display

- Airport Signs
- Runway Display
- Terrain Alerting
- Obstacle Alerting

Figure 8-1 Synthetic Vision Imagery

SVT OPERATION


SVT is activated from the PFD using the softkeys located along the bottom edge of the display. Pressing the softkeys turns the related function on or off. When SVT is enabled, the pitch scale increments are reduced to 10 degrees up and 7.5 degrees down. The major pitch scale marks and numeric labels are shown at five degree increments.

SVT functions are displayed on three levels of softkeys. The **PFD** Softkey leads into the PFD function Softkeys, including synthetic vision. Pressing the **SYN VIS** Softkey displays the SVT feature softkeys. The softkeys are labeled **PATHWAY**, **SYN TERR**, **HRZN HDG**, and **APTSIGNS**. The **BACK** Softkey returns to the previous level of softkeys. Synthetic Terrain must be active before any other SVT feature may be activated.

HRZN HDG, **APTSIGNS**, and **PATHWAY** Softkeys are only available when the **SYN TERR** Softkey is activated (gray with black characters). After activating the **SYN TERR** Softkey, the **HRZN HDG**, **APTSIGNS**, and **PATHWAY** softkeys may be activated in any combination to display desired features. When system power is cycled, the last selected state (on or off) of the **SYN TERR**, **HRZN HDG**, **APTSIGNS**, and **PATHWAY** softkeys is remembered by the system.

- PATHWAY Softkey enables display of rectangular boxes that represent course guidance.
- **SYN TERR** Softkey enables synthetic terrain depiction.
- HRZN HDG Softkey enables horizon heading marks and digits.
- **APTSIGNS** Softkey enables airport signposts.

Pressing the BACK Softkey returns to the previous level of softkeys.

Figure 8-2 SVT Softkeys

Activating and deactivating SVT:

- 1) Press the PFD Softkey.
- 2) Press the SYN VIS Softkey.
- 3) Press the **SYN TERR** Softkey. The SVT display will cycle on or off with the **SYN TERR** Softkey.

Activating and deactivating Pathways:

- 1) Press the **PFD** Softkey.
- **2)** Press the **SYN VIS** Softkey.
- 3) Press the **PATHWAY** Softkey. The Pathway feature will cycle on or off with the **PATHWAY** Softkey.

Activating and deactivating Horizon Headings:

- 1) Press the **PFD** Softkey.
- 2) Press the **SYN VIS** Softkey.
- 3) Press the **HRZN HDG** Softkey. The horizon heading display will cycle on or off with the **HRZN HDG** Softkey.

Activating and deactivating Airport Signs:

- 1) Press the **PFD** Softkey.
- 2) Press the **SYN VIS** Softkey.
- 3) Press the **APTSIGNS** Softkey. Display of airport signs will cycle on or off with the **APTSIGNS** Softkey.

SVT FEATURES

Figure 8-3 SVT on the Primary Flight Display

NOTE: Pathways and terrain features are not a substitute for standard course and altitude deviation information provided by the altimeter, CDI, and VDI.

PATHWAYS

Pathways provide a three-dimensional perspective view of the selected route of flight shown as colored rectangular boxes representing the horizontal and vertical flight path of the active flight plan. The box size represents 700 feet wide by 200 feet tall during enroute, oceanic, and terminal flight phases. During an approach, the box width is 700 feet or one half full scale deviation on the HSI, whichever is less. The height is 200 feet or one half full scale deviation on the VDI, whichever is less. The altitude at which the pathway boxes are displayed is determined by the higher of either the selected altitude or the VNAV altitude programmed for the active leg in the flight plan (Figure 8-4).

The color of the rectangular boxes may be magenta, green, or white depending on the route of flight and navigation source selected. The active GPS or GPS overlay flight plan leg is represented by magenta boxes that correspond to the Magenta CDI. A localizer course is represented by green boxes that correspond to a green CDI. An inactive leg of an active flight plan is represented by white boxes corresponding to a white line drawn on the Inset map or MFD map indicating an inactive leg.

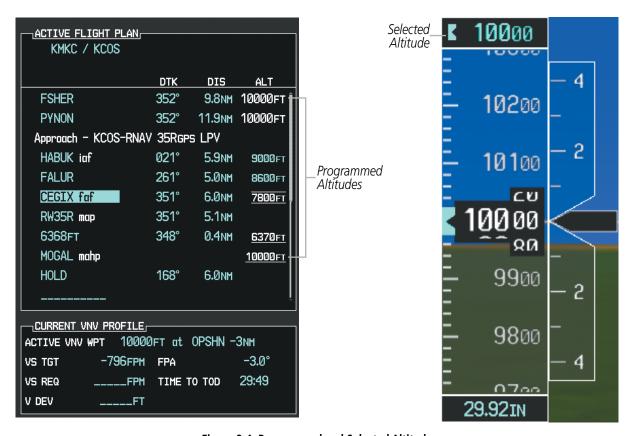


Figure 8-4 Programmed and Selected Altitude

Pathways provide supplemental glidepath information on an active ILS, LPV, LNAV/VNAV, and some LNAV approaches. Pathways are intended as an aid to situational awareness and should not be used independent of the CDI, VDI, glide path indicator, and glide slope indicator. They are removed from the display when the selected navigation information is not available. Pathways are not displayed beyond the active leg when leg sequencing is suspended and are not displayed on any portion of the flight plan leg that would lead to intercepting a leg in the wrong direction.

DEPARTURE AND ENROUTE

Prior to intercepting an active flight plan leg, pathways are displayed as a series of boxes with pointers at each corner that point in the direction of the active waypoint. Pathways are not displayed for the first leg of the flight plan if that segment is a Heading-to-Altitude leg. The first segment displaying pathways is the first active GPS leg or active leg with a GPS overlay. If this leg of the flight plan route is outside the SVT field of view, pathways will not be visible until the aircraft has turned toward this leg. While approaching the center of the active leg and prescribed altitude, the number of pathway boxes decreases to a minimum of four.

Pathways are displayed along the flight plan route at the highest of either the selected altitude or the programmed altitude for the leg. Climb profiles cannot be displayed due to the variables associated with aircraft performance. Flight plan legs requiring a climb are indicated by pathways displayed at a level above the aircraft at the altitude selected or programmed.

DESCENT AND APPROACH

Pathways are shown descending only for a programmed descent (Figures 8-5, 8-6). When the flight plan includes programmed descent segments, pathways are displayed along the descent path provided that the selected altitude is lower than the programmed altitude.

When an approach providing vertical guidance is activated, Pathways are shown level at the selected altitude or at the next programmed crossing altitude, Pathways are shown level at the selected altitude or at the next programmed crossing altitude, whichever is higher, up to the point along the final approach course where the altitude intercepts the extended vertical descent path, glidepath, or glideslope. From the vertical path descent, glidepath, or glideslope intercept point, the pathways are shown inbound to the Missed Approach Point (MAP) along the published lateral and vertical descent path.

During an ILS approach, the initial approach segment is displayed in magenta at the segment altitudes if GPS is selected as the navigation source on the CDI. When switching to localizer inbound with LOC selected as the navigation source on the CDI, pathways are displayed in green along the localizer and glide slope.

VOR, LOC BC, and ADF approach segments that are approved to be flown using GPS are displayed in magenta boxes. Segments that are flown using other than GPS or ILS, such as heading legs or VOR final approach courses are not displayed.

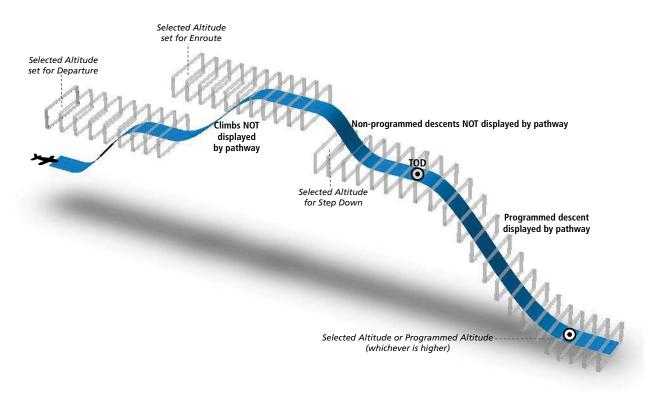


Figure 8-5 SVT Pathways, Enroute and Descent

MISSED APPROACH

Upon activating the missed approach, pathways lead to the Missed Approach Holding Point (MAHP) and are displayed as a level path at the published altitude for the MAHP, or the selected altitude, whichever is the highest. If the initial missed approach leg is a Course-to-Altitude (CA) leg, the pathways boxes will be displayed level at the altitude published for the MAHP. If the initial missed approach leg is defined by a course using other than GPS, pathways are not displayed for that segment. In this case, the pathways displayed for the next leg may be outside the field of view and will be visible when the aircraft has turned in the direction of that leg.

Pathways are displayed along each segment including the path required to track course reversals that are part of a procedure, such as holding patterns. Pathways boxes will not indicate a turn to a MAHP unless a defined geographical waypoint exists between the MAP and MAHP.

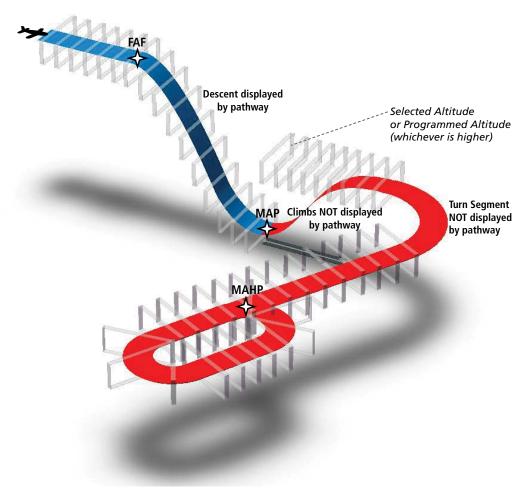


Figure 8-6 SVT Pathways, Approach, Missed Approach, and Holding

FLIGHT PATH MARKER

The Flight Path Marker (FPM), also known as a Velocity Vector, is displayed on the PFD at groundspeeds above 30 knots. The FPM depicts the approximate projected path of the aircraft accounting for wind speed and direction relative to the three-dimensional terrain display.

The FPM is always available when the Synthetic Terrain feature is in operation. The FPM represents the direction of the flight path as it relates to the terrain and obstacles on the display, while the airplane symbol represents the aircraft heading.

The FPM works in conjunction with the Pathways feature to assist the pilot in maintaining desired altitudes and direction when navigating a flight plan. When on course and altitude the FPM is aligned inside the pathway boxes as shown (Figure 8-7).

The FPM may also be used to identify a possible conflict with the aircraft flight path and distant terrain or obstacles. Displayed terrain or obstacles in the aircraft's flight path extending above the FPM could indicate a potential conflict, even before an alert is issued by the Terrain-SVS system. However, decisions regarding terrain and/or obstacle avoidance should not be made using only the FPM.

Figure 8-7 Flight Path Marker and Pathways

ZERO PITCH LINE

The Zero Pitch Line is drawn completely across the display and represents the horizon when the terrain horizon is difficult to distinguish from other terrain being displayed. It may not align with the terrain horizon, particularly when the terrain is mountainous or when the aircraft is flown at high altitudes.

HORIZON HEADING

The Horizon Heading is synchronized with the HSI and shows approximately 60 degrees of compass heading in 30-degree increments on the Zero Pitch Line. Horizon Heading tick marks and digits appearing on the zero pitch line are not visible behind either the airspeed or altitude display. Horizon Heading is used for general heading awareness, and is activated and deactivated by pressing the **HRZN HDG** Softkey.

TRAFFIC

WARNING: Intruder aircraft at or below 500 ft. AGL may not appear on the SVT display or may appear as a partial symbol.

Traffic symbols are displayed in their approximate locations as determined by the related traffic systems. Traffic symbols are displayed in three dimensions, appearing larger as they are getting closer, and smaller when they are further away. Traffic within 250 feet laterally of the aircraft will not be displayed on the SVT display. Traffic symbols and coloring are consistent with that used for traffic displayed in the Inset map or MFD traffic page. If the traffic altitude is unknown, the traffic will not be displayed on the SVT display. For more details refer to the traffic system discussion in the Hazard Avoidance section.

AIRPORT SIGNS

Airport Signs provide a visual representation of airport location and identification on the synthetic terrain display. When activated, the signs appear on the display when the aircraft is approximately 15 nm from an airport and disappear at approximately 4.5 nm. Airport signs are shown without the identifier until the aircraft is approximately eight nautical miles from the airport. Airport signs are not shown behind the airspeed or altitude display. Airport signs are activated and deactivated by pressing the **APTSIGNS** Softkey.

Figure 8-8 Airport Signs

RUNWAYS

WARNING: Do not use SVT runway depiction as the sole means for determining the proximity of the aircraft to the runway or for maintaining the proper approach path angle during landing.

NOTE: Not all airports have runways with endpoint data in the database, therefore, these runways are not displayed.

Runway data provides improved awareness of runway location with respect to the surrounding terrain. All runway thresholds are depicted at their respective elevations as defined in the database. In some situations, where threshold elevations differ significantly, crossing runways may appear to be layered. As runways are displayed, those within 45 degrees of the aircraft heading are displayed in white. Other runways will be gray in color. When an approach for a specific runway is active, that runway will appear brighter and be outlined with a white box, regardless of the runway orientation as related to aircraft heading. As the aircraft gets closer to the runway, more detail such as runway numbers and centerlines will be displayed.

Figure 8-9 Airport Runways

TERRAIN-SVS ALERTING

Terrain alerting on the synthetic terrain display is triggered by Forward-looking Terrain Avoidance (FLTA) alerts, and corresponds to the red and yellow X symbols on the Inset Map and MFD map displays. For more detailed information regarding Terrain-SVS, refer to the Hazard Avoidance Section.

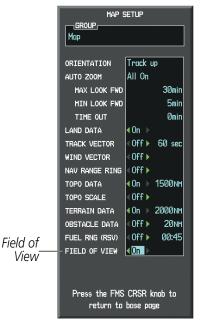
In some instances, a terrain or obstacle alert may be issued with no conflict shading displayed on the synthetic terrain. In these cases, the conflict is outside the SVT field of view to the left or right of the aircraft.

Figure 8-10 Terrain Alert

Obstacles are represented on the synthetic terrain display by standard two-dimensional tower symbols found on the Inset map and MFD maps and charts. Obstacle symbols appear in the perspective view with relative height above terrain and distance from the aircraft. Unlike the Inset map and MFD moving map display, obstacles on the synthetic terrain display do not change colors to warn of potential conflict with the aircraft's flight path until the obstacle is associated with an actual FLTA alert. Obstacles greater than 1000 feet below the aircraft altitude are not shown. Obstacles are shown behind the airspeed and altitude displays.

Figure 8-11 Obstacle

FIELD OF VIEW


The PFD field of view can be represented on the MFD Navigation Map Page. Two dashed lines forming a V-shape in front of the aircraft symbol on the map, represent the forward viewing area shown on the PFD.

Configuring field of view:

- 1) While viewing the Navigation Map Page, press the **MENU** Key to display the PAGE MENU.
- 2) Turn the large **FMS** Knob to highlight Map Setup and press the **ENT** Key.

Navigation Map Page OPTIONS Menu

Map Setup Menu, Map Group, Field of View Option

Figure 8-12 Option Menus

- **3)** Turn the **FMS** Knob to select the Map Group and press the **ENT** Key.
- 4) Turn the large **FMS** Knob to scroll through the Map Group options to FIELD OF VIEW.
- 5) Turn the small **FMS** Knob to select On or Off.
- **6)** Press the **FMS** Knob to return to the Navigation Map Page.

The following figure compares the PFD forward looking depiction with the MFD plan view and FIELD OF VIEW turned on.

SVT View on the PFD

Field of View on the MFD

Figure 8-13 PFD and MFD Field of View Comparison

8.2 SAFETAXI

SafeTaxi is an enhanced feature that gives greater map detail when viewing airports at close range. The maximum map ranges for enhanced detail are pilot configurable. When viewing at ranges close enough to show the airport detail, the map reveals taxiways with identifying letters/numbers, airport Hot Spots, and airport landmarks including ramps, buildings, control towers, and other prominent features. Resolution is greater at lower map ranges. When the MFD display is within the SafeTaxi ranges, the airplane symbol on the airport provides enhanced position awareness.

Designated Hot Spots are recognized at airports with many intersecting taxiways and runways, and/or complex ramp areas. Airport Hot Spots are outlined to caution pilots of areas on an airport surface where positional awareness confusion or runway incursions happen most often. Hot Spots are defined with a magenta circle or outline around the region of possible confusion.

Any map page that displays the navigation view can also show the SafeTaxi airport layout within the maximum configured range. The following is a list of pages where the SafeTaxi feature can be seen:

- Navigation Map Page
- Inset Map (PFD)
- Weather Datalink Page
- Airport Information Page
- Intersection Information Page
- NDB Information Page

- VOR Information Page
- User Waypoint Information Page
- Trip Planning Page
- Nearest Pages
- · Active and Stored Flight Plan Pages

During ground operations the aircraft's position is displayed in reference to taxiways, runways, and airport features. In the example shown, the aircraft is on taxiway Bravo inside the High Alert Intersection boundary on KSFO airport. Airport Hot Spots are outlined in magenta. When panning over the airport, features such as runway holding lines and taxiways are shown at the cursor.



Figure 8-14 SafeTaxi Depiction on the Navigation Map Page

The **DCLTR** Softkey (declutter) label advances to DCLTR-1, DCLTR -2, and DCLTR-3 each time the softkey is pressed for easy recognition of decluttering level. Pressing the **DCLTR** Softkey removes the taxiway markings and airport feature labels. Pressing the DCLTR-1 Softkey removes VOR station ID, the VOR symbol, and intersection names if within the airport plan view. Pressing the DCLTR-2 Softkey removes the airport runway layout, unless the airport in view is part of an active route structure. Pressing the **DCLTR-3** Softkey cycles back to the original map detail. Refer to Map Declutter Levels in the Flight Management Section.

Configuring SafeTaxi range:

- While viewing the Navigation Map Page, press the **MENU** Key to display the PAGE MENU.
- Turn the large **FMS** Knob to highlight the Map Setup Menu Option and press the **ENT** Key.

Figure 8-15 Navigation Map PAGE MENU, Map Setup Option

- **3)** Turn the **FMS** Knob to select the Aviation Group and press the **ENT** Key.
- **4)** Turn the large **FMS** Knob to scroll through the Aviation Group options to SAFETAXI.
- **5)** Turn the small **FMS** Knob to display the range of distances.
- **6)** Turn either **FMS** Knob to select the desired distance for maximum SafeTaxi display range.
- **7)** Press the **ENT** Key to complete the selection.
- 8) Press the FMS Knob to return to the Navigation Map Page.

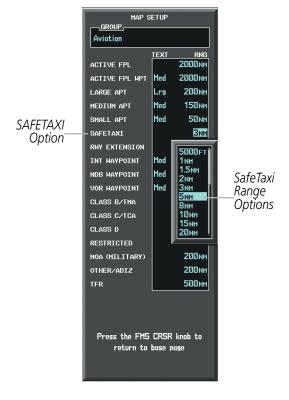


Figure 8-16 MAP SETUP Menu, Aviation Group, SAFETAXI Range Options

SafeTaxi database is revised every 56 days. SafeTaxi is always available for use after the expiration date. When turning on the system, the Power-up Page indicates whether the databases are current, out of date, or not available.

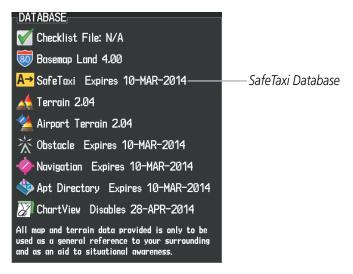


Figure 8-17 Power-up Page, SafeTaxi Database

Power-up Page Display	Definition
A→ SafeTaxi Expires 10-MAR-2014	Normal operation. SafeTaxi database is valid and within current cycle.
A→ SafeTaxi Expires 10-MAR-2014	SafeTaxi database has expired.
A→ SafeTaxi: N/A	Database card contains no SafeTaxi data.

Table 8-1 SafeTaxi Annunciation Definitions

The SafeTaxi Region, Version, Cycle, Effective date and Expires date of the database cycle can also be found on the AUX - System Status page, as seen in Figure 8-18.

Select the **MFD1 DB** Softkey to place the cursor in the DATABASE window. Scroll through the listed information by turning the **FMS** Knob or pressing the **ENT** Key until the SafeTaxi database information is shown.

The SafeTaxi database cycle number shown in the figure, 14S1, is deciphered as follows:

- 14 Indicates the year 2014
- S Indicates the data is for SafeTaxi
- 1 Indicates the first issue of the SafeTaxi database for the year

The SafeTaxi EFFECTIVE date 13–JAN–14 is the beginning date for the current database cycle. SafeTaxi EXPIRES date 10–MAR–14 is the revision date for the next database cycle.

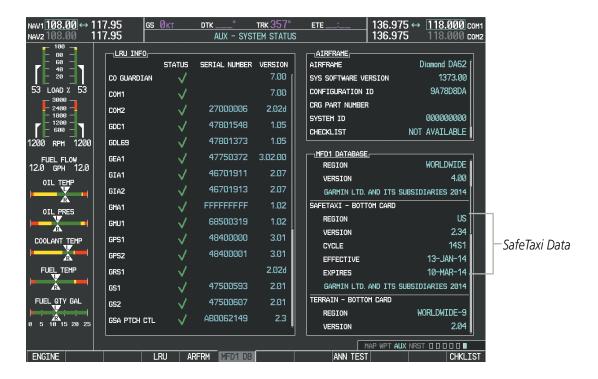


Figure 8-18 AUX – System Status Page, SafeTaxi Current Information

SafeTaxi information appears in blue and yellow text. The EFFECTIVE date appears in blue when data is current and in yellow when the current date is before the effective date. The EXPIRES date appears in blue when data is current and in yellow when expired (Figures 8-18 and 8-19). NOT AVAILABLE appears in blue in the REGION field if SafeTaxi data is not available on the database card (Figure 8-19). An expired SafeTaxi database is not disabled and will continue to function indefinitely.

Press the **MFD1 DB** Softkey a second time. The softkey label will change to **PFD1 DB**. The DATABASE window will now be displaying database information for PFD1. As before, scroll through the listed information by turning the **FMS** Knob or pressing the **ENT** Key until the SafeTaxi database information is shown.

Refer to Updating Garmin Databases in Appendix B for instructions on revising the SafeTaxi database.

Current Date is before Effective Date

SafeTaxi Database has Expired

SafeTaxi Database Not Installed

Figure 8-19 AUX – System Status Page, SafeTaxi Database Status

8.3 CHARTVIEW (OPTIONAL)

ChartView resembles the paper version of Jeppesen terminal procedures charts. The charts are displayed in full color with high-resolution. The MFD depiction shows the aircraft position on the moving map in the planview of approach charts and on airport diagrams. Airport Hot Spots are outlined in magenta.

The geo-referenced aircraft position is indicated by an aircraft symbol displayed on the chart when the current position is within the boundaries of the chart. Inset boxes (Figure 8-20) are not considered within the chart boundaries. Therefore, when the aircraft symbol reaches a chart boundary line, or inset box, the aircraft symbol is removed from the display.

Figure 8-20 shows examples of off-scale areas, indicated by the grey shading. Note, the grey shading is for illustrative purposes only and will not appear on the published chart or MFD display. These off-scale areas appear on the chart to convey supplemental information. However, the depicted geographical position of this information, as it relates to the chart planview, is not the actual geographic position. Therefore, when the aircraft symbol appears within one of these areas, the aircraft position indicated is relative to the chart planview, not to the off-scale area.

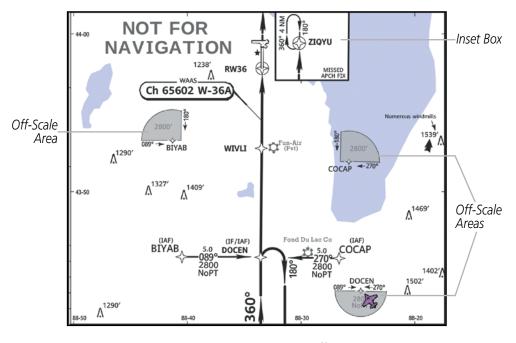


Figure 8-20 Sample Chart Indicating Off-Scale Areas

NOTE: Do not maneuver the aircraft based solely upon the geo-referenced aircraft symbol.

The ChartView database subscription is available from Jeppesen, Inc. Available data includes:

• Arrivals (STAR)

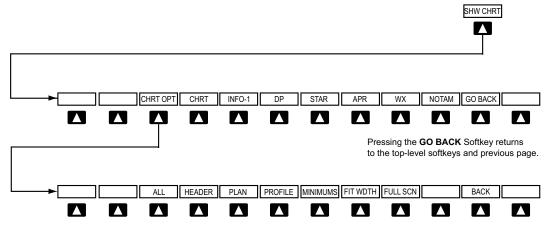
• Airport Diagrams

• Departure Procedures (DP)

• NOTAMs

• Approaches

APPENDICES


CHARTVIEW SOFTKEYS

ChartView functions are displayed on three levels of softkeys. While on the Navigation Map Page, Nearest Airports Page, or Flight Plan Page, pressing the **SHW CHRT** Softkey displays the available terminal chart and advances to the chart selection level of softkeys: **CHRT OPT**, **CHRT**, **INFO-1/INFO-2**, **DP**, **STAR**, **APR**, **WX**, **NOTAM**, and **GO BACK**. The chart selection softkeys shown below appear on the Airport Information Page.

Pressing the **GO BACK** Softkey reverts to the top level softkeys and previous page.

Pressing the **CHRT OPT** Softkey advances to the next level of softkeys: **ALL**, **HEADER**, **PLAN**, **PROFILE**, **MINIMUMS**, **FIT WDTH**, **FULL SCN**, and **BACK**.

While viewing the **CHRT OPT** Softkeys, after 45 seconds of softkey inactivity, the system reverts to the chart selection softkeys.

Pressing the **BACK** Softkey returns to the Chart Selection Softkeys.

Figure 8-21 ChartView SHW CHRT, Chart Selection, and Chart Option Softkeys

TERMINAL PROCEDURES CHARTS

Selecting Terminal Procedures Charts:

While viewing the Navigation Map Page, Nearest Airport Page, or Flight Plan Page, press the **SHW CHRT** Softkey.

Or:

- 1) Press the **MENU** Key to display the PAGE MENU.
- **2)** Turn the large **FMS** Knob to scroll through the OPTIONS Menu to Show Chart.
- **3)** Press the **ENT** Key to display the chart.

Navigation Map Page OPTIONS Menu

Waypoint Airport Information Page OPTIONS Menu

Figure 8-22 Option Menus

When no terminal procedure chart is available for the nearest airport or the selected airport, the banner CHART NOT AVAILABLE appears on the screen. The CHART NOT AVAILABLE banner does not refer to the Jeppesen subscription, but rather the availability of a particular airport chart selection or procedure for a selected airport.

Figure 8-23 Chart Not Available Banner

If there is a problem in rendering the data (such as a data error or a failure of an individual chart), the banner UNABLE TO DISPLAY CHART is then displayed.

Figure 8-24 Unable To Display Chart Banner

When a chart is not available by pressing the **SHW CHRT** Softkey or selecting a Page Menu Option, charts may be obtained for other airports from the WPT Pages or Flight Plan Pages.

If a chart is available for the destination airport, or the airport selected in the active flight plan, the chart appears on the screen. When no flight plan is active, or when not flying to a direct-to destination, pressing the **SHW CHRT** Softkey displays the chart for the nearest airport, if available.

The chart shown is one associated with the WPT – Airport Information page. Usually this is the airport runway diagram. Where no runway diagram exists, but Take Off Minimums or Alternate Minimums are available, that page appears. If Airport Information pages are unavailable, the Approach Chart for the airport is shown.

Selecting a chart:

- 1) While viewing the Navigation Map Page, Flight Plan Page, or Nearest Airports Page, press the **SHW CHRT** Softkey. The airport diagram or approach chart is displayed on the Airport Information Page.
- 2) Press the **FMS** Knob to activate the cursor.
- 3) Turn the large **FMS** Knob to select either the Airport Identifier Box or the Approach Box. (Press the **APR** Softkey if the Approach Box is not currently shown).
- 4) Turn the small and large **FMS** Knob to enter the desired airport identifier.
- **5)** Press the **ENT** Key to complete the airport selection.
- **6)** Turn the large **FMS** Knob to select the Approach Box.
- 7) Turn the small **FMS** Knob to show the approach chart selection choices.
- **8)** Turn either **FMS** Knob to scroll through the available charts.
- **9)** Press the **ENT** Key to complete the chart selection.

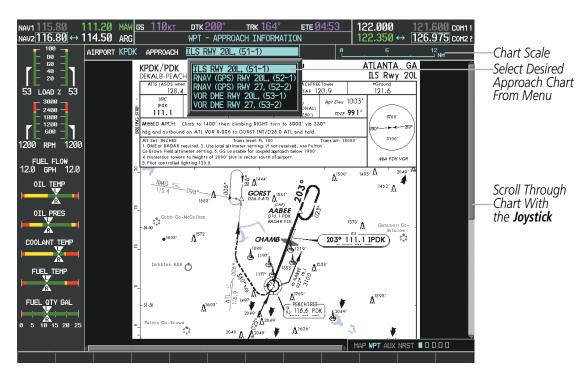


Figure 8-25 Approach Information Page, Chart Selection

While the APPROACH Box is selected using the **FMS** Knob, the G1000 softkeys are blank. Once the desired chart is selected, the chart scale can be changed and the chart page can be scrolled using the **Joystick**. Pressing the **Joystick** centers the chart on the screen.

The aircraft symbol is shown on the chart only if the chart is to scale and the aircraft position is within the boundaries of the chart. The aircraft symbol is not displayed when the Aircraft Not Shown Icon appears (Figure 8-29). If the Chart Scale Box displays a banner NOT TO SCALE, the aircraft symbol is not shown. The Aircraft Not Shown Icon may appear at certain times, even if the chart is displayed to scale.

Pressing the **CHRT** Softkey switches between the ChartView diagram and the associated map in the WPT page group. In the example shown, the **CHRT** Softkey switches between the Colorado Springs, CO (KCOS) Airport Diagram and the navigation map on the WPT – Airport Information page.

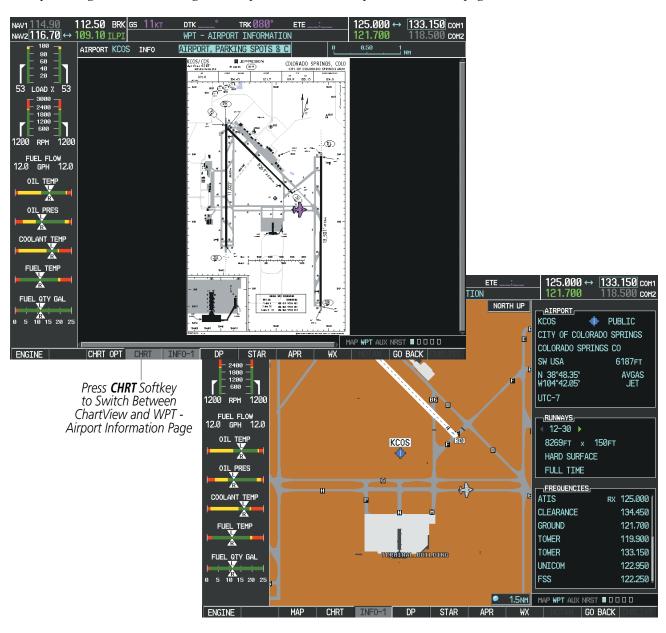


Figure 8-26 CHRT Softkey, Airport Information Page

Pressing the **INFO-1** or **INFO-2** Softkey returns to the airport diagram when the view is on a different chart. If the displayed chart is the airport diagram, the **INFO-1** or **INFO-2** Softkey has no effect.

The aircraft position is shown in magenta on the ChartView diagrams when the location of the aircraft is within the chart boundaries. In the example shown, the aircraft is turning onto Taxiway Romeo on the Charlotte, NC (KCLT) airport.

Another source for additional airport information is from the INFO Box above the chart for certain airports. This information source is not related to the **INFO-1** or **INFO-2** Softkey. When the INFO Box is selected using the **FMS** Knob, the G1000 softkeys are blank. The Charlotte, NC airport has five additional charts offering information; the Airport Diagram, Take-off Minimums, Class B Airspace, Airline Parking Gate Coordinates, and Airline Parking Gate Location. (The numbers in parentheses after the chart name are Jeppesen designators.)

Figure 8-27 Airport Information Page, INFO View, Full Screen Width

APPENDICES

In the example shown in Figure 8-27, the Class B Chart is selected. Pressing the **ENT** Key displays the Charlotte Class B Airspace Chart (Figure 8-28).

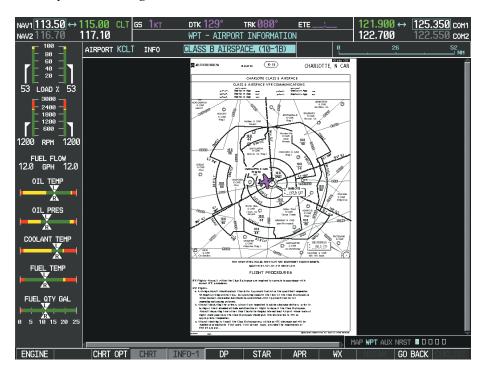


Figure 8-28 Airport Information Page, Class B Chart Selected from INFO View

Pressing the **DP** Softkey displays the Departure Procedure Chart if available.

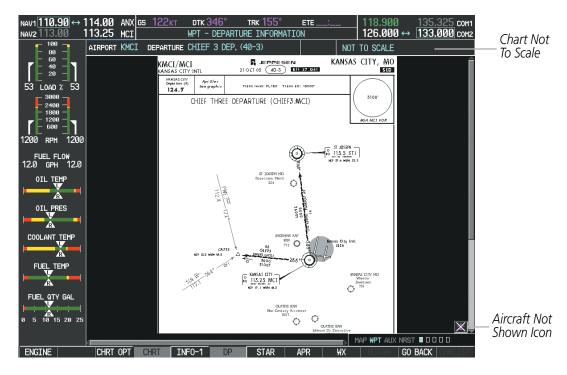


Figure 8-29 Departure Information Page

Pressing the **STAR** Softkey displays the Standard Terminal Arrival Chart if available.

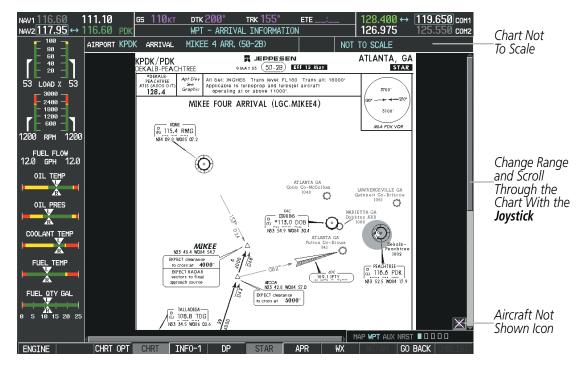
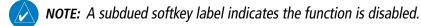


Figure 8-30 Arrival Information Page

Pressing the **APR** Softkey displays the approach chart for the airport if available.


Figure 8-31 Approach Information Page

Pressing the **WX** Softkey shows the airport weather frequency information, and includes weather data such as METAR and TAF from the XM Data Link Receiver, when available. Weather information is available only when an XM Data Link Receiver is installed and the SiriusXM Satellite Weather subscription is current.

Figure 8-32 Weather Information Page

Recent NOTAMS applicable to the current ChartView cycle are included in the ChartView database. Pressing the **NOTAM** Softkey shows the local NOTAM information for selected airports, when available. When NOTAMS are not available, the **NOTAM** Softkey label appears subdued and is disabled as shown in Figure 8-32. The **NOTAM** Softkey may appear on the Airport Information Page and all of the chart page selections.

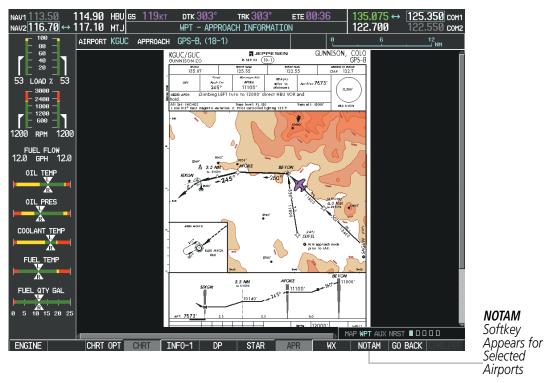


Figure 8-33 NOTAM Softkey Highlighted

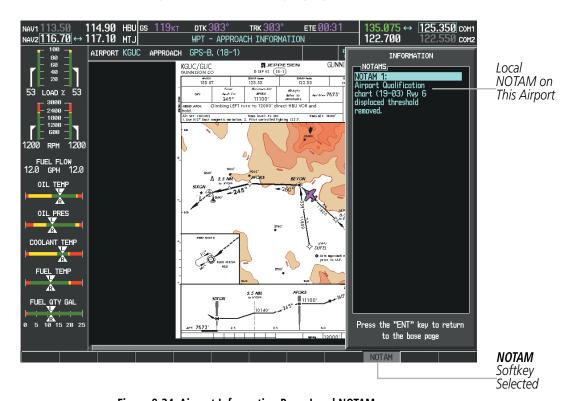


Figure 8-34 Airport Information Page, Local NOTAMs

Pressing the **NOTAM** Softkey again removes the NOTAMS information.

Pressing the **GO BACK** Softkey reverts to the previous page (Navigation Map Page, Nearest Pages, or Flight Plan Page).

APPENDICES

CHART OPTIONS

Pressing the **CHRT OPT** Softkey displays the next level of softkeys, the chart options level (Figure 8-21). Pressing the **ALL** Softkey shows the complete approach chart on the screen.

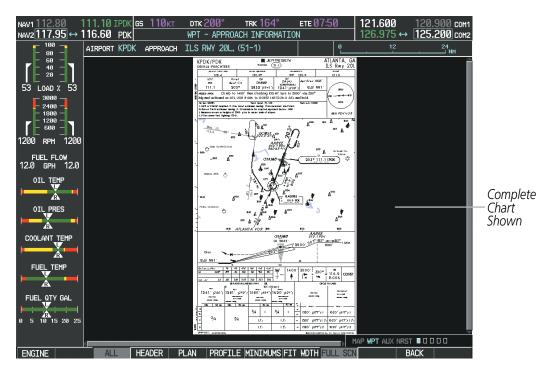


Figure 8-35 Approach Information Page, ALL View

GARMIN

Pressing the **HEADER** Softkey shows the header view (approach chart briefing strip) on the screen.

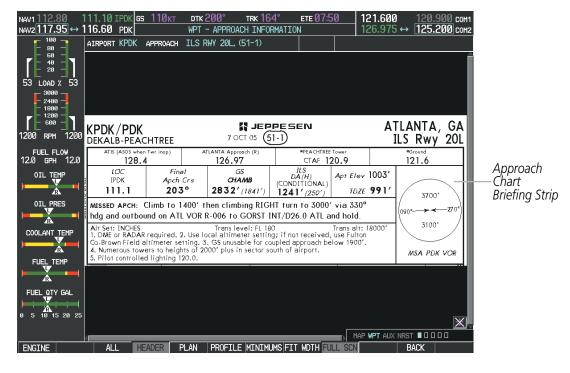


Figure 8-36 Approach Information Page, Header View

Pressing the **PLAN** Softkey shows the approach chart two dimensional plan view.

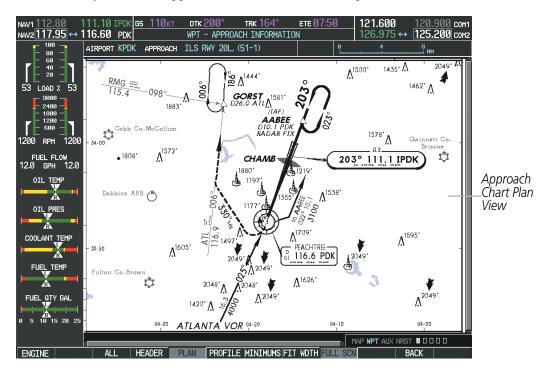


Figure 8-37 Approach Information Page, Plan View

Pressing the **PROFILE** Softkey displays the approach chart descent profile strip.

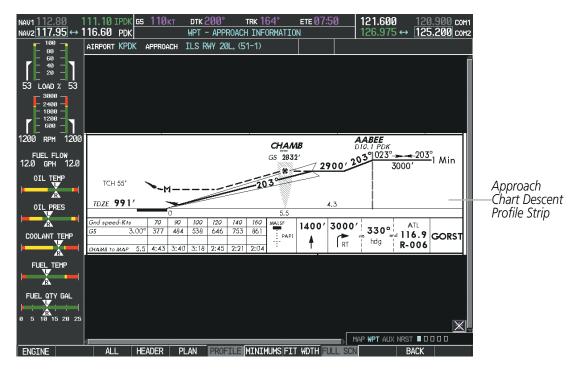


Figure 8-38 Approach Information Page, Profile View, Full Screen Width

Pressing the **MINIMUMS** Softkey displays the minimum descent altitude/visibility strip at the bottom of the approach chart.

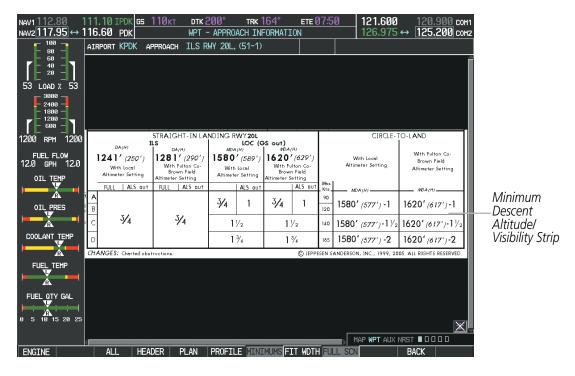


Figure 8-39 Approach Information Page, Minimums View, Full Screen Width

If the chart scale has been adjusted to view a small area of the chart, pressing the **FIT WIDTH** Softkey changes the chart size to fit the available screen width.

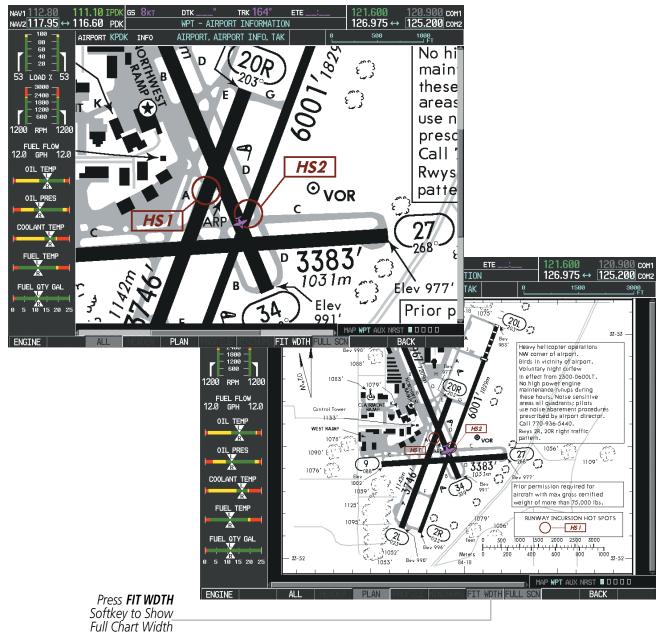


Figure 8-40 Airport Information Page, FIT WDTH Softkey Pressed

Pressing the **FULL SCN** Softkey alternates between removing and replacing the data window to the right.

Selecting Additional Information:

- 1) While viewing the Airport Taxi Diagram, press the **FULL SCN** Softkey to display the information windows (AIRPORT, INFO).
- **2)** Press the **FMS** Knob to activate the cursor.
- 3) Turn the large **FMS** Knob to highlight the AIRPORT, INFO, RUNWAYS, or FREQUENCIES Box (INFO Box shown).
- **4)** Turn the small **FMS** Knob to select the INFO Box choices. If multiple choices are available, scroll to the desired choice with the large **FMS** Knob and press the **ENT** Key to complete the selection.
- **5)** Press the **FMS** Knob again to deactivate the cursor.

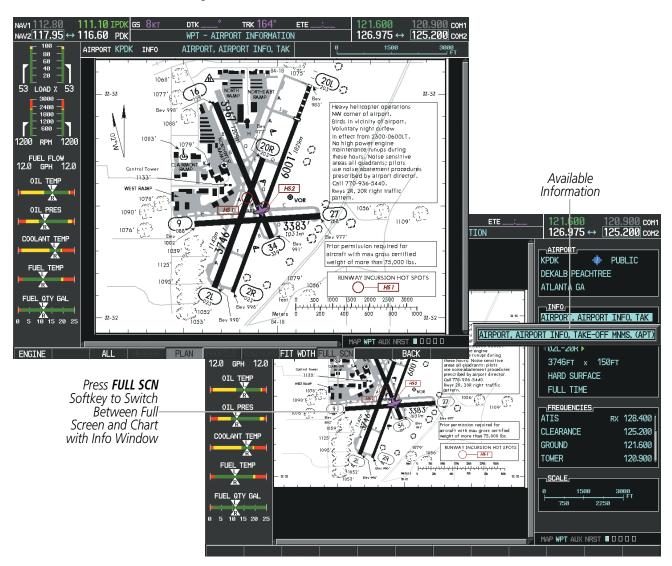


Figure 8-41 Airport Information Page, Full Screen and Info Window

Pressing the **BACK** Softkey, or waiting for 45 seconds reverts to the chart selection softkeys.

GARMIN

The full screen view can also be selected by using the page menu option.

Selecting full screen On or Off:

- 1) While viewing a terminal chart press the **MENU** Key to display the Page Menu OPTIONS.
- 2) Turn the large FMS Knob to highlight the Chart Setup Menu Option and press the ENT Key.
- 3) Turn the large FMS Knob to move between the FULL SCREEN and COLOR SCHEME Options.
- 4) Turn the small FMS Knob to choose between the On and Off Full Screen Options.

Chart Setup Option

Full Screen On/Off Selection

Figure 8-42 Page Menus

DAY/NIGHT VIEW

ChartView can be displayed on a white or black background for day or night viewing. The Day View offers a better presentation in a bright environment. The Night View gives a better presentation for viewing in a dark environment. When the CHART SETUP Box is selected the G1000 softkeys are blank.

Selecting Day, Night, or Automatic View:

- 1) While viewing a terminal chart press the **MENU** Key to display the Page Menu OPTIONS.
- 2) Turn the large **FMS** Knob to highlight the Chart Setup Menu Option and press the **ENT** Key.

Figure 8-43 Waypoint Information Page, OPTIONS Menu

- **3)** Turn the large **FMS** Knob to move to the COLOR SCHEME Option (Figure 8-44).
- 4) Turn the small **FMS** Knob to choose between Day, Auto, and Night Options.
- 5) If Auto Mode is selected, turn the large **FMS** Knob to select the percentage field. Use the small **FMS** Knob to change the percentage value. The percentage value is the day/night crossover point based on the percentage of backlighting intensity. For example, if the value is set to 15%, the day/night display changes when the display backlight reaches 15% of full brightness.
 - The display must be changed in order for the new setting to become active. This may be accomplished by selecting another page or changing the display range.
- 6) Press the FMS Knob when finished to remove the Chart Setup Menu.

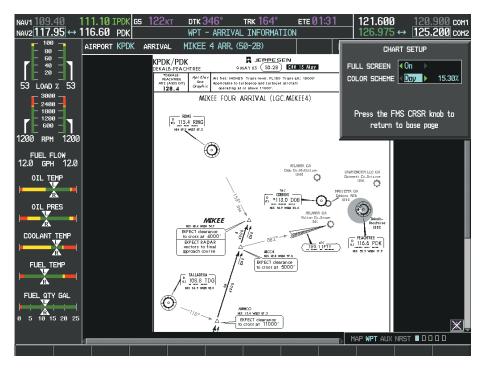


Figure 8-44 Arrival Information Page, Day View

Figure 8-45 Arrival Information Page, Night View

CHARTVIEW CYCLE NUMBER AND EXPIRATION DATE

ChartView database is revised every 14 days and offered on a subscription basis. Charts are still viewable during a period that extends from the cycle expiration date to the disables date. ChartView is disabled 70 days after the expiration date and is no longer available for viewing. When turning on the system, the Power-up Page displays the current status of the ChartView database. See the table below for the various ChartView Power-up Page displays and the definition of each.

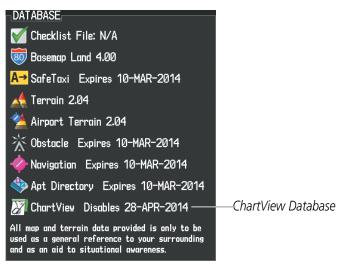


Figure 8-46 Power-up Page, ChartView Database

Power-up Page Display	Definition
	Blank Line. system is not configured for ChartView. Contact a Garmin-authorized service center for configuration.
Chart Data: N/A	System is configured for ChartView but no chart database is installed. Contact Jeppesen for a ChartView database.
ChartView Disables 28-APR-2014	Normal operation. ChartView database is valid and within current cycle.
Chart data update available.	ChartView database is within 1 week after expiration date. A new cycle is available for update.
Chart data is out of date!	ChartView database is beyond 1 week after expiration date, but still within the 70 day viewing period.
Chart data is disabled.	ChartView database has timed out. Database is beyond 70 days after expiration date. ChartView database is no longer available for viewing.
Verify chart database cycle.	System time is not available. GPS satellite data is unknown or the system has not yet locked onto satellites. Check database cycle number for effectivity.
😿 Verifying Chart data	System is verifying chart database when new cycle is installed for the first time.
Chart Data is Corrupt!	After verifying, chart database is found to be corrupt. ChartView is not available.

Table 8-2 ChartView Power-up Page Annunciations and Definitions

The ChartView time critical information can also be found on the AUX - System Status page. The database CYCLE number, EXPIRES, and DISABLES dates of the ChartView subscription appear in either blue or yellow text. When the ChartView EXPIRES date is reached, ChartView becomes inoperative 70 days later. This is shown as the DISABLES date. When the DISABLES date is reached, charts are no longer available for viewing. The **SHW CHRT** Softkey label then appears subdued and is disabled until a revised issue of ChartView is installed.

NOTE: A subdued softkey label indicates the function is disabled.

Select the **MFD1 DB** Softkey to place the cursor in the DATABASE window. Scroll through the listed information by turning the **FMS** Knob or pressing the **ENT** Key until the ChartView database information is shown.

The ChartView database cycle number shown in the figure, 1403, is deciphered as follows:

- 14 Indicates the year 2014
- 03 Indicates the third issue of the ChartView database for the year

The EXPIRES date 17-FEB-14 is the date that this database should be replaced with the next issue.

The DISABLES date 28-APR-14 is the date that this database becomes inoperative.

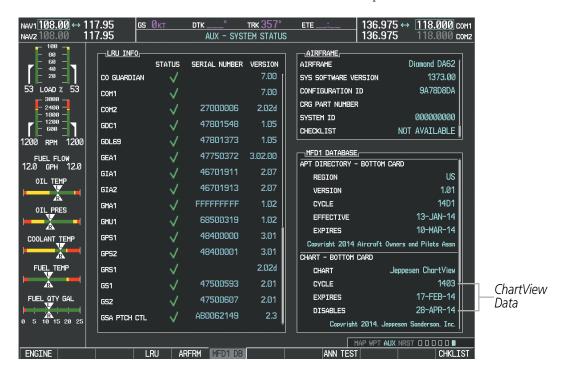




Figure 8-47 AUX – System Status Page, ChartView Current and Available

The ChartView database is provided directly from Jeppesen. Refer to Updating Jeppesen Databases in Appendix B for instructions on revising the ChartView database.

Other possible AUX - System Status page conditions are shown in Figure 8-48. The EXPIRES date, in yellow, is the revision date for the next database cycle. The DISABLES date, in yellow, is the date that this database cycle is no longer viewable. NOT AVAILABLE in blue, indicates no ChartView data is available on the database card or no database card is inserted.

ChartView has Expired, but is not Disabled

ChartView Database is Disabled

ChartView Database is Not Available

Figure 8-48 AUX – System Status Page, ChartView Database Status

8.4 FLITECHARTS

FliteCharts resemble the paper version of AeroNav Services terminal procedures charts. The charts are displayed with high-resolution and in color for applicable charts.

The geo-referenced aircraft position is indicated by an aircraft symbol displayed on the chart when the current position is within the boundaries of the chart. An aircraft symbol may be displayed within an off-scale area depicted on some charts.

Figure 8-49 shows examples of off-scale areas, indicated by the grey shading. Note, these areas are not shaded on the published chart. These off-scale areas appear on the chart to convey supplemental information. However, the depicted geographical position of this information, as it relates to the chart planview, is not the actual geographic position. Therefore, when the aircraft symbol appears within one of these areas, the aircraft position indicated is relative to the chart planview, not to the off-scale area.

The FliteCharts database subscription is available from Garmin. Available data includes:

• Arrivals (STAR)

Approaches

• Departure Procedures (DP)

Airport Diagrams

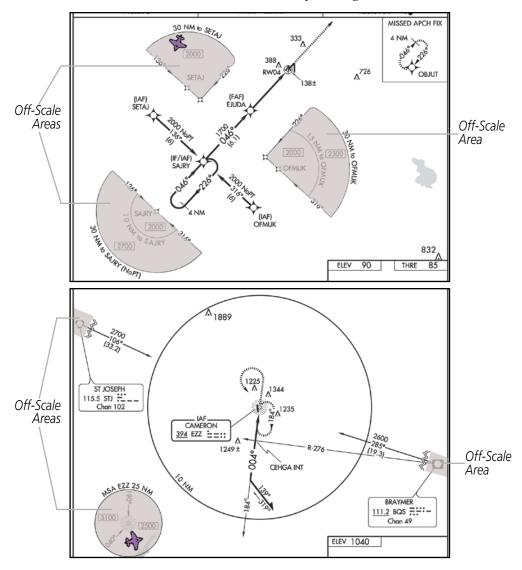
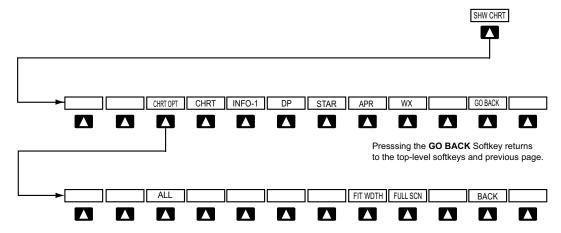


Figure 8-49 Sample Chart Indicating Off-Scale Areas

NOTE: Do not maneuver the aircraft based solely upon the geo-referenced aircraft symbol.

FLITECHARTS SOFTKEYS


FliteCharts functions are displayed on three levels of softkeys. While on the Navigation Map Page, Nearest Airports Page, or Flight Plan Page, pressing the **SHW CHRT** Softkey displays the available terminal chart and advances to the chart selection level of softkeys: **CHRT OPT**, **CHRT**, **INFO-1/INFO-2**, **DP**, **STAR**, **APR**, **WX**, and **GO BACK**. The chart selection softkeys appear on the Airport Information Page.

Pressing the **GO BACK** Softkey reverts to the top level softkeys and previous page.

Pressing the **CHRT OPT** Softkey displays the available terminal chart and advances to the next level of softkeys: **ALL**, **FIT WDTH**, **FULL SCN**, and **BACK**.

While viewing the **CHRT OPT** Softkeys, after 45 seconds of softkey inactivity, the system reverts to the chart selection softkeys.

NOTAMs are not available with FliteCharts. The NOTAM Softkey label appears subdued and is disabled.

Pressing the **BACK** Softkey returns to the Chart Selection Softkeys.

Figure 8-50 FliteCharts SHW CHRT, Chart Selection, and Chart Option Softkeys

TERMINAL PROCEDURES CHARTS

Selecting Terminal Procedures Charts:

While viewing the Navigation Map Page, Nearest Airport Page, or Flight Plan Page, press the **SHW CHRT** Softkey.

Or:

- 1) Press the **MENU** Key to display the PAGE MENU.
- 2) Turn the large **FMS** Knob to scroll through the OPTIONS Menu to Show Chart.
- **3)** Press the **ENT** Key to display the chart.

Navigation Map Page OPTIONS Menu

Waypoint Airport Information Page OPTIONS Menu

Figure 8-51 Option Menus

When no terminal procedure chart is available, the banner CHART NOT AVAILABLE appears on the screen. The CHART NOT AVAILABLE banner does not refer to the FliteCharts subscription, but rather the availability of a particular airport chart selection or procedure for a selected airport.

Figure 8-52 Chart Not Available Banner

If there is a problem in rendering the data (such as a data error or a failure of an individual chart), the banner UNABLE TO DISPLAY CHART is then displayed.

Figure 8-53 Unable To Display Chart Banner

When a chart is not available by pressing the **SHW CHRT** Softkey or selecting a Page Menu Option, charts may be obtained for other airports from the WPT Pages or Flight Plan Pages.

If a chart is available for the destination airport, or the airport selected in the active flight plan, the chart appears on the screen. When no flight plan is active, or when not flying to a direct-to destination, pressing the **SHW CHRT** Softkey displays the chart for the nearest airport, if available.

The chart shown is one associated with the WPT – Airport Information page. Usually this is the airport runway diagram. Where no runway diagram exists, but Take Off Minimums or Alternate Minimums are available, that page appears. If Airport Information pages are unavailable, the Approach Chart for the airport is shown.

Selecting a chart:

- 1) While viewing the Navigation Map Page, Flight Plan Page, or Nearest Airports Page, press the **SHW CHRT** Softkey. The airport diagram or approach chart is displayed on the Airport Information Page.
- 2) Press the **FMS** Knob to activate the cursor.
- 3) Turn the large **FMS** Knob to select either the Airport Identifier Box or the Approach Box. (Press the **APR** Softkey if the Approach Box is not currently shown).
- **4)** Turn the small and large **FMS** Knob to enter the desired airport identifier.
- **5)** Press the **ENT** Key to complete the airport selection.
- **6)** Turn the large **FMS** Knob to select the Approach Box.
- 7) Turn the small **FMS** Knob to show the approach chart selection choices.
- **8)** Turn either **FMS** Knob to scroll through the available charts.
- **9)** Press the **ENT** Key to complete the chart selection.

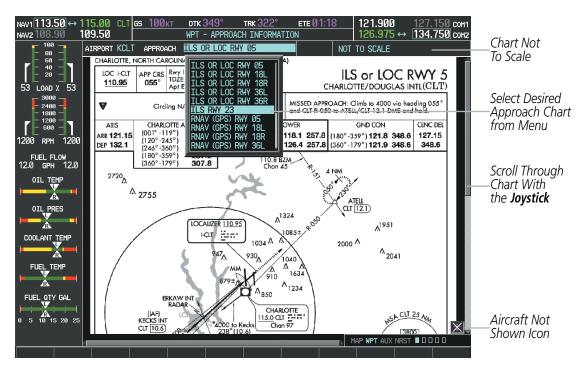


Figure 8-54 Approach Information Page, Chart Selection

While the APPROACH Box is selected using the **FMS** Knob, the G1000 softkeys are blank. Once the desired chart is selected, the chart scale can be changed and the chart can be panned using the **Joystick**. Pressing the **Joystick** centers the chart on the screen.

The aircraft symbol is not shown on FliteCharts. The Chart Scale Box displays a banner NOT TO SCALE, and the Aircraft Not Shown Icon is displayed in the lower right corner of the screen.

Pressing the **CHRT** Softkey alternates between the FliteCharts diagram and the associated map in the WPT page group. In the example shown, the **CHRT** Softkey switches between the Charlotte, NC (KCLT) Airport Diagram and the navigation map on the WPT – Airport Information page.

Figure 8-55 CHRT Softkey, Airport Information Page

Pressing the **INFO-1** or **INFO-2** Softkey returns to the airport diagram when the view is on a different chart. If the displayed chart is the airport diagram, the **INFO-1** or **INFO-2** Softkey has no effect.

Another source for additional airport information is from the INFO Box above the chart (Figure 8-55) or to the right of the chart (Figure 8-56) for certain airports. This information source is not related to the **INFO-1** or **INFO-2** Softkey. When the INFO Box is selected using the **FMS** Knob, the G1000 softkeys are blank. The Charlotte, NC airport has three additional charts offering information; the Airport Diagram, Alternate Minimums, and Take-off Minimums.

Figure 8-56 Airport Information Page, INFO View with Airport Information

In the example shown in Figure 8-56, TAKE OFF MINIMUMS is selected. Pressing the **ENT** Key displays the Take-off Minimums and Departure Procedures Chart (Figure 8-57).

Figure 8-57 Airport Information Page, TAKE OFF MINIMUMS Selected from INFO View

Pressing the **DP** Softkey displays the Departure Procedure Chart if available.

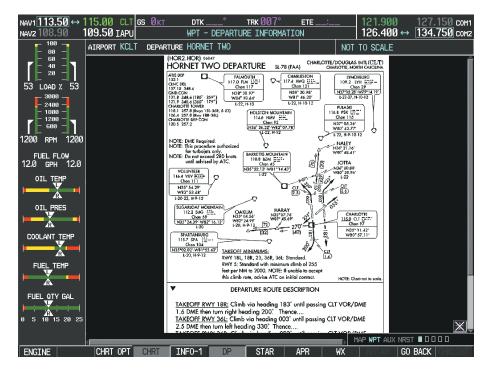


Figure 8-58 Departure Information Page

Pressing the **STAR** Softkey displays the Standard Terminal Arrival Chart if available.

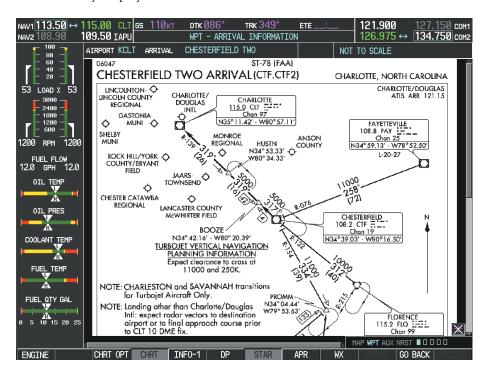


Figure 8-59 Arrival Information Page

Pressing the APR Softkey displays the approach chart for the airport if available.

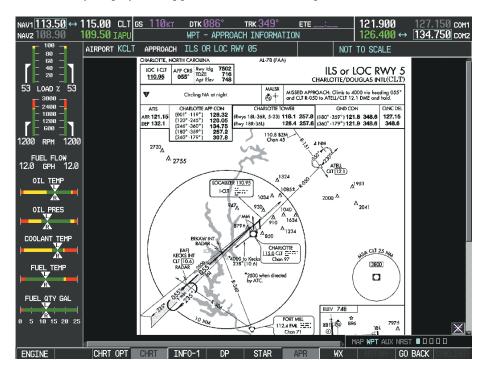


Figure 8-60 Approach Information Page

Pressing the **WX** Softkey shows the airport weather frequency information, when available, and includes weather data such as METAR and TAF from the XM Data Link Receiver. Weather information is available only when an XM Data Link Receiver is installed and the SiriusXM Satellite Weather subscription is current.

Selecting Additional Information:

- 1) While viewing the Airport Taxi Diagram, press the **WX** Softkey to display the information windows (AIRPORT, INFO).
- 2) Press the **FMS** Knob to activate the cursor.
- 3) Turn the large **FMS** Knob to highlight the INFO Box.
- **4)** Turn the small **FMS** Knob to select the INFO Box choices. When the INFO Box is selected the G1000 softkeys are blank. If multiple choices are available, scroll to the desired choice with the large **FMS** Knob and press the **ENT** Key to complete the selection.
- **5)** Press the **FMS** Knob again to deactivate the cursor.

Figure 8-61 Weather Information Page, WX Softkey Selected

Pressing the **GO BACK** Softkey reverts to the previous page (Navigation Map Page or Flight Plan Page).

CHART OPTIONS

Pressing the **CHRT OPT** Softkey displays the next level of softkeys, the chart options level (Figure 8-50). Pressing the **ALL** Softkey shows the complete chart on the screen.

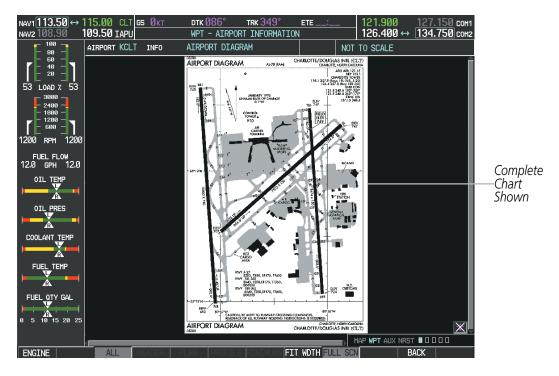


Figure 8-62 Airport Information Page, ALL View Selected

Pressing the **FIT WIDTH** Softkey fits the width of the chart in the display viewing area. In the example shown, the chart at close range is replaced with the full width chart.

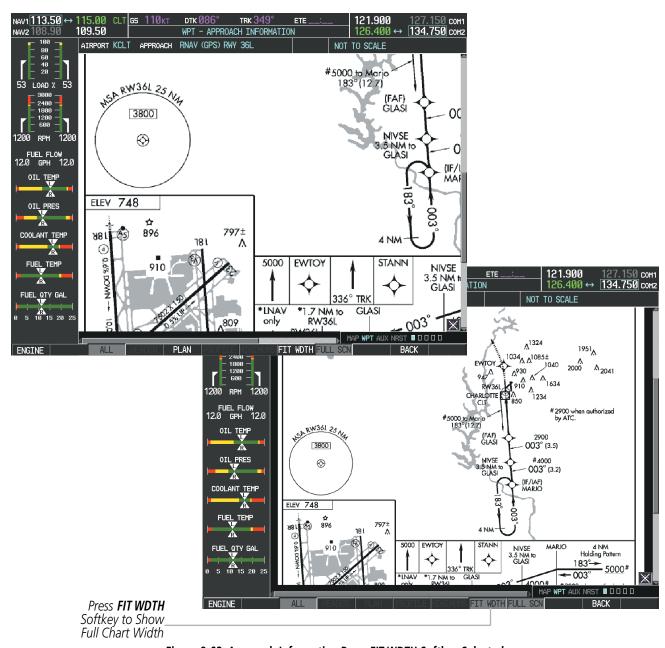


Figure 8-63 Approach Information Page, FIT WDTH Softkey Selected

Pressing the **FULL SCN** Softkey alternates between removing and replacing the data window to the right.

Figure 8-64 Airport Information Page, Full Screen and Info Window

Pressing the **BACK** Softkey, or waiting for 45 seconds reverts to the chart selection softkeys.

GARMIN

The full screen view can also be selected by using the page menu option.

Selecting full screen On or Off:

- 1) While viewing a terminal chart press the **MENU** Key to display the Page Menu OPTIONS.
- 2) Turn the large FMS Knob to highlight the Chart Setup Menu Option and press the ENT Key.
- 3) Turn the large FMS Knob to move between the FULL SCREEN and COLOR SCHEME Options.
- 4) Turn the small FMS Knob to choose between the On and Off Full Screen Options.

Chart Setup Option

Full Screen On/Off Selection

Figure 8-65 Page Menus

DAY/NIGHT VIEW

FliteCharts can be displayed on a white or black background for day or night viewing. The Day View offers a better presentation in a bright environment. The Night View gives a better presentation for viewing in a dark environment. When the CHART SETUP Box is selected the G1000 softkeys are blank.

Selecting Day, Night, or Automatic View:

- 1) While viewing a terminal chart press the **MENU** Key to display the Page Menu OPTIONS.
- 2) Turn the large **FMS** Knob to highlight the Chart Setup Menu Option and press the **ENT** Key.

Figure 8-66 Waypoint Information Page, OPTIONS Menu

- **3)** Turn the large **FMS** Knob to move to the COLOR SCHEME Option (Figure 8-67).
- 4) Turn the small **FMS** Knob to choose between Day, Auto, and Night Options.
- 5) If Auto Mode is selected, turn the large **FMS** Knob to select the percentage field. Use the small **FMS** Knob to change the percentage value. The percentage value is the day/night crossover point based on the percentage of backlighting intensity. For example, if the value is set to 15%, the day/night display changes when the display backlight reaches 15% of full brightness.
 - The display must be changed in order for the new setting to become active. This may be accomplished by selecting another page or changing the display range.
- 6) Press the **FMS** Knob when finished to remove the Chart Setup Menu.

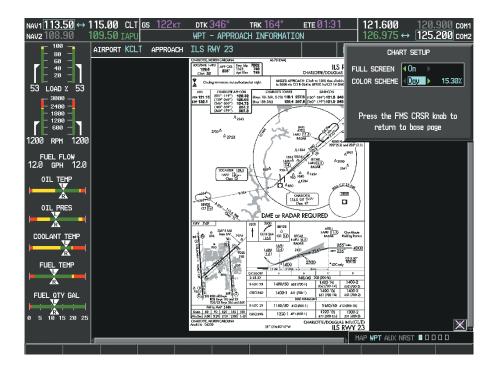


Figure 8-67 Approach Information Page, Day View

Figure 8-68 Approach Information Page, Night View

FLITECHARTS CYCLE NUMBER AND EXPIRATION DATE

FliteCharts data is revised every 28 days and offered on a subscription basis. Charts are still viewable during a period that extends from the cycle expiration date to the disables date. FliteCharts is disabled 180 days after the expiration date and are no longer available for viewing upon reaching the disables date. When turning on the system, the Power-up Page displays the current status of the FliteCharts database. See the table below for the various FliteCharts Power-up Page displays and the definition of each.

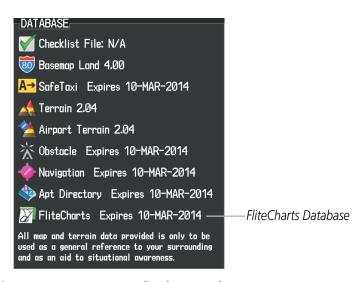


Figure 8-69 Power-up Page, FliteCharts Database

Power-up Page Display	Definition
	Blank Line. system is not configured for FliteCharts. Contact a Garmin-authorized service center for configuration.
Chart Data: N/A	System is configured for FliteCharts but no chart database is installed. Refer to Updating Garmin Databases in Appendix B for the FliteCharts database
FliteCharts Expires 10-MAR-2014	Normal operation. FliteCharts database is valid and within current cycle.
Chart data is out of date!	FliteCharts database is beyond the expiration date, but still within the 180 day viewing period.
Chart data is disabled.	FliteCharts database has timed out. Database is beyond 180 days after expiration date. FliteCharts database is no longer available for viewing.

Table 8-3 FliteCharts Power-up Page Annunciations and Definitions

Other possible AUX - System Status page conditions are shown in Figure 8-70. 'FliteCharts Expires' plus a date in white, indicates the chart database is current. 'Chart data is out of date!' in yellow, indicates charts are still viewable, but approaching the disable date.

When the 180 day grace period has expired, 'Chart data is disabled.' in yellow indicates that the FliteCharts database has expired and is no longer viewable. 'Chart Data: N/A' appears in white if no FliteCharts data is available on the database card or no database card is inserted.

FliteCharts time critical information can also be found on the AUX - System Status page. The FliteCharts database REGION, CYCLE number, EFFECTIVE, EXPIRES, and DISABLES dates of the subscription appear in either blue or yellow text. Dates shown in blue are current data. Dates shown in yellow indicate the data is not within the current subscription period.

FliteCharts becomes inoperative 180 days after the FliteCharts EXPIRES date is reached, and is no longer available for viewing. This date is shown as the DISABLES date. After the disable date the **SHW CHRT** Softkey label appears subdued and is unavailable until a revised issue of FliteCharts is installed.

NOTE: A subdued softkey label indicates the function is disabled.

Select the **MFD1 DB** Softkey to place the cursor in the DATABASE window. Scroll through the listed information by turning the **FMS** Knob or pressing the **ENT** Key until the FliteCharts database information is shown.

The FliteCharts database cycle number shown in the figure, 1402, is deciphered as follows:

- 14 Indicates the year 2014
- 02 Indicates the second issue of the FliteCharts database for the year

The FliteCharts EFFECTIVE date 10–FEB–14 is the first date that this database is current.

The FliteCharts EXPIRES date 10–MAR–14 is the last date that this database is current.

The DISABLES date 06–SEP–14 is the date that this database becomes inoperative.

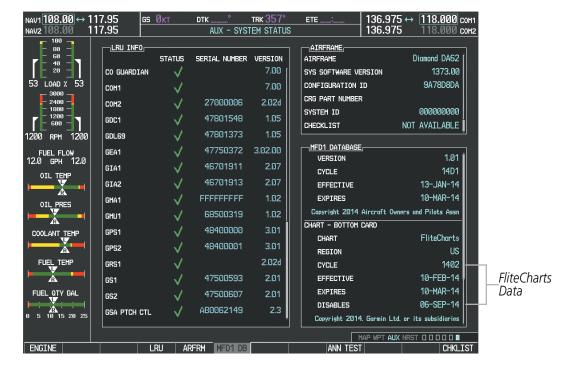


Figure 8-70 AUX – System Status Page, FliteCharts Current and Available

The FliteCharts database is provided from Garmin. Refer to Updating Garmin Databases in Appendix B for instructions on revising the FliteCharts database.

The other four possible AUX - System Status page conditions are shown here. The EFFECTIVE date, in yellow, indicates the current date preceeds the date the FliteCharts database becomes effective. The EXPIRES date, in yellow, is the revision date for the next database cycle. The DISABLES date, in yellow, is the date that this database cycle is no longer viewable. NOT AVAILABLE in blue, indicate the FliteCharts database is not available on the database card or no database card is inserted.

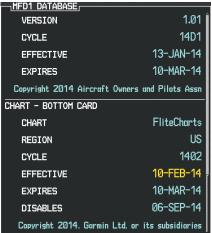
1.01

14D1

13-JAN-14

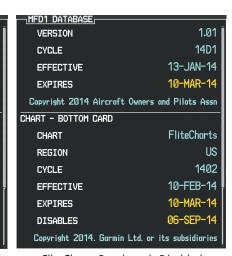
10-MAR-14

FliteCharts


10-FEB-14

10-MAR-14

06-SEP-14


US

1402

MFD1 DATABASE

Current Date is Before Effective Date

FliteCharts Expired, but is not Disabled

FliteCharts Database is Disabled

FliteCharts Database is Not Available

Figure 8-71 AUX – System Status Page, FliteCharts Datbase Status

8.5 AIRPORT DIRECTORY

The Aircraft Owners and Pilots Association (AOPA) and optional AC-U-KWIK Airport Directory databases offer detailed information regarding services, hours of operation, lodging options, and more. This information is viewed on the Airport Information Page by selecting the INFO Softkey until **INFO-2** is displayed as shown in Figure 8-72.

Both Airport Directories are available for downloading at flygarmin.com. However, copy only one of the databases to the Supplemental Data Card. The system cannot recognize both databases simultaneously.

Selecting the Airport Directory Page:

- 1) Turn the large **FMS** Knob to select the 'WPT' page group.
- 2) Turn the small **FMS** Knob to select the AIRPORT INFORMATION Page. Initially, information for the airport closest to the aircraft's present position is displayed.
- 3) If necessary, select the INFO softkey until INFO-2 is displayed.

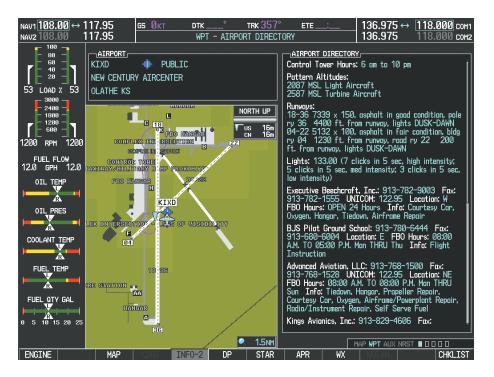


Figure 8-72 Airport Directory Information on the Airport Information Page

AIRPORT DIRECTORY DATABASE CYCLE NUMBER AND REVISION

The Airport Directory databases are revised every 56 days and offered on a subscription basis. Check fly. garmin.com for the current database. The Airport Directory is always available for use after the expiration date. When turning on the system, the Power-up Page indicates whether the databases are current, out of date, or not available.

Figure 8-73 Power-up Page, Airport Directory Database

Power-up Page Display	Definition
Apt Directory Expires 10-MAR-2014	Normal operation. Airport Directory database is valid and within current cycle.
Apt Directory Expires 10-MAR-2014	Airport Directory database has expired.
♦ Apt Directory N/A	Database card contains no Airport Directory data.

Table 8-4 Airport Directory Annunciation Definitions

The Airport Directory Region, Version, Cycle, Effective date and Expires date of the database cycle can also be found on the AUX - System Status page, as seen in Figure 8-74.

Select the **MFD1 DB** Softkey to place the cursor in the DATABASE window. Scroll through the listed information by turning the **FMS** Knob or pressing the **ENT** Key until the Airport Directory database information is shown.

The Airport Directory database cycle number shown in the figure, 14D1, is deciphered as follows:

- 14 Indicates the year 2014
- D Indicates the data is for Airport Directory
- 1 Indicates the first issue of the Airport Directory database for the year

The Airport Directory EFFECTIVE date 13–JAN–14 is the beginning date for the current database cycle. The Airport Directory EXPIRES date 10–MAR–14 is the revision date for the next database cycle.

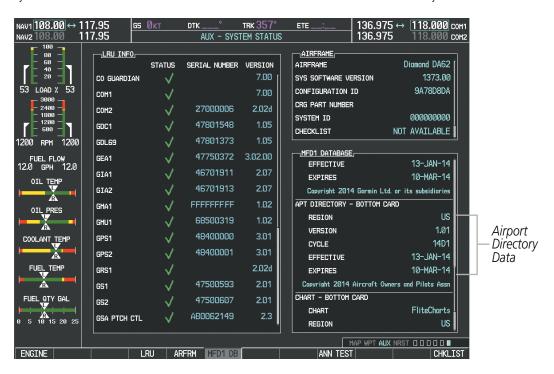


Figure 8-74 AUX – System Status Page, AOPA Airport Directory Database Status

Airport Directory information appears in blue and yellow text. The EFFECTIVE date appears in blue when data is current and in yellow when the current date is before the effective date. The EXPIRES date appears in blue when data is current and in yellow when expired (Table 8-4). NOT AVAILABLE appears in blue in the REGION field if Airport Directory data is not available on the database card. An expired Airport Directory database is not disabled and will continue to function indefinitely.

8.6 SIRIUSXM SATELLITE RADIO ENTERTAINMENT (OPTIONAL)

NOTE: Refer to the Hazard Avoidance Section for information about SiriusXM Satellite Weather products.

The optional SiriusXM Satellite Radio entertainment feature of the GDL 69A Data Link Receiver is available for the pilot's and passengers' enjoyment. The GDL 69A can receive SiriusXM Satellite Radio entertainment services at any altitude throughout the Continental U.S. Entertainment audio is available only on the GDL 69A Data Link Receiver, not the GDL 69.

SiriusXM Satellite Radio offers a variety of radio programming over long distances without having to constantly search for new stations. Based on signals from satellites, coverage far exceeds land-based transmissions. SiriusXM Satellite Radio services are subscription-based. For more information on specific service packages, visit www.siriusxm.com.

ACTIVATING SIRIUSXM SATELLITE RADIO SERVICES

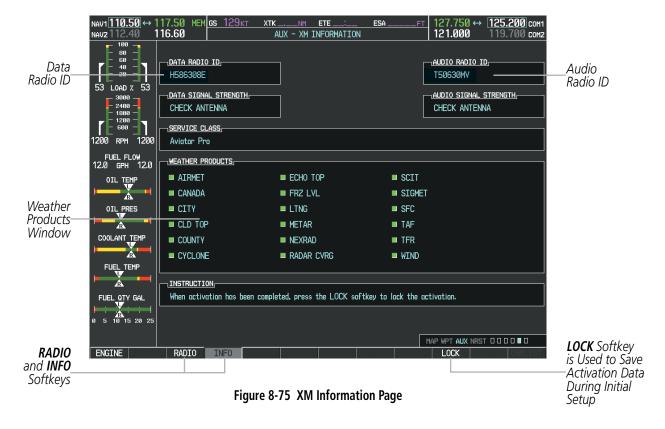
The service is activated by providing SiriusXM Satellite Radio with either one or two coded IDs, depending on the equipment. Either the Audio Radio ID or the Data Radio ID, or both, must be provided to SiriusXM Satellite Radio to activate the entertainment subscription.

It is not required to activate both the entertainment and weather service subscriptions with the GDL 69A. Either or both services can be activated. SiriusXM Satellite Radio uses one or both of the coded IDs to send an activation signal that, when received by the GDL 69A, allows it to play entertainment programming.

These IDs are located:

- On the label on the back of the Data Link Receiver
- On the XM Information Page on the MFD (Figure 8-75)
- On the XM Satellite Radio Activation Instructions included with the unit (available at www.garmin.com, P/N 190-00355-04)

Contact the installer if the Data Radio ID and the Audio Radio ID cannot be located.


NOTE: The **LOCK** Softkey on the XM Information Page (Auxiliary Page Group) is used to save GDL 69A activation data when the SiriusXM services are initially set up. It is not used during normal SiriusXM Radio operation, but there should be no adverse effects if inadvertently pressed during flight. Refer to the GDL 69/69A XM Satellite Radio Activation Instructions (190-00355-04, Rev K or later) for further information.

Activating the SiriusXM Satellite Radio services:

- 1) Contact SiriusXM Satellite Radio. Follow the instructions provided by SiriusXM Satellite Radio services.
- **2)** Select the Auxiliary Page Group.
- **3)** Select the next to last page in the AUX Page Group.
- 4) Press the **INFO** Softkey to display the XM Information Page.
- **5)** Verify that the desired services are activated.

- **6)** Press the **LOCK** Softkey.
- **7)** Turn the large **FMS** Knob to highlight YES.
- **8)** To complete activation, press the **ENT** Key.

If SiriusXM Satellite Weather services have not been activated, all the weather product boxes are blank on the XM Information Page and a yellow Activation Required message is displayed in the center of the Weather Data Link Page (Map Page Group). The Service Class refers to the groupings of weather products available for subscription.

USING SIRIUSXM RADIO

The XM Radio Page provides information and control of the audio entertainment features of the SiriusXM Satellite Radio.

Selecting the XM Radio Page:

- 1) Turn the large **FMS** Knob to select the Auxiliary Page Group.
- 2) Turn the small **FMS** Knob to select the displayed AUX XM Information Page.
- 3) Press the **RADIO** Softkey to show the XM Radio Page where audio entertainment is controlled.

Figure 8-76 XM Radio Page

ACTIVE CHANNEL AND CHANNEL LIST

The Active Channel Box on the XM Radio Page displays the currently selected channel that the SiriusXM Radio is using.

The Channels List Box of the XM Radio Page shows a list of the available channels for the selected category. Channels can be stepped through one at a time or may be selected directly by channel number.

Selecting a channel from the channel list:

- 1) While on the XM Radio Page, press the **CHNL** Softkey.
- 2) Press the **CH** + Softkey to go up through the list in the Channel Box, or move down the list with the **CH** Softkey.

Or:

- 1) Press the **FMS** Knob to highlight the channel list and turn the large **FMS** Knob to scroll through the channels.
- **2)** Press the **ENT** Key to activate the selected channel.

Selecting a channel directly:

- 1) While on the XM Radio Page, press the CHNL Softkey.
- 2) Press the **DIR CH** Softkey. The channel number in the Active Channel Box is highlighted.
- **3)** Press the numbered softkeys located on the bottom of the display to directly select the desired channel number.
- **4)** Press the **ENT** Key to activate the selected channel.

CATEGORY

The Category Box of the XM Radio Page displays the currently selected category of audio. Categories of channels such as jazz, rock, or news can be selected to list the available channels for a type of music or other contents. One of the optional categories is PRESETS to view channels that have been programmed.

Selecting a category:

- 1) Press the **CATGRY** Softkey on the XM Radio Page.
- 2) Press the **CAT** + and **CAT** Softkeys to cycle through the categories.

Or:

Turn the small **FMS** Knob to display the Categories list. Highlight the desired category with the small **FMS** Knob and press the **ENT** Key. Selecting All Categories places all channels in the list.

Figure 8-77 Categories List

PRESETS

Up to 15 channels from any category can be assigned a preset number. The preset channels are selected by pressing the **PRESETS** and **MORE** Softkeys. Then the preset channel can be selected directly and added to the channel list for the Presets category.

Setting a preset channel number:

- 1) On the XM Radio Page, while listening to an Active Channel that is wanted for a preset, press the **PRESETS** Softkey to access the first five preset channels (**PS1 PS5**).
- 2) Press the MORE Softkey to access the next five channels (PS6 PS10), and again to access the last five channels (PS11 PS15). Pressing the MORE Softkey repeatedly cycles through the preset channels.
- 3) Press any one of the (PS1 PS15) softkeys to assign a number to the active channel.
- 4) Press the **SET** Softkey on the desired channel number to save the channel as a preset.

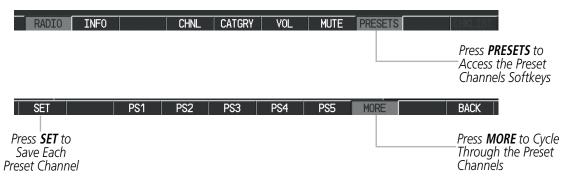


Figure 8-78 Accessing and Selecting Preset SiriusXM Channels

Pressing the **BACK** Softkey, or waiting during 45 seconds of softkey inactivity, returns the system to the top level softkeys.

VOLUME

Radio volume is shown as a percentage. Volume level is controlled by pressing the **VOL** Softkey, which brings up the **MUTE** Softkey and the volume increase and decrease softkeys.

Adjusting the volume:

- 1) With the XM Radio Page displayed, press the **VOL** Softkey.
- 2) Press the **VOL** Softkey to reduce volume or press the **VOL** + Softkey to increase volume. (Once the **VOL** Softkey is pressed, the volume can also be adjusted using the small **FMS** Knob.)

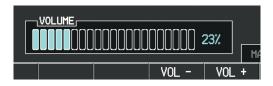


Figure 8-79 Volume Control

Radio volume may also be adjusted at each passenger station.

Mute SiriusXM audio:

- 1) Select the XM Radio Page or XM Information Page.
- 2) Press the **MUTE** Softkey to mute the audio. Press the **MUTE** Softkey again to unmute the audio.

8.7 SATELLITE TELEPHONE SERVICES (OPTIONAL)

The optional GSR 56 Iridium Transceiver provides airborne Iridium Satellite Telephone and SMS Messaging service. Iridium telephone and text meassaging are available to the flight crew through the MFD, audio panel, and headset.

Operation of these features in the cockpit is accomplished through the AUX-TELEPHONE and AUX-TEXT MESSAGING Pages.

NOTE: Aural and pop-up visual annunciations for incoming calls and received text messages are inhibited during taxiing, takeoff and landing roll, low altitude operations, low airspeed operations, and excessive pitch and roll attitudes.

REGISTERING THE IRIDIUM SATELLITE SYSTEM

A subscriber account must be established for each Iridium transceiver prior to using the Iridium Satellite System for telephone services. Before setting up an Iridium account, obtain the serial number of the Iridium Transceiver (GSR1) and the System ID by selecting the AUX- SYSTEM STATUS Page as shown in Figure 8-80. Contact Garmin Flight Data Services at 1-866-739-5687 in the United States or 913-397-8200, ext. 1135.

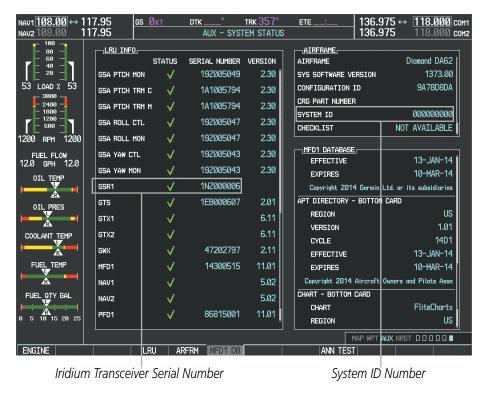


Figure 8-80 Identification Needed for Iridium Registration

TELEPHONE COMMUNICATION

The pilot or copilot can place and answer calls on the Iridium satellite network as well as to or from the telephone handset in the cabin, when installed. Calls can also be answered or made from the cabin phone, however, only actions initiated from the cockpit phone will be discussed here. See the cabin handset user guide for more information. Control and monitoring of telephone functions are accomplished through the AUX-TELEPHONE Page.

Viewing the Telephone Page:

- 1) Turn the large **FMS** Knob on the MFD to select the AUX page group.
- 2) Turn the small FMS Knob to select SATELLITE PHONE.
- **3)** If necessary, select the **TEL** Softkey to display the AUX-TELEPHONE Page.

The PHONE STATUS display, as shown in Figure 8-81, gives a graphical representation of the current disposition of voice and/or data transmissions. Table 8-5 describes symbology used on PHONE STATUS display.

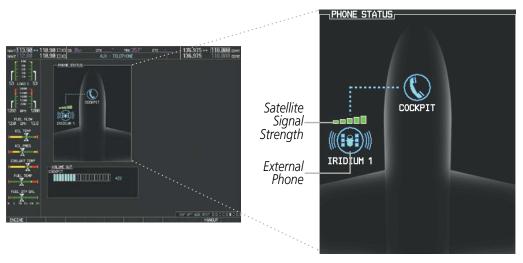


Figure 8-81 Phone Status Display

ENABLE/DISABLE THE IRIDIUM TELEPHONE SYSTEM

The Iridium Satellite Telephone System may be turned on or off by using the page menu.

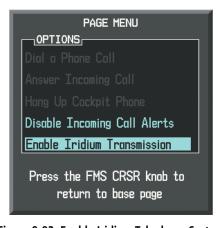


Figure 8-82 Enable Iridium Telephone System

To enable the Iridium telephone system:

- 1) With the AUX-TELEPHONE Page displayed, select the **MENU** Key on the MFD to display the Page Menu.
- 2) Turn either **FMS** Knob to place the cursor on 'Enable Iridium Transmission'.
- 3) Press the ENT Key.

To disable the Iridium telephone system:

- 1) With the AUX-TELEPHONE Page displayed, select the **MENU** Key on the MFD to display the Page Menu.
- 2) Turn either **FMS** Knob to place the cursor on 'Disable Iridium Transmission'.
- **3)** Press the **ENT** Key.

Internal Phone	External Phone	Description
		Phone is Idle
		Phone is ringing
		Phone has a dial tone (off hook) or connected to another phone
Ox		Phone dialed is busy
		Phone is dialing another phone
		Phone has failed
		Phone status not known
		Phone is disabled
	DATA TX	Phone is reserved for data transmission
• • • • • •	•••••	Calling other phone or incoming call from other phone
		Other phone is on hold
		Phones are connected

Table 8-5 Telephone Symbols

INCOMING CALLS

NOTE: Outside callers should dial 00 + 8816 or 8817 + aircraft phone number when calling the aircraft Iridium Telephone System.

When a phone call is received while viewing MFD pages other than the AUX-TELEPHONE Page, a popup alert similar to Figure 8-83 is displayed, accompanied by a ringtone heard on the selected cockpit audio. The pop-up alert may be inhibited at times, such as during takeoff. In addition to the pop-up alert, a ringing phone symbol is displayed to the right of the MFD page title as shown in Figure 8-83.

Incoming Call Symbol on MFD Page

Figure 8-83 Incoming Call

To answer an incoming call in the cockpit:

- 1) Press the **TEL** Key on the appropriate audio panel.
- **2)** Press the **ANSWER** Softkey on the MFD.

Or:

While viewing the AUX-TELEPHONE Page

- 1) Press the **TEL** Key on the appropriate audio panel.
- 2) Press the **MENU** Key to display the Page Menu.
- 3) Turn either **FMS** Knob to place the cursor on 'Answer Incoming Call'.
- Press the **ENT** Key.

Selecting the **IGNORE** Softkey will extinguish the pop-up window and leave the current call unanswered. Selecting the **IGNRE ALL** Softkey will extinguish the pop-up window for the current and all future incoming calls and leave the current call unanswered. Selecting the TEL Softkey will display the AUX-TELEPHONE Page allowing additional call information to be viewed before answering.

Disabling incoming call alerts:

- 1) With the AUX-TELEPHONE Page displayed, press the **MENU** Key on the MFD to display the Page Menu.
- Turn either **FMS** Knob to place the cursor on 'Disable Incoming Call Alerts'.
- Press the **ENT** Key. The voice and pop-up alert will not be displayed now when an incoming call is received.

OUTGOING CALLS

Voice calls can be made from the cockpit to an external phone through the Iridium Satellite Network.

NOTE: The Push-to-Talk switch is not utilized for telephone communication. The microphone is active after selecting the **ANSWER** Softkey, and stays active until the call is terminated.

To make a call:

- 1) Press the **TEL** Key on the audio panel.
- **2)** Press the **DIAL** Softkey on the MFD. A display similar to Figure 8-84 will be shown.

Or:

While viewing the AUX-TELEPHONE Page:

- a) Press the **TEL** Key on the audio panel.
- **b)** Press the **MENU** Key to display the Page Menu.
- c) Turn either FMS Knob to place the cursor on 'Dial a Phone Call'.
- d) Press the ENT Key.

Figure 8-84 Initiating a Call

3) Enter the desired telephone number by selecting the number softkeys on the MFD or by pressing the numeric keys on the MFD Control Unit. The International dialing sequence is necessary to place a call from the cockpit to an external phone: Country Code + City/Area Code (if any) + Telephone Number.

The following country codes may be used when calling other satellite telephone systems.

Satellite System	Country Code
Inmarsat	870
ICO	8810 or 8811
Ellipso	8812 or 8813
Iridium	8816 or 8817
Globalstar	8818 or 8819

4) Press the ENT Key. 'OK' is highlighted as in Figure 8-85.

Figure 8-85 Make the Call

GARMIN.

5) Press the **ENT** Key. The system will begin calling the number, as in Figure 8-86.

Figure 8-86 System is Making the Connection

When the phone is answered, the connection is established as shown in Figure 8-87. To exit the call, press the **HANGUP** Softkey.

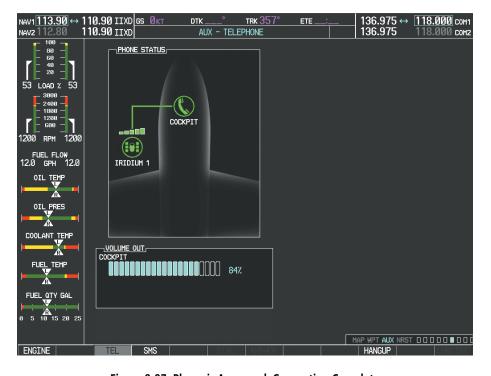


Figure 8-87 Phone is Answered, Connection Complete

TEXT MESSAGING (SMS)

The pilot or copilot can send and receive text messages on the Iridium satellite network. Messages may be sent to an email address or text message capable cellular telephone. Message length is limited to 160 characters, including the email address.

The text messaging user interface is mainly through the AUX-TEXT MESSAGING Page.

Viewing the Text Messaging Page:

- 1) Turn the large **FMS** Knob on the MFD to select the AUX page group.
- 2) Turn the small **FMS** Knob to select the SATELLITE PHONE.
- 3) If necessary, press the SMS Softkey to display the AUX-TEXT MESSAGING Page as shown in Figure 8-88.

Figure 8-88 Text Messaging Page

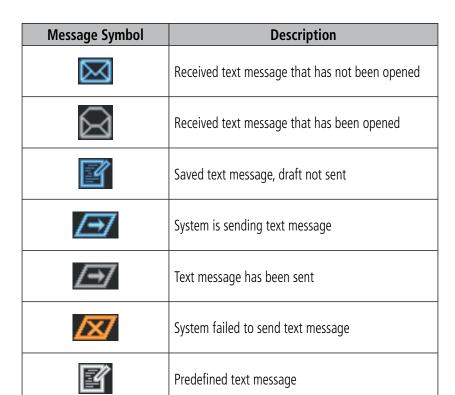


Table 8-6 Text Message Symbols

VIEWING A TEXT MESSAGE WHEN RECEIVED

When viewing MFD pages other than the AUX-TEXT MESSAGING Page, a pop-up alert similar to Figure 8-89 will be displayed when a new text message is received.

New Text Message Symbol on MFD Page

Figure 8-89 New Text Message Received

Press the **VIEW** Softkey to view the message (Figure 8-90). Selecting the **IGNORE** Softkey will extinguish the pop-up window and leave the text message unopened. Selecting the **IGNR ALL** Softkey will extinguish the pop-window and ignore all future incoming text messages. Selecting the **SMS** Softkey will display the AUX-TEXT MESSAGING Page.

GARMIN

Figure 8-90 Text Message Displayed from Pop-Up Alert

The pop-up alerts may be enabled or disabled through the Page Menu.

Enabling/disabling incoming text message pop-up alerts:

- 1) With the AUX-TEXT MESSAGING Page displayed, press the **MENU** Key on the MFD to display the Page Menu.
- 2) Turn either FMS Knob to place the cursor on 'Disable New Message Popups' or 'Enable New Message Popups'.
- 3) Press the ENT Key. The pop-up alert will not be displayed when an incoming text message is received.

Figure 8-91 Disabling New Text Message Pop-Ups

REPLY TO A TEXT MESSAGE

After reading a text message, a reply may be sent.

Replying to a text message:

While viewing the text message, press the **REPLY** Softkey.

Or:

- 1) Press the **MENU** Key to display the Page Menu.
- 2) Turn either **FMS** Knob to place the cursor on 'Reply To Message'.
- **3)** Press the **ENT** Key.

SENDING A TEXT MESSAGE

Text messages may be sent from the AUX-TEXT MESSAGING Page.

Sending a new text message:

- While viewing the AUX-TEXT MESSAGING Page, press the **NEW** Softkey.
 Or:
 - a) Press the **MENU** Key to display the Page Menu.
 - **b)** Turn either **FMS** Knob to place the cursor on 'Draft New Message'.
 - c) Press the ENT Key.

Figure 8-92 Composing a New Text Message

- 2) The TEXT MESSAGE DRAFT Window is now displayed with the cursor in the 'TO' field. Enter the desired telephone number or email address. Entry can be accomplished through the alphanumeric keys on the MFD Controller, or combination of the FMS Knob on the controller and softkeys on the MFD. The FMS Knob is used to enter letters and numbers, or numbers can be entered from the MFD by selecting the NUMBERS Softkey. Press the CAP LOCK Softkey to create upper and lower case alpha characters. Special characters can be accessed by selecting the SYMBOLS Softkey. See Figure 8-92.
- 3) Press the ENT Key. The cursor is now displayed in the 'MESSAGE' field.
- **4)** Enter the desired message using any combination of entry methods as described in step 2.
- **5)** Press the **ENT** Key.
- 6) Press the **SEND** Softkey to send the message immediately, or press the **SAVE** Softkey to save the message in Outbox for sending at a later time. Press the **CANCEL** Softkey to delete the message.

PREDEFINED TEXT MESSAGES

Time and effort can be saved in typing text messages that are used repeatedly by saving these messages as a predefined message.

Creating a predefined text message:

1) While viewing the AUX-TEXT MESSAGING Page, press the **MENU** Key to display the Page Menu.

Figure 8-93 Creating/Editing Predefined Messages

- 2) Turn either **FMS** Knob to select 'Edit Predefined Messages' as shown in Figure 8-93.
- **3)** Press the **ENT** Key. The PREDEFINED MESSAGES view is now displayed.
- **4)** Press the **NEW** Softkey.

Or:

- a) Press the MENU Key to display the Page Menu.
- **b)** Turn either **FMS** Knob to place the cursor on 'Draft New Predefined Message'.
- c) Press the ENT Key. The PREDEFINED SMS TEXT MESSAGE Window is now displayed as shown in Figure 8-94.

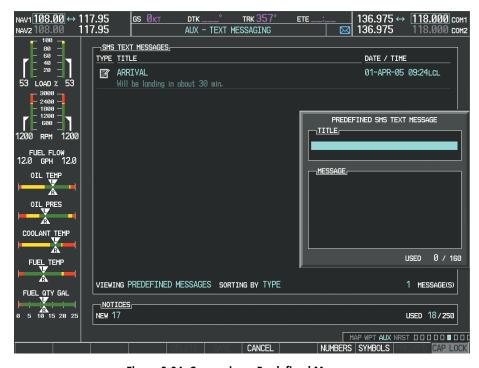


Figure 8-94 Composing a Predefined Message

- 5) The cursor is displayed in the 'TITLE' field. Enter the desired message title. Entry can be accomplished through the alphanumeric keys on the MFD Controller, or combination of the FMS Knob on the controller and softkeys on the MFD. The FMS Knob is used to enter letters and numbers, or numbers can be entered from the MFD by selecting the NUMBERS Softkey. Press the CAP LOCK Softkey to create upper and lower case alpha characters. Special characters can be accessed by selecting the SYMBOLS Softkey.
- **6)** Press the **ENT** Key. The cursor is now displayed in the 'MESSAGE' field.
- 7) Enter the desired message using any combination of entry methods as described in step 5.
- 8) Press the ENT Key.
- **9)** Press the **SAVE** Softkey. The new predefined message is now shown in the displayed list. Selecting the **CANCEL** Softkey will delete the message without saving.
- **10)** Press the **MENU** Key to display the Page Menu.
- **11)** Turn either **FMS** Knob to place the cursor on 'Stop Editing Predefined Message'.
- **12)** Press the **ENT** Key.

Sending a predefined text message:

- 1) While viewing the AUX-TEXT MESSAGING Page, select the **NEW** Softkey.
- 2) The TEXT MESSAGE DRAFT Window is now displayed with the cursor in the 'TO' field. Enter the desired telephone number or email address. Entry can be accomplished through a combination of the FMS Knob on the controller and softkeys on the MFD. The FMS Knob is used to enter letters and numbers, or numbers can be entered from the MFD by selecting the NUMBERS Softkey. Select the CAP LOCK Softkey to create upper and lower case alpha characters. Special characters can be accessed by selecting the SYMBOLS Softkey.
- **3)** Press the **ENT** Key. The cursor is now displayed in the 'MESSAGE' field (Figure 8-95).

Figure 8-95 Composing a New Text Message

4) Press the **PREDEFD** Softkey. The PREDEFINED MESSAGE MENU Window is displayed as seen in Figure 8-96.

Figure 8-96 Predefined Message List

- **5)** Turn either **FMS** Knob to select the desired predefined message.
- **6)** Press the **ENT** Key. The predefined message text is inserted into the message field. If desired, the message can be edited by using the FMS Knobs.
- **7)** Press the **ENT** Key.
- **8)** Press the **SEND** Softkey to transmit the message.

TEXT MESSAGE BOXES

Received text messages reside in the Inbox as 'Read' or 'Unread' messages. The Outbox contains 'Sent" and 'Unsent' text messages. Saved messages that are meant to be sent later are stored as Drafts. Each text message box may be viewed separately, or together in any combination.

Show Inbox messages:

While viewing the AUX-TEXT MESSAGING Page, press the **ARRANGE** Softkey, then press the **INBOX** Softkey (Figure 8-97).

Or:

- 1) Press the **MENU** Key to display the Page Menu.
- 2) Turn either **FMS** Knob to place the cursor on 'Show Inbox Messages'.
- 3) Press the ENT Key. The message box selected for viewing is indicated at the bottom left of the list window.

Figure 8-97 Text Message Inbox

Or:

Show Outbox messages:

While viewing the AUX-TEXT MESSAGING Page, press the **ARRANGE** Softkey, then press the **OUTBOX** Softkey.

- 1) Press the **MENU** Key to display the Page Menu.
- 2) Turn either **FMS** Knob to place the cursor on 'Show Outbox Messages'.
- **3)** Press the **ENT** Key. The message box selected for viewing is indicated at the bottom left of the list window.

Show Draft messages:

While viewing the AUX-TEXT MESSAGING Page, press the **ARRANGE** Softkey, then press the **DRAFTS** Softkey.

Or:

- 1) Press the **MENU** Key to display the Page Menu.
- 2) Turn either FMS Knob to place the cursor on 'Show Draft Messages'.
- **3)** Press the **ENT** Key. The message box selected for viewing is indicated at the bottom left of the list window.

MANAGING TEXT MESSAGES

The viewed messages may be listed according to the date/time the message was sent or received, the type of message (read, unread, sent, unsent, etc.), or by message address.

Viewing messages sorted by message date/time:

While viewing the AUX-TEXT MESSAGING Page, press the **ARRANGE** Softkey, then press the **TIME** Softkey (Figure 8-97).

Or:

- **1)** Press the **MENU** Key to display the Page Menu.
- 2) Turn either FMS Knob to place the cursor on 'Sort By Date/Time'.
- **3)** Press the **ENT** Key. The sorting selection is indicated at the bottom center of the list window (Figure 8-97).

Viewing messages sorted by message type:

While viewing the AUX-TEXT MESSAGING Page, press the **ARRANGE** Softkey, then press the **TYPE** Softkey.

Or:

- 1) Press the **MENU** Key to display the Page Menu.
- 2) Turn either FMS Knob to place the cursor on 'Sort By Type'.
- **3)** Press the **ENT** Key. The sorting selection is indicated at the bottom center of the list window.

Viewing messages sorted by address:

While viewing the AUX-TEXT MESSAGING Page, press the **ARRANGE** Softkey, then press the **ADDRESS** Softkey.

Or:

- **1)** Press the **MENU** Key to display the Page Menu.
- 2) Turn either FMS Knob to place the cursor on 'Sort By Address'.
- **3)** Press the **ENT** Key. The sorting selection is indicated at the bottom center of the list window.

Viewing the content of a text message:

- 1) While viewing the AUX-TEXT MESSAGING Page, select the desired message box.
- 2) Press the **FMS** Knob to activate the cursor.
- **3)** Turn either **FMS** Knob to select the desired message.
- 4) Press the **VIEW** Softkey.

Or:

Press the **ENT** Key.

Or:

- a) Press the **MENU** Key to display the Page Menu.
- **b)** Turn either **FMS** Knob to place the cursor on 'View Selected Message'.
- c) Press the ENT Key.

Message content is displayed as shown in Figure 8-98.

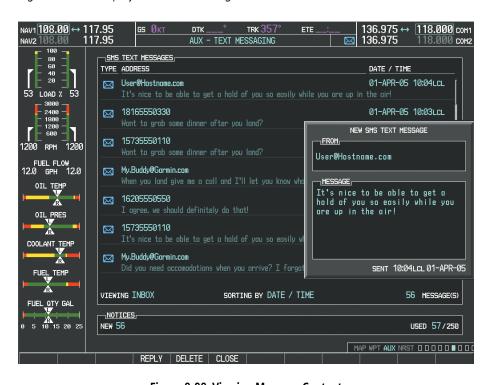


Figure 8-98 Viewing Message Content

5) To close the text message, press the **CLOSE** Softkey.

Or:

- a) Press the **MENU** Key to display the Page Menu.
- **b)** Turn either **FMS** Knob to place the cursor on 'Close Message'.
- c) Press the ENT Key.

Marking selected message as read:

- 1) While viewing the Inbox on the AUX-TEXT MESSAGING Page, press the **FMS** Knob to activate the cursor.
- 2) Turn either **FMS** Knob to select the desired message.
- 3) Press the MRK READ Softkey.

Or:

- a) Press the **MENU** Key to display the Page Menu.
- **b)** Turn either **FMS** Knob to place the cursor on 'Mark Selected Message As Read'.
- c) Press the **ENT** Key.

The message symbol now indicates the message has been opened.

Marking all messages as read:

- 1) While viewing the Inbox on the AUX-TEXT MESSAGING Page, press the **MENU** Key to display the Page Menu.
- 2) Turn either **FMS** Knob to place the cursor on 'Mark All New Messages As Read'.
- **3)** Press the **ENT** Key. A confirmation window is displayed.
- **4)** With cursor highlighting 'YES', press the **ENT** Key. The message symbols now indicate all the message have been opened.

Delete a message:

- 1) While viewing the Inbox on the AUX-TEXT MESSAGING Page, press the **FMS** Knob to activate the cursor.
- **2)** Turn either **FMS** Knob to select the desired message.
- **3)** Press the **DELETE** Softkey.

Or:

- a) Press the **MENU** Key to display the Page Menu.
- **b)** Turn either **FMS** Knob to place the cursor on 'Delete Selected Message'.
- c) Press the ENT Key.

8.8 ELECTRONIC STABILITY AND PROTECTION (GARMIN ESP™)

WARNING: Do not assume Garmin ESP^{TM} will provide stability protection in all circumstances. There are inflight situations that can exceed the capabilities of ESP technology.

NOTE: Refer to the Airplane Flight Manual to determine approval of Garmin ESP™ functionality.

The optional Garmin Electronic Stability and Protection (Garmin $ESP^{\mathbb{M}}$) system is available only when the Garmin AFCS is installed. This system is designed to provide automatic control inputs to discourage aircraft operation outside the normal flight envelope. Garmin $ESP^{\mathbb{M}}$ works to maintain the desired pitch, roll, and airspeed operating envelope by automatically engaging one or more servos when the aircraft is near a defined pitch, roll, and/or airspeed operating limit. While ESP utilizes the same sensors, processors, and actuators as the Garmin AFCS autopilot, it is a separate function. The ESP system only operates when the Garmin AFCS autopilot is not engaged and the aircraft is above 200 feet AGL.

ESP engages when the aircraft exceeds one or more conditions (pitch, roll, and airspeed) beyond the normal flight parameters. Enhanced stability for each condition is provided by applying a force to the appropriate control input to give guidance to the pilot for returning the aircraft to the normal flight envelope. This is perceived by the pilot as resistance to control movement in the undesired direction when the aircraft approaches a steep attitude or high airspeed.

As the aircraft deviates further from the normal attitude and/or airspeed range, the force increases (up to an established maximum) to encourage control movement in the direction necessary to return to the normal attitude and/or airspeed range. Except in the case of high airspeed, when maximum force is reached, force remains constant up to the maximum engagement limit. Above the maximum engagement limit, forces are no longer applied. There is no maximum engagement related to a high airspeed condition.

The pilot can interrupt ESP by pressing and holding the Autopilot Disconnect (**AP DISC**) switch. Upon releasing the or **AP DISC** switch, ESP force will again be applied, provided aircraft roll attitude is within engagement limits. ESP can also be overridden by overpowering the servo's mechanical torque limit.

ESP can be enabled or disabled on the AUX-SYSTEM SETUP 2 Page on the MFD.

To enable or disable ESP:

- 1) Turn the large **FMS** Knob to select the AUX Page Group.
- 2) Turn the small **FMS** Knob to select the System Setup Page.
- **3)** If necessary, press the **SETUP 2** Softkey to display the AUX-SYSTEM SETUP 2 Page. If the AUX-SYSTEM SETUP 2 is already displayed, proceed to step 4.
- **4)** Press the **FMS** Knob to activate the cursor.
- 5) Turn the large FMS Knob to place the cursor in the STABILITY & PROTECTION field.
- **6)** Turn the small **FMS** Knob to select 'ENABLE' or 'DISABLE'.
- 7) Press the **FMS** Knob to remove the cursor.

ESP is automatically enabled on system power up.

ROLL ENGAGEMENT

Roll Limit Indicators are displayed on the roll scale at 45° right and left, indicating where ESP will engage (see Figure 8-99). As roll attitude exceeds 45°, ESP will engage and the on-side Roll Limit Indicator will move to 30°, as shown in Figure 8-100. The Roll Limit Indicator is now showing where ESP will disengage as roll attitude decreases.

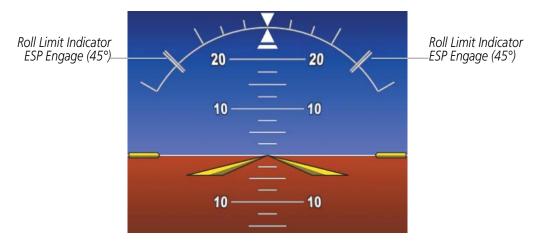


Figure 8-99 ESP Roll Engagement Indication (ESP NOT Engaged)

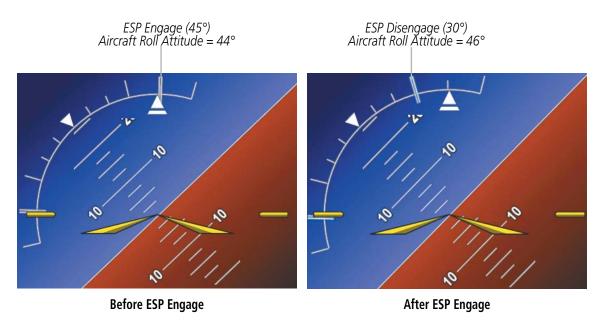


Figure 8-100 Roll Increasing to ESP Engagement

Once engaged, ESP force will be applied between 30° and 75°, as illustrated in Figure 8-101. The force increases as roll attitude increases and decreases as roll attitude decreases. The applied force is intended to encourage pilot input that returns the airplane to a more normal roll attitude. As roll attitude decreases, ESP will disengage at 30°.

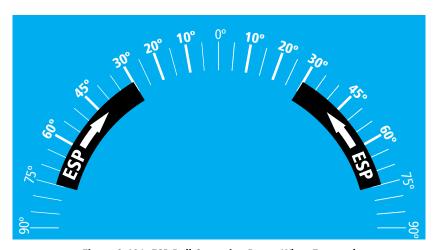


Figure 8-101 ESP Roll Operating Range When Engaged (Force Increases as Roll Increases & Decreases as Roll Decreases)

ESP is automatically disengaged if the aircraft reaches the autopilot roll engagement attitude limit of 75° (Figure 8-102).

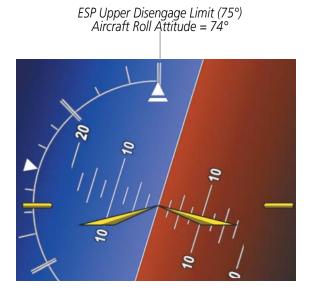


Figure 8-102 Roll Attitude Autopilot Engagement Limit (ESP Engaged)

PITCH ENGAGEMENT

ESP engages at 16° nose-up and 22° nose-down. Once ESP is engaged, it will apply increasing opposing force between 16° and 20° nose-up and between 22° and 25° nose-down, as indicated in Figure 8-103. Maximum opposing force is applied between 20° and 50° nose-up and between 25° and 50° nose-down. ESP disengages when 50° is exceeded in a nose-up or nose-down attitude.

With ESP engaged, and the aircraft in a nose-up condition, opposing force steadily decreases from 20° nose-up to 12° nose-up as aircraft pitch moves toward zero degrees. ESP disengages at 12° nose-up. With ESP engaged, and the aircraft in a nose-down condition, opposing force steadily decreases from 25° nose-down to 17° nose-down as aircraft pitch moves toward zero degrees. ESP disengages at 17° nose-down.

The opposing force increases or decreases depending on the pitch angle and the direction of pitch travel. This force is intended to encourage movement in the pitch axis in the direction of the normal pitch attitude range for the aircraft.

There are no indications marking the pitch ESP engage and disengage limits in these nose-up/nose-down conditions.

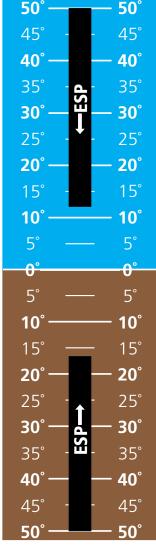


Figure 8-103 ESP Pitch Operating Range When Engaged (Force Increases as Pitch Increases & Decreases as Pitch Decreases)

HIGH AIRSPEED PROTECTION

Exceeding Vne will result in ESP applying force to raise the nose of the aircraft. When the high airspeed condition is remedied, ESP force is no longer applied.

8.9 SCHEDULER

The Scheduler feature can be used to enter and display reminder messages (e.g., Change oil, Switch fuel tanks, or Altimeter-Transponder Check) in the Alerts Window on the PFD. Messages can be set to display based on a specific date and time (event), once the message timer reaches zero (one-time; default setting), or recurrently whenever the message timer reaches zero (periodic). Message timers set to periodic alerting automatically reset to the original timer value once the message is displayed. When power is cycled, all messages are retained until deleted, and message timer countdown is resumed.

Figure 8-104 Scheduler (Utility Page)

Entering a scheduler message:

- 1) Select the AUX Utility Page.
- **2)** Press the **FMS** Knob momentarily to activate the flashing cursor.
- 3) Turn the large **FMS** Knob to highlight the first empty scheduler message naming field.
- 4) Use the **FMS** Knob to enter the message text to be displayed in the Alerts Window and press the **ENT** Key.
- 5) Press the **ENT** Key again or use the large **FMS** Knob to move the cursor to the field next to Type.
- **6)** Turn the small **FMS** Knob to select the message type:
 - Event—Message issued at the specified date/time
 - One-time—Message issued when the message timer reaches zero (default setting)
 - Periodic—Message issued each time the message timer reaches zero
- 7) Press the **ENT** Key again or use the large **FMS** Knob to move the cursor to the next field.
- **8)** For periodic and one-time message, use the **FMS** Knob to enter the timer value (HH:MM:SS) from which to countdown and press the **ENT** Key.
- **9)** For event-based messages:
 - a) Use the FMS Knob to enter the desired date (DD-MM-YY) and press the ENT Key.
 - **b)** Press the **ENT** Key again or use the large **FMS** Knob to move the cursor to the next field.
 - c) Use the **FMS** Knob to enter the desired time (HH:MM) and press the **ENT** Key.
- **10)** Press the **ENT** Key again or use the large **FMS** Knob to move the cursor to enter the next message.

Deleting a scheduler message:

- 1) Select the AUX Utility Page.
- 2) Press the **FMS** Knob momentarily to activate the flashing cursor.
- 3) Turn the large **FMS** Knob to highlight the name field of the scheduler message to be deleted.
- 4) Press the **CLR** Key to clear the message text. If the **CLR** Key is pressed again, the message is restored.
- **5)** Press the **ENT** Key while the message line is cleared to clear the message text.

Scheduler messages appear in the Messages Window on the PFD. When a scheduler message is waiting, the **ALERTS** Softkey label changes to ADVISORY. Pressing the **ADVISORY** Softkey opens the Messages Window and acknowledges the scheduler message. The softkey label reverts to ALERTS when pressed. Pressing the **ALERTS** Softkey again removes the Messages Window from the display, and the scheduler message is deleted from the message queue.

Figure 8-105 PFD Messages Window

GARMIN

8.10 ELECTRONIC CHECKLISTS

NOTE: The optional checklists presented here are for example only and may differ from checklists available for the DA62. The information described in this section is not intended to replace the checklist information described in the POH.

NOTE: Garmin is not responsible for the content of checklists. Checklists are created by the aircraft manufacturer. Modifications or updates to the checklists are coordinated through the aircraft manufacturer. The user cannot edit these checklists.

The optional checklist functions are displayed on two levels of softkeys that are available on any MFD page.

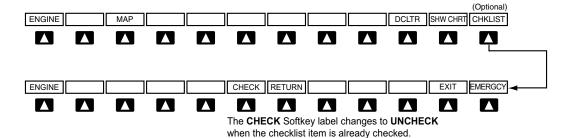


Figure 8-106 Checklist Softkeys

The MFD is able to display optional electronic checklists which allow the pilot to quickly find the proper procedure on the ground and during each phase of flight. The system accesses the checklists from an SD card inserted into the top card slot of the MFD. If the SD card contains an invalid checklist file or no checklist, the Power-up Page messages display 'Checklist File: Invalid' or 'Checklist File: N/A' (not available) and the **CHKLIST** Softkey is not available.

The following colors are used for checklist items:

- Cyan Items not selected or checked
- White Item is selected
- Green Item has been checked

- Gray General notes
- Yellow Caution notes
- Red Warning notes

Accessing and navigating checklists:

- 1) From any page on the MFD, select the **CHKLIST** Softkey or turn the large **FMS** Knob to select the Checklist Page.
- 2) Turn the large **FMS** Knob to select the 'GROUP' field.
- 3) Turn the small **FMS** Knob to select the desired procedure and press the **ENT** Key.
- **4)** Turn the large **FMS** Knob to select the 'CHECKLIST' field.
- 5) Turn the small **FMS** Knob to select the desired checklist and press the **ENT** Key. The selected checklist item is indicated with white text surrounded by a white box.
- 6) Press the **ENT** Key or select the **CHECK** Softkey to check the selected checklist item. The line item turns green and a checkmark is placed in the associated box. The next line item is automatically selected for checking.
 - Either **FMS** Knob can be used to scroll through the checklist and select the desired checklist item.
 - Press the **CLR** Key or select the **UNCHECK** Softkey to remove a check mark from an item.

- 7) When all checklist items have been checked, '*Checklist Finished*' is displayed in green text at the bottom left of the checklist window and 'GO TO NEXT CHECKLIST?' is highlighted. If 'GO TO NEXT CHECKLIST?' is selected prior to checking all the checklist items, '*CHECKLIST NOT FINISHED*' will be displayed in yellow text.
- 8) Press the **ENT** Key. If 'GO TO NEXT CHECKLIST?' is displayed when pressing the **ENT** Key, the next checklist in the group will be displayed. If 'EXIT CHECKLISTS?' is displayed when pressing the **ENT** Key, the system will exit the Checklist Page.
- 9) Select the **EXIT** Softkey to exit the Checklist Page and return to the page last viewed. When returning to the Checklist Page after pressing the **EXIT** Softkey, the system will return to the last selected checklist item.

Figure 8-107 Sample Checklist

Accessing emergency procedures:

- 1) From any page on the MFD, select the **CHKLIST** Softkey or turn the large **FMS** Knob to select the Checklist Page.
- 2) Select the **EMERGCY** Softkey.
- **3)** Turn the **FMS** Knob to select the desired emergency checklist and press the **ENT** Key.
- 4) Press the **ENT** Key or select the **CHECK** Softkey to check the selected emergency checklist item. The line item turns green and a checkmark is placed in the box next to it. The next line item is automatically highlighted for checking.
 - Either **FMS** Knob can be used to scroll through the checklist and select the desired checklist item.
 - Press the **CLR** Key or select the **UNCHECK** Softkey to remove a check mark from an item.
- 5) When all checklist items have been checked, '*Checklist Finished*' is displayed in green text at the bottom left of the checklist window and 'GO TO NEXT CHECKLIST?' is highlighted. If 'GO TO NEXT CHECKLIST?' is selected prior to checking all the checklist items, '*CHECKLIST NOT FINISHED*' will be displayed in yellow text.
- **6)** Press the **ENT** Key to advance to the next checklist.
- 7) Select the **RETURN** Softkey to return to the previous checklist.
- 8) Select the **EXIT** Softkey to exit the Checklist Page and return to the page last viewed.



Figure 8-108 Emergency Checklist Page Example

8.11 FLIGHT DATA LOGGING

NOTE: Some aircraft installations may not provide all aircraft/engine data capable of being logged by the system.

The Flight Data Logging feature will automatically store critical flight and engine data on an SD data card (up to 16GB) inserted into the top card slot of the MFD. Approximately 1,000 flight hours can be recorded for each 1GB of available space on the card.

Data is written to the SD card once each second while the MFD is powered on. All flight data logged on a specific date is stored in a file named in a format which includes the date, time, and nearest airport identifier. The file is created automatically each time the G1000 system is powered on, provided an SD card has been inserted.

The status of the Flight Data Logging feature can be viewed on the AUX-UTILITY Page. If no SD card has been inserted, "NO CARD" is displayed. When data is being written to the SD card, "LOGGING DATA" is displayed.

The .csv file may be viewed with Microsoft Excel® or other spreadsheet applications.

The following is a list of data parameters the G1000 system is capable of logging for the DA62 aircraft.

- Date
- Time
- GPS altitude (MSL)
- GPS altitude (WGS84 datum)
- Baro-Corrected altitude (feet)
- Baro Correction (in/Hg)
- Indicated airspeed (kts)
- Vertical speed (fpm)
- GPS vertical speed (fpm)
- OAT (degrees C)
- True airspeed (knots)
- Pitch Attitude Angle (degrees)
- Roll Attitude Angle (degrees)
- Lateral and Vertical G Force (g)
- Ground Speed (kts)
- Ground Track (degrees magnetic)
- Latitude (degrees; geodetic; +North)

- Longitude (degrees; geodetic; +East)
- Magnetic Heading (degrees)
- HSI source
- Selected course
- Com1/Com2 frequency
- Nav1/Nav2 frequency
- CDI deflection
- VDI/GP/GS deflection
- Wind Direction (degrees)
- Wind Speed (knots)
- Active Waypoint Identifier
- Distance to next waypoint (nm)
- Bearing to next waypoint (degrees)
- Magnetic variation (degrees)
- Autopilot On/Off
- AFCS roll/pitch modes
- AFCS roll/pitch commands

- GPS fix
- GPS horizontal alert limit
- GPS vertical alert limit
- SBAS GPS horizontal protection level
- SBAS GPS vertical protection level
- Fuel Qty (right & left)(gals)
- Fuel Flow (gph)
- Fuel Pressure (psi)
- Voltage 1 and/or 2
- Amps 1 and/or 2
- Engine RPM
- Oil Pressure (psi)
- Oil Temperature (deg. F)
- Manifold Pressure (in. Hg)
- CHT
- EGT

The file containing the recorded data will appear in the format shown in Figure 8-109. This file can be imported into most computer spreadsheet applications.

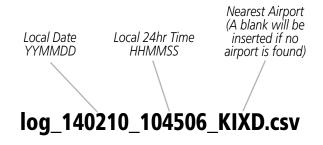


Figure 8-109 Log File Format

Data logging status can be monitored on the AUX-UTILITY Page.

8.12 AUXILIARY VIDEO (OPTIONAL)

The G1000 system provides a control and display interface to an optional auxiliary video system.

NOTE: Images provided on the Aux-Video page are for supplemental use only.

There are four modes of operation of the auxiliary video display: Full-Screen, Full-Screen with Digital Zoom, Split-Screen with Map, and Split-Screen with Map and Digital Zoom.

Displaying auxiliary video:

- 1) Turn the large **FMS** Knob to select the AUX page group.
- 2) Turn the small **FMS** Knob to select VIDEO and display the AUX-VIDEO Page.

The video display softkeys shown below appear on the AUX - VIDEO Page.

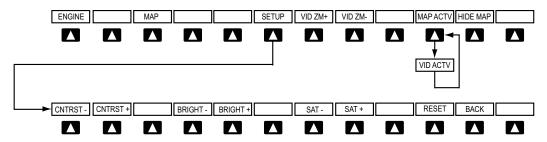


Figure 8-110 Video Display Softkeys

Pressing the **BACK** Softkey returns to the Previous Level Softkeys.

Control of the AUX - VIDEO Page can also be accessed through the Page Menu.

Figure 8-111 AUX - VIDEO Page Menu

Selecting video menu options:

- 1) While viewing the AUX VIDEO Page press the **MENU** Key to display the Page Menu OPTIONS.
- 2) Turn the large **FMS** Knob to highlight the desired video adjustment option and press the **ENT** Key.

Once the **ENT** key is pressed on any option, the page menu closes and returns to the AUX - VIDEO Page.

VIDEO SETUP

Video brightness, contrast, and saturation may be adjusted be selecting the setup function. While viewing the setup function softkeys, after 45 seconds of softkey inactivity, the system reverts to the AUX - VIDEO Page softkeys.

Adjusting the video settings:

- 1) With the AUX-VIDEO Page displayed, press the **SETUP** Softkey.
- 2) Press the **BRIGHT** or **BRIGHT** +, to adjust display brightness in five percent increments from 0 to 100%.
- 3) Press the CNTRST- or CNTRST +, to adjust display contrast in five percent increments from 0 to 100%.
- **4)** Press the **SAT -** or **SAT +**, to adjust display saturation in five percent increments from 0 to 100%.
- **5)** If desired, return the display to the default settings by pressing the **RESET** Softkey.
- **6)** Press the **BACK** Softkey to return to the previous softkey level.

DISPLAY SELECTION

Pressing the **HIDE MAP** Softkey removes the map and displays video on the full screen. The softkey label changes to grey with black characters. Pressing the **HIDE MAP** Softkey again restores the map view and the small video image. The softkey label returns to white characters on a black background.

Figure 8-112 AUX - Video Split-Screen

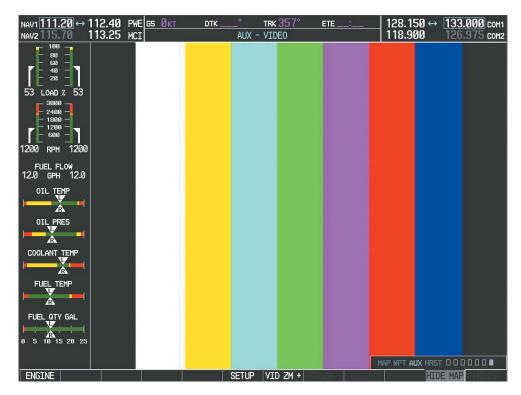


Figure 8-113 Full Screen Video Display

ZOOM/RANGE

Pressing the **VID ZM +** or **VID ZM -** Softkeys increases or decreases video display magnification between 1x and 10x.

The **RANGE** Knob can be used to increase or decrease the range setting on the map display or zoom in and out on the video display. While in the Split-Screen mode, pressing the **MAP ACTV** or **VID ACTV** Softkey determines which display the **RANGE** Knob adjusts. Pressing the softkey to display MAP ACTV allows the **RANGE** Knob to control the range setting of the map display. Pressing the softkey to display VID ACTV allows the **RANGE** Knob to control the zoom setting of the video display.

8.13 ABNORMAL OPERATION

SVT TROUBLESHOOTING

SVT is intended to be used with traditional attitude, heading, obstacle, terrain, and traffic inputs. SVT is disabled when valid attitude or heading data is not available for the display. In case of invalid SVT data, the PFD display reverts to the standard blue-over-brown attitude display.

SVT becomes disabled without the following data resources:

- Attitude data
- Heading data
- GPS position data
- 9 Arc-second Terrain data
- Obstacle data
- Terrain function is not available, in test mode, or failed
- The position of the aircraft exceeds the range of the terrain database.

REVERSIONARY MODE

SVT can be displayed on the Multifunction Display (MFD) in Reversionary Mode. If it is enabled when switching to Reversionary Mode, SVT will take up to 30 seconds to be displayed. The standard, non-SVT PFD display will be shown in the interim.

Figure 8-114 SVT Reversionary Mode

UNUSUAL ATTITUDES

Unusual attitudes are displayed with red chevrons overlaid on the display indicating the direction to fly to correct the unusual attitude condition. The display shows either a brown or blue colored bar at the top or bottom of the screen to represent earth or sky. This is intended to prevent losing sight of the horizon during extreme pitch attitudes.

Figure 8-115 Unusual Attitude Display

The blue colored bar is also displayed when terrain gradient is great enough to completely fill the display.

Figure 8-116 Blue Sky Bar with Full Display Terrain

GDL 69/69A DATA LINK RECEIVER TROUBLESHOOTING

Some quick troubleshooting steps listed below can be performed to find the possible cause of a failure.

- Ensure the owner/operator of the aircraft in which the Data Link Receiver is installed has subscribed to SiriusXM
- Ensure the SiriusXM subscription has been activated
- Perform a quick check of the circuit breakers to ensure that power is applied to the Data Link Receiver

For troubleshooting purposes, check the LRU Information Box on the AUX - System Status Page for Data Link Receiver (GDL 69/69A) status, serial number, and software version number. If a failure has been detected in the GDL 69/69A the status is marked with a red X.

Selecting the System Status Page:

- 1) Turn the large **FMS** Knob to select the AUX Page Group.
- 2) Turn the small **FMS** Knob to select the System Status Page (the last page in the AUX Page Group).

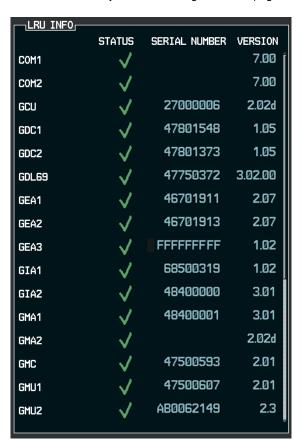


Figure 8-117 LRU Information Window on System Status Page

If a failure still exists, the following messages may provide insight as to the possible problem:

Message	Message Location	Description	
CHECK ANTENNA	XM Radio Page - active channel field	Data Link Receiver antenna error; service required	
UPDATING	XM Radio Page - active channel field	Data Link Receiver updating encryption code	
NO SIGNAL	XM Radio Page - active channel field	Loss of signal; signal strength too low for receiver	
NO SIGNAL	Weather Datalink Page - center of page	Loss of Signal, Signal Strength too low for receiver	
LOADING	XM Radio Page - active channel field	Acquiring channel audio or information	
OFF AIR	XM Radio Page - active channel field	Channel not in service	
	XM Radio Page - active channel field	Missing channel information	
WEATHER DATA LINK FAILURE	Weather Datalink Page - center of page	No communication from Data Link Receiver	
		within last 5 minutes	
ACTIVATION REQUIRED	Weather Datalink Page - center of page	SiriusXM subscription is not activated	

Table 8-7 GDL 69/69A Data Link Receiver Error Messages

EIS

GARMIN.

ANNUNCIATIONS AND ALERTS

NOTE: The Airplane Flight Manual (AFM) supersedes information found in this document.

The G1000 Alerting System conveys alerts using the following:

- Annunciation Window: The Annunciation Window displays abbreviated annunciation text. Text color is based on alert levels described in the following section. The Annunciation Window is located to the right of the Altimeter and Vertical Speed Indicator. All aircraft annunciations can be displayed simultaneously in the Annunciation Window. A white horizontal line separates annunciations that are acknowledged from annunciations that are not yet acknowledged. Higher priority annunciations are displayed towards the top of the window.
- **Alerts Window:** The Alerts Window displays text messages for up to 64 prioritized alert messages. Pressing the **ALERTS** Softkey displays the Alerts Window. Pressing the **ALERTS** Softkey a second time removes the Alerts Window from the display. When the Alerts Window is displayed, the **FMS** Knob can be used to scroll through the alert message list.
- **Softkey Annunciation:** During certain alerts, the **ALERTS** Softkey may appear as a flashing annunciation to accompany an alert. The **ALERTS** Softkey assumes a new label consistent with the alert level (WARNING, CAUTION, or ADVISORY). By selecting the softkey when flashing an annunciation, the alert is acknowledged. The softkey label then returns to **ALERTS**. If alerts are still present, the **ALERTS** label is displayed in white with black text. Selecting the **ALERTS** Softkey a second time views the alert text messages.
- **System Annunciations:** Typically, a large red 'X' appears over instruments whose information is supplied by a failed Line Replaceable Unit (LRU). See the G1000 System Annunciations Section for more information.

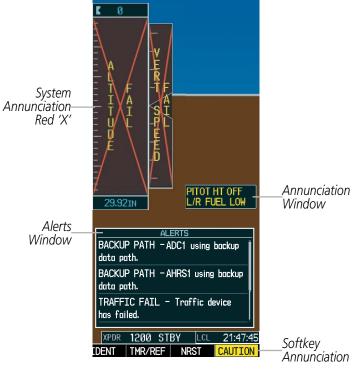


Figure A-1 G1000 Alerting System

• **Audio Alerting System:** The G1000 System issues audio alert tones when specific system conditions are met. See the Alert Level Definitions Section for more information. The annunciation tone may be tested from the AUX - System Status Page.

Testing the system annunciation tone:

- 1) Use the **FMS** Knob to select the AUX System Status Page.
- 2) Select the ANN TEST Softkey.

Or:

- a) Press the MENU Key.
- b) Highlight 'Enable Annunciator Test Mode' and press the ENT Key.

Press to Test Annunciation Tone

Figure A-2 Annunciation Tone Testing (AUX-System Status Page)

ALERT LEVEL DEFINITIONS

The G1000 Alerting System uses three alert levels.

• **WARNING:** This level of alert requires immediate attention.

Warning alert text is shown in red in the Annunciation Window and is accompanied by a continuous chime and a flashing 'WARNING' Softkey annunciation. Pressing the **WARNING** Softkey acknowledges the presence of the warning alert and stops the aural chime.

• **CAUTION:** This level of alert indicates the existence of abnormal conditions on the aircraft that may require intervention.

Caution alert text is shown in yellow in the Annunciation Window and is accompanied by a single chime and a flashing 'CAUTION' Softkey annunciation. Pressing the **CAUTION** Softkey acknowledges the presence of the caution alert.

• **ANNUNCIATION OR MESSAGE ADVISORY:** This level of alert provides general information.

Annunciation alert text is shown in white in the Annunciation Window; no aural tone is generated. An annunciation alert is accompanied by a flashing **ADVISORY** Softkey annunciation. Pressing the **ADVISORY** Softkey acknowledges the presence of the annunciation alert.

Message advisory alerts do not issue annunciations in the Annunciation Window. Instead, message advisory alerts only issue a flashing 'ADVISORY' Softkey annunciation. Selecting the **ADVISORY** Softkey acknowledges the presence of the message advisory alert and displays the alert text message in the Alerts Window.

Figure A-3 Softkey Annunciation (ALERTS Softkey Labels)

AIRCRAFT ALERTS

The following alerts are configured specifically for the Diamond DA62. Red annunciation window text signifies warnings and yellow, cautions. See the Airplane Flight Manual Supplement (AFMS) for recommended pilot actions.

Annunciation Window Text	Alerts Window Message	Audio Alert
L ALTN AMPS	Left engine alternator output is >70 amps.	
R ALTN AMPS	Right engine alternator output is >70 amps.	
L DOOR OPEN	Front, left door is not closed.	
R DOOR OPEN	Front, right door is not closed.	
FWD DOOR OPEN	Left or right baggage door is not closed.	
REAR DOOR OPEN	Rear door is not closed.	
L ENG FIRE	Left engine fire detected.	
R ENG FIRE	Right engine fire detected.	
L ENG TEMP	Left engine coolant temp is >105 deg C.	
R ENG TEMP	Right engine coolant temp is >105 deg C.	
L FUEL PRESS	Left engine fuel pressure is low.	
R FUEL PRESS	Right engine fuel pressure is low.	Continuous Aural Tone
L FUEL TEMP	Left fuel temp is greater than 60 deg C.	
R FUEL TEMP	Right fuel temp is greater than 60 deg C.	
L GBOX TEMP	Left engine gearbox temp is >120 deg C.	
R GBOX TEMP	Right engine gearbox temp is >120 deg C.	
L OIL TEMP	Left engine oil temp is greater than 140 deg C.	
R OIL TEMP	Right engine oil temp is greater than 140 deg C.	
L OIL PRES	Left engine oil pressure is less than 0.9 bar.	
R OIL PRES	Right engine oil pressure is less than 0.9 bar.	
L STARTER	Left engine starter is engaged.	
R STARTER	Right engine starter is engaged.	
USP ACTIVE*	USP has engaged autopilot due to slow airspeed.	
* Optional (Garmin AFCS equippe	d aircraft with ESP™ only)	
Table A-1 Warning Alerts		

Annunciation Window Text	Alerts Window Message	Audio Alert
L ALT AIR OPEN*	The alternate air intake door on the left engine is open.	
R ALT AIR OPEN*	The alternate air intake door on the left engine is open.	
L ALTN FAIL	Left engine alternator has failed.	
R ALTN FAIL	Right engine alternator has failed.	
L AUX FUEL E*	Left auxiliary fuel tank is empty.	
R AUX FUEL E*	Right auxiliary fuel tank is empty.	
CHECK GEAR	Landing gear is not down and locked	
L COOL LVL	Left engine coolant level is low.	
R COOL LVL	Right engine coolant level is low.	
DEICE LVL LO *	De-icing fluid level is low.	
DEIC PRES HI *	De-icing pressure is high.	
DEIC PRES LO*	De-icing pressure is low.	
L ECU A FAIL	Left engine ECU A has failed.	Cinale Assal Tone
R ECU A FAIL	Right engine ECU A has failed.	Single Aural Tone
L ECU B FAIL	Left engine ECU B has failed.	
R ECU B FAIL	Right engine ECU B has failed.	
L FUEL LOW	Left engine main tank fuel quantity is low.	
R FUEL LOW	Right engine main tank fuel quantity is low.	
NO ADC MODES	Autopilot air data modes are not available.	
NO VERT MODES	Autopilot vertical modes are not available.	
PITOT FAIL	Pitot heat has failed.	
PITOT HT OFF	Pitot heat is off.	
STAL HT FAIL	Stall warning heat has failed.	
STAL HT OFF	Stall warning heat is off.	
L VOLTS LOW	Left bus voltage is less than 25 volts.	
R VOLTS LOW	Right bus voltage is less than 25 volts.	
Optional		•
	Table A-2 Caution Alerts	

R AUXPUMP ON [↑] Right fuel t	ensfer from aux to main in progress. Erransfer from aux to main in progress.	
	ransfer from aux to main in progress.	
L GLOW ON Left engine		- No Tone
	glow plug active.	No rone
R GLOW ON Right engin	ne glow plug active.	
→ Optional		
Table A-3 Advisory Alerts		

Alerts Window Message	Audio Alert
PFD FAN FAIL – The cooling fan for the PFD is inoperative.	
MFD FAN FAIL — The cooling fan for the MFD is inoperative.	
GIA FAN FAIL – The cooling fan for the GIAs is inoperative.	
ESP DEGRADE* – ESP IAS mode is inoperative.	No Tone
ESP FAIL* — ESP is inoperative.	
ESP OFF* — ESP selected off.	
ESP CONFIG* – ESP config error. Config service req'd.	
* Garmin AFCS equipped aircraft with ESP™	
Table A-4 Message Advisory Alerts	

VOICE ALERTS

The following audio alerts are announced by the system using a voice of male or female gender.

Voice Alert	Alert Trigger
"Minimums, Minimums"	Issued when the aircraft transitions through the minimum descent altitude/decision height (MDA/DH)
"Vertical Track"	Aircraft is one minute from Top of Descent - issued only when vertical navigation is enabled
"Traffic"	TIS voice alert - issued when a Traffic Advisory (TA) is issued
"Traffic Not Available"	TIS voice alert - issued when the traffic system fails or cannot communicate
"Traffic, Traffic"	Played when a Traffic Advisory (TA) is issued (TAS system)
"Traffic Advisory System	Played when the TAS system passes a pilot-initiated self test.
Test Passed"	
"Traffic Advisory System	Played when the TAS system fails a pilot-initiated self test.
Test Failed"	

Selecting the audio alert voice:

- 1) Use the **FMS** Knob to select the AUX System Setup Page.
- 2) Press the **FMS** Knob to activate the cursor.
- 3) Turn the large **FMS** Knob to highlight the voice in the Audio Alert Box.
- 4) Turn the small **FMS** Knob to select the desired voice, press the ENT Key.

Figure A-4 Audio Alert (AUX - System Setup Page)

G1000 SYSTEM ANNUNCIATIONS

NOTE: Upon power-up, certain windows remain invalid as G1000 equipment begins to initialize. All windows should be operational within one minute of power-up. If any window continues to remain flagged, the G1000 System should be serviced by a Garmin-authorized repair facility.

When an LRU or an LRU function fails, a large red 'X' is typically displayed on windows associated with the failed data (refer to Figure B-1 for all possible flags and the responsible LRUs). Refer to the Airplane Flight Manual (AFM) for additional information regarding pilot responses to these annunciations.

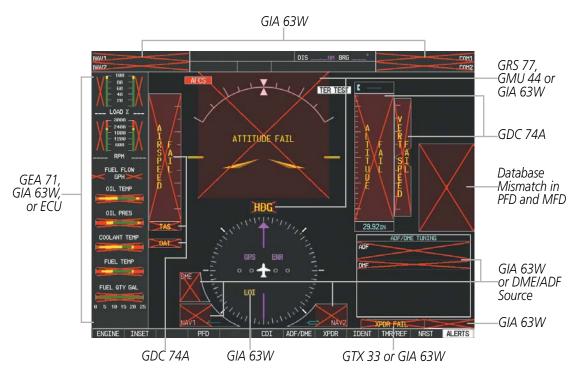


Figure A-5 G1000 System Failure Annunciations

The status of detected LRUs can be checked on the AUX - System Status Page (Figure A-2). Active LRUs are indicated by green check marks; failed, by red 'X's. Failed LRUs should be noted and a service center or Garmin-authorized dealer informed.

Viewing LRU information:

- 1) Use the **FMS** Knob to select the AUX System Status Page.
- 2) To place the cursor in the 'LRU Info' Box,
 - a) Select the LRU Softkey.

Or:

- a) Press the MENU Key.
- b) With 'Select LRU Window' highlighted, press the ENT Key.
- 3) Use the **FMS** Knob to scroll through the box to view LRU status information.

System Annunciation	Comment
AHRS ALIGN: Keep Hings Level	Attitude and Heading Reference System is aligning.
ATTITUDE FAIL	Display system is not receiving attitude information from the AHRS.
ZO ZO	AHRS calibration incomplete or configuration module failure.
20 20 CHECK ATTITUDE	This annunciation is seen only when the autopilot is engaged. The annunciation indicates an AHRS monitor has detected an abnormal flight parameter, possibly caused by strong turbulence. In this case, the situation should correct itself within a few seconds. If there is an actual failure, a red "X" soon appears over the Attitude Indicator.
GPS ENR O O TO O	GPS information is either not present or is invalid for navigation use. Note that AHRS utilizes GPS inputs during normal operation. AHRS operation may be degraded if GPS signals are not present (see AFM).
HDG	Display system is not receiving valid heading input from AHRS.
TAS	Display system is not receiving valid true airspeed information from air data computer.

System Annunciation	Comment
A T T S I A T T T A S I A T T A T T A S I A T T A S I A T T A S I A T T	Display system is not receiving airspeed input from air data computer.
TANKT WOUND	Display system is not receiving vertical speed input from the air data computer.
	Different versions of GDU software are installed in the PFD and MFD. This can also indicate different versions of the navigation database installed in the PFD and MFD. In some circumstances, a cross-talk error between the PFD and MFD can cause this annunciation.
A LATITUDE	Display system is not receiving altitude input from the air data computer.
OAT	Display system is not receiving valid OAT information from air data computer.
XPDR FAIL	Display system is not receiving valid transponder information.
Other Various Red X Indications	A red 'X' through any other display field (such as engine instrumentation fields) indicates that the field is not receiving valid data.

G1000 SYSTEM MESSAGE ADVISORIES

NOTE: This section provides information regarding G1000 message advisories that may be displayed by the system. Knowledge of the aircraft, systems, flight conditions, and other existing operational priorities must be considered when responding to a message.

This section describes various G1000 System message advisories. Certain messages are issued due to an LRU or LRU function failure. Such messages are normally accompanied by a corresponding red 'X' annunciation as shown previously in the G1000 System Annunciations section.

PRIMARY FLIGHT DISPLAY & MULTI FUNCTION DISPLAY

Message Advisory	Comments
DATA LOST — Pilot stored data was lost. Recheck settings.	The pilot profile data was lost. System reverts to default pilot profile and settings. The pilot may reconfigure the MFD & PFD with preferred settings, if desired.
XTALK ERROR – A flight display crosstalk error has occurred.	The MFD and PFD are not communicating with each other. The G1000 system should be serviced.
PFD1 SERVICE – PFD1 needs service. Return unit for repair.	The PFD and/or MFD self-test has detected a problem. The G1000 system should be
MFD1 SERVICE – MFD1 needs service. Return unit for repair.	serviced.
MANIFEST – PFD1 software mismatch, communication halted. MANIFEST – MFD1 software	The PFD and/or MFD has incorrect software installed. The G1000 system should be serviced.
mismatch, communication halted.	Scrviced.
PFD1 CONFIG – PFD1 config error. Config service req'd.	The PFD configuration settings do not match backup configuration memory. The G1000 system should be serviced.
MFD1 CONFIG – MFD1 config error. Config service req'd.	The MFD configuration settings do not match backup configuration memory. The G1000 system should be serviced.
SW MISMATCH – GDU software version mismatch. Xtalk is off.	The MFD and PFD have different software versions installed. The G1000 system should be serviced.
PFD1 COOLING — PFD1 has poor cooling. Reducing power usage. MFD1 COOLING — MFD1 has poor	The PFD and/or MFD is overheating and is reducing power consumption by dimming the display. If problem persists, the G1000 system should be serviced.
cooling. Reducing power usage.	
PFD1 KEYSTK – PFD1 [key name] is stuck.	A key is stuck on the PFD and/or MFD bezel. Attempt to free the stuck key by pressing
MFD1 KEYSTK – MFD1 [key name] is stuck.	it several times. The G1000 system should be serviced if the problem persists.
CNFG MODULE – PFD1 configuration module is inoperative.	The PFD1 configuration module backup memory has failed. The G1000 system should be serviced.
PFD1 VOLTAGE — PFD1 has low voltage. Reducing power usage	The PFD1 voltage is low. The G1000 system should be serviced.
MFD1 VOLTAGE – MFD1 has low voltage. Reducing power usage	The MFD voltage is low. The G1000 system should be serviced.

DATABASES

DAIADASES		
Message Advisory	Comments	
MFD1 DB ERR – MFD1 navigation database error exists.	The MFD and/or PFD detected a failure in the navigation database. Attempt to reload	
PFD1 DB ERR – PFD1	the navigation database. If problem persists, the G1000 system should be serviced.	
navigation database error exists.		
MFD1 DB ERR — MFD1 basemap		
database error exists.	The MFD and/or PFD detected a failure in the basemap database.	
PFD1 DB ERR – PFD1 basemap	The find disaster to detected a famale in the basemap database.	
database error exists.		
MFD1 DB ERR – MFD1 terrain database error exists.	The MFD and/or PFD detected a failure in the terrain database. Ensure that the terrain card is properly inserted in display. Replace terrain card. If problem persists, the G1000 system should be serviced.	
PFD1 DB ERR – PFD1 terrain database error exists.		
MFD1 DB ERR – MFD1 terrain		
database missing.	The terrain database is present on another LRU, but is missing on the specified LRU.	
PFD1 DB ERR — PFD1 terrain	The terrain database is present on another LRO, but is missing on the specified LRO.	
database missing.		
MFD1 DB ERR — MFD1 obstacle	The MFD and/or PFD detected a failure in the obstacle database. Ensure that the da	
database error exists.	card is properly inserted. Replace data card. If problem persists, the G1000 system	
PFD1 DB ERR – PFD1 obstacle database error exists.	should be serviced.	
MFD1 DB ERR — MFD1 obstacle		
database missing.	The obstacle database is present on another LRU, but is missing on the specified LRU.	
PFD1 DB ERR – PFD1 obstacle database missing.	and the same of th	
MFD1 DB ERR — MFD1 airport terrain	The MFD and/or PFD detected a failure in the airport terrain database. Ensure that	
database error exists.	the data card is properly inserted. Replace data card. If problem persists, the G1000	
PFD1 DB ERR – PFD1 airport terrain database error exists.	system should be serviced.	
MFD1 DB ERR – MFD1 airport		
terrain database missing.	The airport terrain database is present on another LRU, but is missing on the specified	
PFD1 DB ERR – PFD1 airport terrain database missing.	LRU.	
MFD1 DB ERR — MFD1 Safe Taxi	The MFD and/or PFD detected a failure in the Safe Taxi database. Ensure that the	
database error exists.	data card is properly inserted. Replace data card. If problem persists, the G1000	
PFD1 DB ERR – PFD1 Safe Taxi	system should be serviced.	
database error exists.	,	
MFD1 DB ERR – MFD1 Chartview database error exists.	The MFD and/or PFD detected a failure in the ChartView database (optional feature). Ensure that the data card is properly inserted. Replace data card. If problem persists, the G1000 system should be serviced.	
MFD1 DB ERR – MFD1 FliteCharts database error exists.	The MFD and/or PFD detected a failure in the FliteCharts database (optional feature). Ensure that the data card is properly inserted. Replace data card. If problem persists, the G1000 system should be serviced.	

APPENDICES

Message Advisory	Comments
MFD1 DB ERR — MFD1 Airport Directory database error exists.	The MFD detected a failure in the Airport Directory database. Ensure that the data card is properly inserted. Replace data card. If problem persists, the system should be serviced.
MFD1 DB ERR – MFD1 multiple database errors exists.	The MFD detected a failure in more than one database. If problem persists, the system should be serviced.
PFD1 DB ERR – PFD1 multiple database errors exists.	The MFD PFD detected a failure in more than one database. If problem persists, the system should be serviced.
DB MISMATCH — Navigation database mismatch. Xtalk is off.	The PFD and MFD have different navigation database versions or types installed. Crossfill is off. Check the AUX-SYSTEM STATUS Page to determine versions or regions. Also, check the AUX-SYSTEM STATUS Page for a database sychronization function not completed. After sychronization is complete, power must be turned off, then on.
DB MISMATCH — Standby Navigation database mismatch.	The PFD and MFD have different standby navigation database versions or types installed. Check the AUX-SYSTEM STATUS Page to determine versions or regions. Also, check the AUX-SYSTEM STATUS Page for a database sychronization function not completed. After sychronization is complete, power must be turned off, then on.
DB MISMATCH – Terrain database mismatch.	The PFD and MFD have different terrain database versions or types installed. Check the AUX-SYSTEM STATUS Page to determine versions or regions. Also, check the AUX-SYSTEM STATUS Page for a database sychronization function not completed. After sychronization is complete, power must be turned off, then on.
DB MISMATCH — Obstacle database mismatch.	The PFD and MFD have different obstacle database versions or types installed. Check the AUX-SYSTEM STATUS Page to determine versions or regions. Also, check the AUX-SYSTEM STATUS Page for a database sychronization function not completed. After sychronization is complete, power must be turned off, then on.
DB MISMATCH — Airport Terrain database mismatch.	The PFD and MFD have different airport terrain database versions or types installed. Check the AUX-SYSTEM STATUS Page to determine versions or regions. Also, check the AUX-SYSTEM STATUS Page for a database sychronization function not completed. After sychronization is complete, power must be turned off, then on.

GIA 63W INTEGRATED AVIONICS UNIT

Message Advisory	Comments
GIA1 CONFIG — GIA1 config error. Config service req'd.	The GIA1 and/or GIA2 configuration settings do not match backup configuration
GIA2 CONFIG — GIA2 config error. Config service req'd.	memory. The G1000 system should be serviced.
GIA1 CONFIG – GIA1 audio config error. Config service req'd.	The GIA1 and/or GIA2 have an error in the audio configuration. The G1000 system
GIA2 CONFIG – GIA2 audio config error. Config service req'd.	should be serviced.
GIA1 COOLING – GIA1 temperature too low.	The GIA1 and/or GIA2 temperature is too low to operate correctly. Allow units to
GIA2 COOLING — GIA2 temperature too low.	warm up to operating temperature.

Message Advisory	Comments
GIA1 COOLING – GIA1 over	
temperature.	The GIA1 and/or GIA2 temperature is too high. If problem persists, the G1000 system
GIA2 COOLING – GIA2 over	should be serviced.
temperature.	
GIA1 SERVICE – GIA1 needs service.	
Return the unit for repair.	$_$ The GIA1 and/or GIA2 self-test has detected a problem in the unit. The G1000 system
GIA2 SERVICE – GIA2 needs service.	should be serviced.
Return the unit for repair.	
HW MISMATCH – GIA hardware	
mismatch. GIA1 communication	
halted.	A GIA mismatch has been detected, where only one is SBAS capable.
HW MISMATCH – GIA hardware	A GIA MISMACCI HAS Deen detected, where only one is 3DA3 capable.
mismatch. GIA2 communication	
halted.	
MANIFEST – GIA1 software	
mismatch, communication halted.	The GIA1 and/or GIA 2 has incorrect software installed. The G1000 system should be
MANIFEST – GIA2 software	serviced.
mismatch, communication halted.	
MANIFEST – GFC software mismatch,	Incorrect come software is installed or goin settings are incorrect
communication halted.	Incorrect servo software is installed, or gain settings are incorrect.
COM1 CONFIG – COM1 config error.	The COM1 configuration settings do not match backup configuration memory. The
Config service req'd.	G1000 system should be serviced
COM2 CONFIG – COM2 config error.	The COM2 configuration settings do not match backup configuration memory. The
Config service req'd.	G1000 system should be serviced
COM1 TEMP – COM1 over temp.	TI
Reducing transmitter power.	The system has detected an over temperature condition in COM1 and/or COM2. The
COM2 TEMP – COM2 over temp.	transmitter operates at reduced power. If the problem persists, the G1000 system should be serviced.
Reducing transmitter power.	Should be serviced.
COM1 SERVICE – COM1 needs	
service. Return unit for repair.	The system has detected a failure in COM1 and/or COM2. COM1 and/or COM2 may
COM2 SERVICE – COM2 needs	still be usable. The G1000 system should be serviced when possible.
service. Return unit for repair.	
COM1 PTT — COM1 push-to-talk key	
is stuck.	The COM1 and/or COM2 external push-to-talk switch is stuck in the enable (or
COM2 PTT — COM2 push-to-talk key	"pressed") position. Press the PTT switch again to cycle its operation.
is stuck.	If the problem persists, the G1000 system should be serviced.
COM1 RMT XFR — COM1 remote	
transfer key is stuck.	The COM1 and/or COM2 transfer switch is stuck in the enabled (or "pressed")
COM2 RMT XFR — COM2 remote	position. Press the transfer switch again to cycle its operation. If the problem
transfer key is stuck.	persists, the G1000 system should be serviced.
LOI – GPS integrity lost. Crosscheck	
with other NAVS.	GPS integrity is insufficient for the current phase of flight.
30101 17 (73)	

Message Advisory	Comments
GPS NAV LOST — Loss of GPS navigation. Insufficient satellites.	Loss of GPS navigation due to insufficient satellites.
GPS NAV LOST – Loss of GPS navigation. Position error.	Loss of GPS navigation due to position error.
GPS NAV LOST — Loss of GPS navigation. GPS fail.	Loss of GPS navigation due to GPS failure.
ABORT APR – Loss of GPS navigation. Abort approach.	Abort approach due to loss of GPS navigation.
APR DWNGRADE – Approach downgraded.	Use LNAV minima when approach is downgraded.
TRUE APR – True north approach. Change HDG reference to TRUE.	Displayed after passing the first waypoint of a true north approach when the nav angle is set to 'MAGNETIC'.
GPS1 SERVICE – GPS1 needs service. Return unit for repair.	A failure has been detected in the GPS1 and/or GPS2 receiver. The receiver may still
GPS2 SERVICE – GPS2 needs service. Return unit for repair.	be available. The G1000 system should be serviced.
NAV1 SERVICE – NAV1 needs service. Return unit for repair.	A failure has been detected in the NAV1 and/or NAV2 receiver. The receiver may still
NAV2 SERVICE – NAV2 needs service. Return unit for repair.	be available. The G1000 system should be serviced.
NAV1 RMT XFR — NAV1 remote transfer key is stuck.	The remote NAV1 and/or NAV2 transfer switch is stuck in the enabled (or "pressed") state. Press the transfer switch again to cycle its operation. If the problem persists, the G1000 system should be serviced.
NAV2 RMT XFR — NAV2 remote transfer key is stuck.	
G/S1 FAIL – G/S1 is inoperative.	A failure has been detected in glideslope receiver 1 and/or receiver 2. The G1000
G/S2 FAIL – G/S2 is inoperative.	system should be serviced.
G/S1 SERVICE – G/S1 needs service. Return unit for repair.	A failure has been detected in glideslope receiver 1 and/or receiver 2. The receiver may still be available. The G1000 system should be serviced when possible.
G/S2 SERVICE – G/S2 needs service. Return unit for repair.	

GRS 77 ATTITUDE AND HEADING REFERENCE SYSTEM

Message Advisory	Comments
AHRS1 TAS — AHRS1 not receiving airspeed.	The #1 AHRS is not receiving true airspeed from the air data computer. The AHRS relies on GPS information to augment the lack of airspeed. The G1000 system should be serviced.
AHRS1 GPS – AHRS1 using backup GPS source.	The #1 AHRS is using the backup GPS path. Primary GPS path has failed. The G1000 system should be serviced when possible.
AHRS1 GPS – AHRS1 not receiving any GPS information.	The #1 AHRS is not receiving any or any useful GPS information. Check AFMS limitations. The G1000 system should be serviced.
AHRS1 GPS – AHRS1 not receiving backup GPS information.	The #1 AHRS is not receiving backup GPS information. The G1000 system should be serviced.

Message Advisory	Comments
AHRS1 GPS – AHRS1 operating exclusively in no-GPS mode.	The #1 AHRS is operating exclusively in no-GPS mode. The G1000 system should be serviced.
AHRS1 SRVC — AHRS1 Magnetic-field model needs update.	The #1 AHRS earth magnetic field model is out of date. Update magnetic field model when practical.
GEO LIMITS – AHRS1 too far North/ South, no magnetic compass.	The aircraft is outside geographical limits for approved AHRS operation. Heading is flagged as invalid.
MANIFEST – GRS1 software mismatch, communication halted.	The #1 AHRS has incorrect software installed. The G1000 system should be serviced.

GDL 69/69A SATELLITE DATALINK RECEIVER

Message Advisory	Comments
GDL69 CONFIG – GDL 69 config error. Config service req'd.	GDL 69 configuration settings do not match those of backup configuration memory. The G1000 system should be serviced.
GDL69 FAIL — GDL 69 has failed.	A failure has been detected in the GDL 69. The receiver is unavailable. The G1000 system should be serviced.
MANIFEST – GDL software mismatch, communication halted.	The GDL 69 has incorrect software installed. The G1000 system should be serviced.

GTX 33/33ES TRANSPONDER

Message Advisory	Comments
XPDR1 CONFIG – XPDR1 config error. Config service req'd.	The transponder configuration settings do not match those of backup configuration memory. The G1000 system should be serviced.
MANIFEST – GTX1 software mismatch, communication halted.	The transponder has incorrect software installed. The G1000 system should be serviced.
XPDR1 SRVC — XPDR1 needs service. Return unit for repair.	The #1 transponder should be serviced when possible.
XPDR1 FAIL – XPDR1 is inoperative.	There is no communication with the #1 transponder.

GDC 74A AIR DATA COMPUTER

Message Advisory	Comments
MANIFEST – GDC1 software mismatch, communication halted.	The GDC 74A has incorrect software installed. The G1000 system should be serviced.
ADC1 ALT EC – ADC1 altitude error correction is unavailable.	GDC1 is reporting that the altitude error correction is unavailable.
ADC1 AS EC – ADC1 airspeed error correction is unavailable.	GDC1 is reporting that the airspeed error correction is unavailable.

GEA 71 ENGINE/AIRFRAME UNIT

Message Advisory	Comments
GEA1 CONFIG – GEA1 config error. Config service req'd.	The GEA1 configuration settings do not match those of backup configuration memory. The G1000 system should be serviced.
MANIFEST – GEA1 software mismatch, communication halted.	The #1 GEA 71 has incorrect software installed. The G1000 system should be serviced.

GMU 44 MAGNETOMETER

Message Advisory	Comments
	A fault has occurred in the #1 GMU 44. Heading is flagged as invalid. The AHRS uses GPS for backup mode operation. The G1000 system should be serviced.
MANIFEST – GMU1 software mismatch, communication halted.	The GMU 44 has incorrect software installed. The G1000 system should be serviced.

GMA 1347 AUDIO PANEL

Message Advisory	Comments
GMA1 FAIL – GMA1 is inoperative.	The audio panel self-test has detected a failure. The audio panel is unavailable. The G1000 system should be serviced.
GMA1 CONFIG – GMA1 config error. Config service req'd.	The audio panel configuration settings do not match backup configuration memory. The G1000 system should be serviced.
MANIFEST – GMA1 software mismatch, communication halted.	The audio panel has incorrect software installed. The G1000 system should be serviced.
GMA1 SERVICE – GMA1 needs service. Return unit for repair.	The audio panel self-test has detected a problem in the unit. Certain audio functions may still be available, and the audio panel may still be usable. The G1000 system should be serviced when possible.

GSR 56 IRIDIUM SATELLITE TRANSCEIVER

Message Advisory	Comments
GSR1 FAIL – GSR1 has failed.	A failure has been detected in the GSR 56. The transceiver is unavailable. The G1000 system should be serviced.

GWX 70 MESSAGE ADVISORIES

Message	Comments
GWX CONFIG – GWX config error. Config service req'd.	GWX 68 configuration settings do not match those of the GDU configuration. The G1000 system should be serviced.
GWX FAIL – GWX is inoperative.	The GDU is not recieving status packet from the GWX 68 or the GWX 68 is reporting a fault. The GWX 68 radar system should be serviced.
GWX SERVICE — Needs service. Return unit for repair.	A failure has been detected in the GWX 68. The GWX 68 may still be usable.
WX ALERT – Possible severe weather ahead.	The GWX 68 indicates severe weather within ± 10 degrees of the aircraft heading at a range of 80 to 320 nm.
MANIFEST – GWX software mismatch, communication halted.	The GWX 68 has incorrect software installed. The G1000 system should be serviced.

GRA 5500 MESSAGE ADVISORIES

Message	Comments
GRA1 CONFIG – GRA1 config error. Config service req'd.	The GRA and GDU have incompatible configurations.
GRA1 SERVICE – GRA1 needs service. Return unit for repair	The GRA self-test has detected a problem in the unit. The system should be serviced.
GRA1 CAL – GRA1 calibration. Service req'd.	GRA1 has improper calibration. The system should be serviced.
GRA1 TEMP – GRA1 over temperature.	The system has detected an over temperature condition in GRA1.
GRA1 MANIFEST – GRA1 software mismatch, communication halted.	The GRA has incorrect software installed. The system should be serviced.

MISCELLANEOUS

Message Advisory	Comments
FPL WPT LOCK — Flight plan waypoint is locked.	Upon power-up, the G1000 system detects that a stored flight plan waypoint is locked. This occurs when an navigation database update eliminates an obsolete waypoint. The flight plan cannot find the specified waypoint and flags this message. This can also occur with user waypoints in a flight plan that is deleted. Remove the waypoint from the flight plan if it no longer exists in any database,
	OR update the waypoint name/identifier to reflect the new information.
FPL WPT MOVE — Flight plan waypoint moved.	The system has detected that a waypoint coordinate has changed due to a new navigation database update. Verify that stored flight plans contain correct waypoint locations.
TIMER EXPIRD — Timer has expired.	The system notifies the pilot that the timer has expired.
DB CHANGE — Database changed. Verify user modified procedures.	This occurs when a stored flight plan contains procedures that have been manually edited. This alert is issued only after an navigation database update. Verify that the user-modified procedures in stored flight plans are correct and up to date.
DB CHANGE – Database changed. Verify stored airways.	This occurs when a stored flight plan contains an airway that is no longer consistent with the navigation database. This alert is issued only after an navigation database update. Verify use of airways in stored flight plans and reload airways as needed.
FPL TRUNC — Flight plan has been truncated.	This occurs when a newly installed navigation database eliminates an obsolete approach or arrival used by a stored flight plan. The obsolete procedure is removed from the flight plan. Update flight plan with current arrival or approach.
LOCKED FPL — Cannot navigate locked flight plan.	This occurs when the pilot attempts to activate a stored flight plan that contains locked waypoint. Remove locked waypoint from flight plan. Update flight plan with current waypoint.
WPT ARRIVAL – Arriving at waypoint -[xxxx]	Arriving at waypoint [xxxx], where [xxxx] is the waypoint name.
STEEP TURN — Steep turn ahead.	A steep turn is 15 seconds ahead. Prepare to turn.
INSIDE ARSPC — Inside airspace.	The aircraft is inside the airspace.
ARSPC AHEAD – Airspace ahead less than 10 minutes.	Special use airspace is ahead of aircraft. The aircraft will penetrate the airspace within 10 minutes.

EIS

Message Advisory	Comments
ARSPC NEAR – Airspace near and ahead.	Special use airspace is near and ahead of the aircraft position.
ARSPC NEAR – Airspace near – less than 2 nm.	Special use airspace is within 2 nm of the aircraft position.
APR INACTV – Approach is not active.	The system notifies the pilot that the loaded approach is not active. Activate approach when required.
SLCT FREQ – Select appropriate frequency for approach.	The system notifies the pilot to load the approach frequency for the appropriate NAV receiver. Select the correct frequency for the approach.
SLCT NAV – Select NAV on CDI for approach.	The system notifies the pilot to set the CDI to the correct NAV receiver. Set the CDI to the correct NAV receiver.
PTK FAIL – Parallel track unavailable: bad geometry.	Bad parallel track geometry.
PTK FAIL – Parallel track unavailable: invalid leg type.	Invalid leg type for parallel offset.
PTK FAIL — Parallel track unavailable: past IAF.	IAF waypoint for parallel offset has been passed.
UNABLE V WPT – Can't reach current vertical waypoint.	The current vertical waypoint can not be reached within the maximum flight path angle and vertical speed constraints. The system automatically transitions to the next vertical waypoint.
VNV – Unavailable. Unsupported leg type in flight plan.	The lateral flight plan contains a procedure turn, vector, or other unsupported leg type prior to the active vertical waypoint. This prevents vertical guidance to the active vertical waypoint.
VNV – Unavailable. Excessive crosstrack error.	The current crosstrack exceeds the limit, causing vertical deviation to go invalid.
VNV – Unavailable. Excessive track angle error.	The current track angle error exceeds the limit, causing the vertical deviation to go invalid.
VNV – Unavailable. Parallel course selected.	A parallel course has been selected, causing the vertical deviation to go invalid.
NON WGS84 WPT – Do not use GPS for navigation to [xxxx]	The position of the selected waypoint [xxxxx] is not calculated based on the WGS84 map reference datum and may be positioned in error as displayed. Do not use GPS to navigate to the selected non-WGS84 waypoint
TRAFFIC FAIL – Traffic device has failed.	The G1000 is no longer receiving data from the traffic system. The traffic device should be serviced.
STRMSCP FAIL – Stormscope has failed.	Stormscope has failed. The G1000 System should be serviced.
FAILED PATH — A data path has failed.	A data path connected to the GDU or the GIA 63W has failed.
MAG VAR WARN – Large magnetic variance. Verify all course angles.	The GDU's internal model cannot determine the exact magnetic variance for geographic locations near the magnetic poles. Displayed magnetic course angles may differ from the actual magnetic heading by more than 2°.
SCHEDULER [#] — <message>.</message>	Message criteria entered by the user.
SVS – SVS DISABLED: Out of available terrain region.	Synthetic Vision is disabled because the aircraft is not within the boundaries of the installed terrain database.

Message Advisory	Comments
SVS – SVS DISABLED: Terrain DB resolution too low.	Synthetic Vision is disabled because a terrain database of sufficient resolution (9 arcsecond or better) is not currently installed.
CHECK CRS — Database course for LOC1 / [LOC ID] is [CRS]°.	Selected course for LOC1 differs from published localizer course by more than 10 degrees.
CHECK CRS — Database course for LOC2 / [LOC ID] is [CRS]°.	Selected course for LOC2 differs from published localizer course by more than 10 degrees.
[PFD1 or MFD1] CARD 1 REM — Card 1 was removed. Reinsert card.	The SD card was removed from the top card slot of the specified PFD or MFD. The SD card needs to be reinserted.
[PFD1 or MFD1] CARD 2 REM — Card 2 was removed. Reinsert card.	The SD card was removed from the bottom card slot of the specified PFD or MFD. The SD card needs to be reinserted.
[PFD1 or MFD1] CARD 1 ERR — Card 1 is invalid.	The SD card in the top card slot of the specified PFD or MFD contains invalid data.
[PFD1 or MFD1] CARD 2 ERR — Card 2 is invalid.	The SD card in the bottom card slot of the specified PFD or MFD contains invalid data.

AFCS STATUS ANNUNCIATIONS

The following annunciations (listed in order of increasing priority) can appear on the PFD above the Airspeed and Attitude indicators. Only one annunciation may occur at a time, and messages are prioritized by criticality.

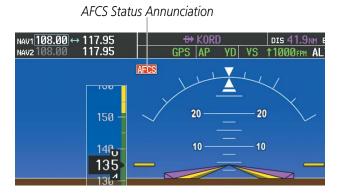


Figure A-6 AFCS Status Annunciation

Alert Condition	Annunciation	Description		
Rudder Mistrim Right	RUD→	Value carrie providing custained force in the indicated direction		
Rudder Mistrim Left	←RUD	Yaw servo providing sustained force in the indicated direction		
Aileron Mistrim Right	AIL→	Poll corpo providing sustained force in indicated direction		
Aileron Mistrim Left	←AIL	Roll servo providing sustained force in indicated direction		
Elevator Mistrim Down	↓ELE	Ditch carvo providing sustained force in the indicated direction		
Elevator Mistrim Up	↑ELE	Pitch servo providing sustained force in the indicated direction		

Alert Condition	Annunciation	Description
Pitch Trim Failure		If AP engaged, take control of the aircraft and disengage AP
(or Stuck AP TRIM Switch)	PTRM	If AP disengaged, move AP TRIM switches separately to unstick
Yaw Damper Failure	WAY	YD control failure
Roll Failure	ROLL	Roll axis control failure; AP inoperative
Pitch Failure	PTCH	Pitch axis control failure; AP inoperative
System Failure	AFCS	AP and MET are unavailable; FD may still be available
		Performing preflight system test; aural alert sounds at completion
Preflight Test	PFT	Do not press the AP DISC Switch during servo power-up and preflight system tests. Doing so may cause the preflight system test to fail or never to start. Cycle power to the servos if this occurs.
	PFT	Preflight system test failed; aural alert sounds at failure

Table 7-5 AFCS Status Alerts

SVS TERRAIN ALERTS

Annunciations appear on the PFD and MFD. Pop-up alerts appear only on the MFD. For more information on SVS Terrain, refer to the Hazard Avoidance Section.

Alert Type	PFD/MFD TERRAIN-SVS Page Annunciation	Pop-Up Alert (MFD Navigation Map Page)	Aural Message
Reduced Required Terrain Clearance Warning (RTC)	TERRAIN	WARNING TERRAIN	"Warning; Terrain, Terrain"
Imminent Terrain Impact Warning (ITI)	TERRAIN	WARNING TERRAIN	"Warning; Terrain, Terrain"
Reduced Required Obstacle Clearance Warning (ROC)	TERRAIN	WARNING OBSTACLE	"Warning; Obstacle, Obstacle"
Imminent Obstacle Impact Warning (IOI)	TERRAIN	WARNING OBSTACLE	"Warning; Obstacle, Obstacle"
Reduced Required Terrain Clearance Caution (RTC)	TERRAIN	CAUTION TERRAIN	"Caution; Terrain, Terrain"
Imminent Terrain Impact Caution (ITI)	TERRAIN	CAUTION TERRAIN	"Caution; Terrain, Terrain"
Reduced Required Obstacle Clearance Caution (ROC)	TERRAIN	CAUTION OBSTACLE	"Caution; Obstacle, Obstacle"
Imminent Obstacle Impact Caution (IOI)	TERRAIN	CAUTION OBSTACLE	"Caution; Obstacle, Obstacle"

SVS TERRAIN STATUS ANNUNCIATIONS

GARMIN

Alert Type	PFD/MFD TERRAIN-SVS Page Annunciation	Aural Message
System Test Fail	TER FAIL	"Terrain System Failure"
Terrain Alerting is disabled	TER INHB	None
No GPS position or excessively degraded GPS signal	TER N/A	"Terrain System Not Available"
System Test in progress	TER TEST	None
System Test pass	None	"Terrain System Test OK"
GPS signal is re-established	None	"Terrain System Available"

DATABASE MANAGEMENT

The system uses Secure Digital (SD) cards to load and store various types of data. For basic flight operations, SD cards are required for database storage as well as Jeppesen navigation and ChartView database updates. Not all SD cards are compatible with the G1000. Use only SD cards supplied by Garmin or the aircraft manufacturer.

NOTE: Loading a database in the system prior to its effective date will result in the expiration date on the power-up screen and the effective date on the AUX-System Status Page being displayed in yellow.

NOTE: Garmin requests the flight crew report any observed discrepancies related to database information. These discrepancies could come in the form of an incorrect procedure; incorrectly identified terrain, obstacles and fixes; or any other displayed item used for navigation or communication in the air or on the ground. Go to FlyGarmin.com and select "Aviation Data Error Report.

JEPPESEN DATABASES

The Jeppesen navigation database is updated on a 28-day cycle. The ChartView database is updated on a 14-day cycle. If the ChartView database is not updated within 70 days of the expiration date, ChartView will no longer function. Both of these databases are provided directly from Jeppesen.

NOTE: The Jeppesen aviation navigation database is now referred to as the 'navigation database'. Previously this database had been referred to as the 'aviation database'.

The ChartView database should be copied to the Garmin supplied Supplemental Data Card which will reside in the bottom card slot on the MFD. The navigation database must be installed from the Jeppesen or user supplied SD data card. Contact Jeppesen (www.jeppesen.com) for subscription and update information.

NOTE: After the navigation database is installed, the card may be removed.

Updating the Jeppesen navigation database:

- 1) Copy the new navigation database to an SD card obtained from Garmin, or the aircraft manufacturer.
- 2) With the G1000 system OFF, insert the SD card containing the new navigation database version into the top card slot of the MFD (label of SD card facing left).
- **3)** Turn the G1000 system ON. A prompt similar to the following illustration is displayed:

```
DO YOU WANT TO UPDATE THE ACTIVE NAVIGATION DATABASE?
SELECTING YES WILL OVERWRITE THE ACTIVE NAVIGATION DATABASE.
FROM TO
REGION: WORLDWIDE WORLDWIDE
CYCLE: 1204 1205
EFFECTIVE: 09-APR-2014 07-MAY-2014
EXPIRES: 07-MAY-2014 04-MAY-2014
NO WILL BE ASSUMED IN 28 SECONDS.
UPDATING NAVIGATION DATABASE, PLEASE WAIT.
```

Figure B-1 Navigation Database Load Prompt

4) Press the **YES** Softkey to update the navigation database in the MFD.

GARMIN

5) After the update completes, press any key. The display starts in normal mode.

```
DO YOU WANT TO UPDATE THE ACTIVE NAVIGATION DATABASE?
SELECTING YES WILL OVERWRITE THE ACTIVE NAVIGATION DATABASE.
            FROM
                             TO
                             WORLDWIDE
REGION:
            WORLDWIDE
CYCLE:
                             1205
            1204
            09-APR-2014
EFFECTIVE:
                             07-MAY-2014
                             04-MAY-2014
EXPIRES:
            07-MAY-2014
NO WILL BE ASSUMED IN 21 SECONDS.
UPDATING NAVIGATION DATABASE, PLEASE WAIT.
UPDATED ACTIVE NAVIGATION DATABASE SUCCESSFULLY.
UPDATED 1 FILES SUCCESSFULLY!
PRESS ANY KEY TO CONTINUE.
CONTINUING IN 4 SECONDS.
```

Figure B-2 Database Update Confirmation

- **6)** Turn the G1000 system OFF and remove the SD card from the top card slot.
- **7)** Repeat steps 2 through 6 for PFD1.
- **8)** Apply power to the system and press the **ENT** Key to acknowledge the startup screen.
- **9)** Turn the large **FMS** Knob to select the AUX Page group on the MFD.
- **10)** Turn the small **FMS** Knob to select the System Status Page.
- 11) Press the Display Database Selection Softkey to show navigation database information for each display (MFD1 DB, PFD1 DB).

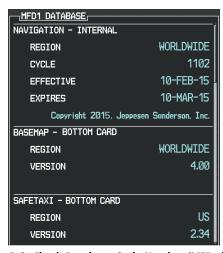


Figure B-3 Check Database Cycle Number (MFD shown)

GARMIN DATABASES

The following databases are stored on Supplemental Data Cards provided by Garmin:

- Expanded basemap
- Airport terrain
- SafeTaxi
- Airport Directory (AOPA or AC-U-KWIK)

Terrain

- Obstacle
- FliteCharts

After subscribing to the desired database product, these database products will be downloaded and ultimately stored on three Supplemental Data Cards (with the exception of FliteCharts, which is loaded on only one card). Each Supplemental Data Card resides in the bottom card of each display as shown in Figure B-4. These cards must not be removed except to update the databases stored on each card.

PFD MFD Expanded Basemap Expanded Basemap Terrain Terrain Airport Terrain Airport Terrain Obstacle Obstacle SafeTaxi SafeTaxi Airport Directory Airport Directory FliteCharts or ChartView Card Card

Figure B-4 Correct Database Locations

Since these databases are not stored internally in the displays, a Supplemental Data Card containing identical database versions must be kept in each display unit.

The basemap database contains data for the topography and land features, such as rivers, lakes, and towns. It is updated only periodically, with no set schedule. There is no expiration date.

The terrain database contains the terrain mapping data. The airport terrain database contains increased resolution terrain data around airports. These databases are updated periodically and have no expiration date.

The obstacle database contains data for obstacles, such as towers, that pose a potential hazard to aircraft. Obstacles 200 feet and higher are included in the obstacle database. It is very important to note that not all obstacles are necessarily charted and therefore may not be contained in the obstacle database. This database is updated on a 56-day cycle.

NOTE: The data contained in the terrain and obstacle databases comes from government agencies. Garmin accurately processes and cross-validates the data, but cannot guarantee the accuracy and completeness of the data.

The AOPA or AC-U-KWIK Airport Directory provides detailed information about airports and heliports, along with the names and phone numbers of thousands of FBOs. The AOPA Airport Directory covers U.S. airports, while the AC-U-KWIK Airport Directory coverage area may be worldwide or regional, depending on the database purchased. Both AOPA and AC-U-KWIK Airport Directory databases are updated every 56 days.

The SafeTaxi database contains detailed airport diagrams for selected airports. These diagrams aid in following ground control instructions by accurately displaying the aircraft position on the map in relation to taxiways, ramps, runways, terminals, and services. This database is updated on a 56-day cycle.

The FliteCharts database contains procedure charts for the United States only. This database is updated on a 28-day cycle. If not updated within 180 days of the expiration date, FliteCharts will no longer function.

AUTOMATIC DATABASE SYNCHRONIZATION FEATURE

The automatic database synchronization feature automatically transfers the database from a single SD database card to the SD cards on the PFD and the MFD to ensure that all databases are synchronized throughout the system. After power-up, the system compares all copies of each applicable database. If similar databases do not match, the most recent valid database is automatically copied to each card in the system that does not already contain that database.

The following databases are checked and synchronized: Basemap, Safetaxi, Airport Terrain, Obstacle, Airport Directory (AOPA or AC-U-KWIK), and Terrain. This feature applies only to databases that are stored on the SD card that resides in the bottom slot of each display. This feature does not apply to the navigation database which is stored internally in each display, or to the charts databases (FliteCharts and ChartView) which are only required to be present on the MFD. The typical procedure would be to download new databases to the MFD card, then synchronize the data to the PFD.

NOTE: The 9-arc second terrain database may take as long as 100 minutes to synchronize using this method. Therefore the user may want to transfer the data using a PC, or connect the system to a ground power source while performing the database synchronization.

The synchronization progress may be monitored on the AUX-System Status Page in the Sync Status section of the Database Window (Figure B-5). This section shows the synchronization status of each applicable database, including the percent complete, time remaining, and to which displays the databases are being copied. When the synchronization is complete, the status is listed as 'Complete', followed by the displays to which the databases were copied. This sub-section is only present when a sync is occurring or has occurred on the current power-up.

An indication of 'Complete' still requires a power cycle before the synchronized databases will be used by the system.

Figure B-5 AUX-System Status Page, Database Window

The Display Database Softkey (Figure B-8) is used to place the cursor in the Database Window. Upon first press of the Display Database Softkey, the softkey will change to a selected state (black text on gray background) and the cursor will appear in the Database Window. At this point the user can scroll through all databases in the Database Window to view status information. If the Display Database Softkey is pressed repeatedly, the softkey will switch between PFD1 and MFD1. Database status information in the Database Window will reflect the database of the selected PFD or MFD. After a successful sync and restart, verify that the proper databases are now in use on the AUX–System Status Page (Figure B-5).

If an error occurs during the synchronization, an error message will be displayed, followed by the affected display in the Sync Status section of the Database Window (Figure B-6). If a synchronization completes on one display, but an error occurs on another, the error message will be displayed with the affected diaplay listed after it. When an error message (Table B-1) is displayed, the problem must be corrected before the synchronization can be completed. A power cycle is required to restart synchronization when 'Card Full' or 'Err' is shown.

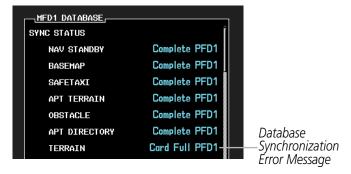


Figure B-6 Synchronization Error Message

APPENDICES

Error Message	Description
Canceled	Database synchronization has been canceled by removing the bottom SD card in display being updated
Card Full	SD card does not contain sufficient memory
Err	Displayed for all other errors that may cause the synchronization process to be halted
Timeout	System timed-out prior to the database transfer completing

Table B-1 Database Synchronization Error Messages

UPDATING GARMIN DATABASES

The Garmin database updates can be obtained by following the instructions detailed in the 'Aviation Databases' section of the Garmin website (fly.garmin.com). Once the updated files have been downloaded from the website, a PC equipped with an appropriate SD card reader is used to unpack and program the new databases onto an existing Supplemental Data Card. Equipment required to perform the update is as follows:

- Windows-compatible PC computer (running Windows XP, Vista, or Windows 7)
- SD Card Reader: SanDisk SDDR-93, SanDisk SDDR-99, Verbatim #96504, or equivalent
- Updated database obtained from the Garmin website
- Existing Supplemental Database SD Cards (010-00330-42, or -43) from the PFD and MFD

In some cases it may be necessary to obtain an unlock code from Garmin in order to make the database product functional. It may also be necessary to have the system configured by a Garmin authorized service facility in order to use some database features.

After the data has been copied to the appropriate data card, perform the following steps:

- 1) With system power OFF, remove the MFD database card from the bottom card slot of the MFD.
- 2) Update the Garmin databases on the MFD card.
- 3) Insert the MFD database card into the bottom card slot of the MFD.
- 4) Apply power to the system, check that the databases are initialized and displayed on the power-up screen (Figure B-7). When updating the terrain and FliteCharts databases, a 'Verifying' message may be seen. If this message is present, wait for the system to finish loading before proceeding to step 5.

Figure B-7 Database Information on the Power-up Screen

- **5)** Acknowledge the Power-up Page agreement by pressing the **ENT** Key or the right most softkey.
- Turn the large **FMS** Knob to select the AUX Page group on the MFD.
- Turn the small **FMS** Knob to select the System Status Page. 7)
- Monitor the Sync Status in the Database Window. Wait for all databases to complete synchonization, indicated by 'Complete' being displayed as seen in Figure B-6.
- **9)** Remove and reapply power to the system.
- **10)** Turn the large **FMS** Knob to select the AUX Page group on the MFD.
- 11) Turn the small **FMS** Knob to select the System Status Page.
- 12) Press the Display Database Selection Softkey to show database information for each display (MFD1 DB, PFD1 **DB**). Verify the correct database cycle information is shown for each database for each display.

Figure B-8 Display Database Softkey

MAGNETIC FIELD VARIATION DATABASE UPDATE

A copy of the current magnetic field variation database (MV DB) is included with the navigation database. At startup, the system compares this version of the MV DB with that presently being used by the AHRS (GRS). If the system determines the MV DB needs to be updated, a prompt is displayed on the Navigation Map Page.

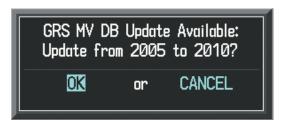


Figure B-9 GRS Magnetic Field Variation Database Update Prompt

Loading the magnetic field variation database update:

1) With 'OK' highlighted, as shown in figure B-9, press the **ENT** Key on the MFD. A progress monitor is displayed as shown in Figure B-10.

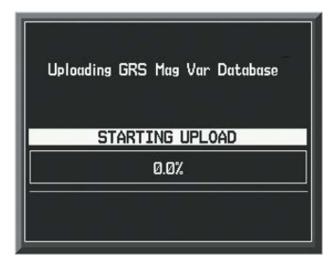


Figure B-10 Uploading Database to GRS

2) When the upload is complete, the system is ready for use.

APPENDICES

BLANK PAGE

GLOSSARY

ACC	accuracy	Bearing	The compass direction from the
ACT, ACTV	active, activate		present position to a destination
ADC	air data computer	D.F.O.	waypoint
ADF	Automatic Direction Finder	BFO	beat frequency oscillator
ADI	Attitude Direction Indicator	BKSP	backspace
AF	Arc to fix	BRG	bearing
AFCS	Automatic Flight Control System	C	center runway
AFM	Airplane Flight Manual	°C	degrees Celsius
AFMS	Airplane Flight Manual Supplement	CA	Course to Altitude
AFRM	airframe	CALC	calculator
AGL	Above Ground Level	Calibrated Airspeed	Indicated airspeed corrected for
AHRS	Attitude and Heading Reference		installation and instrument errors.
	System	CD	Course to DME distance
AIM	Airman's Information Manual	CDI	Course Deviation Indicator
AIRMET	Airman's Meteorological Information	CDU	Control Display Unit
ALRT	alert	CF	Course to Fix
ALT	altitude	CHT	Cylinder Head Temperature
ALT, ALTN	alternator	CHKLIST	checklist
AMPS	amperes	CHNL	channel
ANNUNC	annunciation	CI	Course to Intercept
ANT	antenna	CLD	cloud
AP	autopilot	CLR	clear
AP DISC	•	cm	centimeter
	autopilot disconnect	CNS	Communication, Navigation, &
APR	approach	CIVS	Surveillance
APING	airport, aerodrome	CO	carbon monoxide
ARINC	Aeronautical Radio Incorporated	COM	communication radio
ARSPC	airspace		
ARTCC	Air Route Traffic Control Center	CONFIG	configuration
ARV	arrival	COOL	coolant
AS	airspeed	COPLT	co-pilot
ASB	Aviation Support Branch	Course	The line between two points to be
ASOS	Automated Surface Observing	C	followed by the aircraft
	System	Course to Steer	The recommended direction to steer
ATC	Air Traffic Control		in order to reduce course error or
ATCRBS	ATC Radar Beacon System		stay on course. Provides the most
ATIS	Automatic Terminal Information		efficient heading to get back to the
	Service		desired course and proceed along
ATK	along-track	CD	the flight plan
AUTOSEQ	automatic sequence	CR	Course to Radial
AUX	auxiliary	CRG	Cockpit Reference Guide
AWOS	Automated Weather Observing	CRNT	current
	System	Crosstrack Error	The distance the aircraft is off a
	•		desired course in either direction, left
B ALT	barometric altitude	CDC	or right
BARO	barometric setting	CRS	course
BATT	battery	CRS	Course to Steer
BC	backcourse	CRSR	cursor
•		CTA	Control Area
		CTRL	control

Cumulative CVR CVRG	The total of all legs in a flight plan. Cockpit Voice Recorder	Endurance	Flight endurance, or total possible flight time based on available fuel on board
CWS	coverage	ENG	engine
CYL	control wheel steering cylinder	ENGD	engaged
CIL	Cylinder	ENR	enroute
D ALT	density altitude		The recommended minimum altitude
DB, DBASE	database	Emode Sale / milade	within ten miles left or right of the
dBZ	decibels 'Z' (radar return)		desired course on an active flight
DCLTR, DECLTR	declutter		plan or direct-to
DEC FUEL	decrease fuel	ENT	enter
deg	degree	EPE	Estimated Position Error
DEIC, DEICE	de-icing	EPU	Estimated Position Uncertainty
DEP	departure	ERR	error
Desired Track	The desired course between the	ESA	Enroute Safe Altitude
	active "from" and "to" waypoints	Estimated Position Err	
DEST	destination		position error derived by satellite
DF	Direct to Fix		geometry conditions and other
DFLT	default		factors
DGRD	degrade	Estimated Time of Arri	ival The estimated time at which the
DH	decision height		aircraft should reach the destination
Dilution of Precision	A measure of GPS satellite geometry		waypoint, based upon current speed and track
	quality on a scale of one to ten (lower	Estimated Time Enrou	2007 20 20 20 20 20 20 20 20 20 20 20 20 20
	numbers equal better geometry,	Latinated fille Lillou	reach the destination waypoint from
	where higher numbers equal poorer		the present position, based upon
	geometry)		current ground speed
DIR	direction	ETA	Estimated Time of Arrival
DIS	distance	ETE	Estimated Time Enroute
Distance	The 'great circle' distance from the	EXPIRD	expired
	present position to a destination waypoint		·
DME	Distance Measuring Equipment	°F	degrees Fahrenheit
DOP	Dilution of Precision	FA	Course From Fix to Altitude
DP	Departure Procedure	FAA	Federal Aviation Administration
DPRT	departure	FADEC	Full Authority Digital Engine Control
DR	dead reckoning	FAF	Final Approach Fix
DSBL	disabled	FAIL	failure
DTK	Desired Track	FC	Course From Fix to Distance
	Desired fidely	FCC	Federal Communication Commission
E	empty, east	FCST	forecast
ECU	Engine Control Unit	FD	Course From Fix to DME Distance
Efficiency	A measure of fuel consumption,	FD	flight director
,	expressed in distance per unit of fuel	FDE	Fault Detection and Exclusion
EGT	Exhaust Gas Temperature	FFLOW	fuel flow
EIS	Engine Indication System	FIS-B	Flight Information Services-
ELEV	elevation	LICDI	Broadcast
ELEV	elevator	FISDL	Flight Information Service Data Link
EMERGCY	emergency	FL	flight level
EMI	Electromagnetic Interference	FLC	Flight Level Change Course From Fix to Manual
ENDUR	endurance	FM	Termination
			Terrimitation

FMS FOB FPL fpm	Flight Management System Fuel On Board flight plan feet per minute	Heading HF	The direction an aircraft is pointed, based upon indications from a magnetic compass or a properly set directional gyro Hold Terminating at Fix
FREQ	frequency	HFOM	Horizontal Figure of Merit
FRZ FSS	freezing	Hg	mercury
ft	Flight Service Station foot/feet	HI	high
Fuel Flow	The fuel flow rate, expressed in units	HI SENS	High Sensitivity
i dei i low	of fuel per hour	HM	Hold with Manual Termination
Fuel On Board	The total amount of usable fuel on board the aircraft	Horizontal Figure of N	Merit A measure of the uncertainty in the aircraft's horizontal position hectopascal
G/S, GS	glideslope	HPL	Horizontal Protection Level
GA	go-around	hr	hour
gal, gl	gallon(s)	HSDB	High-Speed Data Bus
GBOX	gearbox	HSI	Horizontal Situation Indicator
GDC	Garmin Air Data Computer	HT	heat
GDL	Garmin Satellite Data Link	HUL	Horizontal Uncertainty Level
GDU	Garmin Display Unit	Hz	Hertz
GEA	Garmin Engine/Airframe Unit	1	Inner Marker
GEO	geographic	IAF	Initial Approach Fix
GFC	Garmin Flight Control	IAT	Indicated Air Temperature
GIA	Garmin Integrated Avionics Unit	IAU	Integrated Avionics Unit
GLS	Global Navigation Satellite Landing	ICAO	International Civil Aviation
	System		Organization
GMA	Garmin Audio Panel System	ICS	Intercom System
GMT	Greenwich Mean Time	ID	Identification/Morse Code Identifier
GMU	Garmin Magnetometer Unit	IDENT, IDNT	identification
GND	ground	IF.	Initial Fix
gph	gallons per hour	IFR	Instrument Flight Rules
GPS	Global Positioning System	IG	Imperial gallon
Grid MORA	Grid Minimum Off-Route Altitude;	ILS	Instrument Landing System
	one degree latitude by one degree	IMC	Instrument Meteorological
	longitude in size and clears the highest elevation reference point in	in	Conditions inch
	the grid by 1000 feet for all areas of	in INACTV	inactive
	the grid	INC FUEL	increase fuel
Groundspeed	The velocity that the aircraft is	IND	indicated
aroanaspeea	travelling relative to a ground	Indicated	Information provided by properly
	position	marcated	calibrated and set instrumentation
Ground Track	see Track		on the aircraft panel
GRS	Garmin Reference System	INFO	information
GS	Ground speed	in HG	inches of mercury
GTX	Garmin Transponder	INT	intersection(s)
	·	INTEG	integrity (RAIM unavailable)
HA HDG	Hold Terminating at Altitude heading	IrDA, IRDA	Infrared Data Association
	-	KEYSTK	key stuck
		kg	kilogram
		-	-

kHz	kilohertz	MEPT	manual electric nitch trim
			manual electric pitch trim
km	kilometer	MFD	Multi Function Display
kt	knot	MGRS	Military Grid Reference System
	1.6.1.6	MHz	megahertz
L	left, left runway	MIC	microphone
LAT	latitude	MIN	minimum
LBL	label _.	Minimum Safe Altitu	
lb	pound		a safe altitude within ten miles of
LCD	Liquid Crystal Display	MUCD	the aircraft present position
LCL	local	MKR	marker beacon
LED	Light Emitting Diode	MOA	Military Operations Area
Left Over Fuel On Bo	3	MOV	movement
	on board after the completion of	mpm	meters per minute
	one or more legs of a flight plan or	MSA	Minimum Safe Altitude
	direct-to	MSG	message
Left Over Fuel Reser	ve The amount of flight time remaining,	MSL	Mean Sea Level
	based on the amount of fuel on	MT	meter
	board after the completion of one or	mV	millivolt(s)
	more legs of a flight plan or direct-	MVFR	Marginal Visual Flight Rules
	to, and a known consumption rate		
Leg	The portion of a flight plan between	N	north
	two waypoints	NAV	navigation
LIFR	Low Instrument Flight Rules	NAVAID	NAVigation AID
LNAV	Lateral Navigation	NDB	Non-directional Beacon
LO	low	NEXRAD	Next Generation Radar
LOC	localizer	nm	nautical mile(s)
LOI	loss of integrity (GPS)	NPT	• •
LON	longitude	NRST	nearest
LPV	Localizer Performance with Vertical		
	guidance	0	Outer Marker
LRU	Line Replacement Unit	OAT	Outside Air Temperature
LT	left	OBS	Omni Bearing Selector
LTNG	lightning	OFST	offset
LVL	level	OXY	oxygen
			// 5
М	Middle Marker	P ALT	pressure altitude
m	meter	PA	Passenger Address
MAG	Magnetic	PA	Proximity Advisory
MAG VAR	Magnetic Variation	PASS	passenger(s)
MAHP	Missed Approach Hold Point	PC	personal computer
MAN IN	manifold pressure (inches Hg)	PFD	Primary Flight Display
MAN SQ	Manual Squelch	PI	Procedure Turn to Course Intercept
MAP	Missed Approach Point	PIT, PTCH	pitch
MASQ	Master Avionics Squelch	POSN	position
MAX	maximum	PPM	parts per million
MAXSPD	maximum speed (overspeed)	P. POS	Present Position
MDA	barometric minimum descent	PRES, PRESS	pressure
	altitude	PROC	procedure(s), procedure turn
MET	manual electric trim	psi	pounds per square inch
METAR	Meteorological Aviation Routine	PT	Procedure Turn
		1.1	Frocedure fulfi

DTI/		CMDI	
PTK	parallel track	SMBL	symbol
PTT	Push-to-Talk	SPD	speed
PWR	power	SPI	Special Position Identification
		SPKR	speaker
QTY	quantity	SQ	squelch
		SRVC, SVC	service
R	right, right runway	STAL	stall
RAD	radial	STAR	Standard Terminal Arrival Route
RAIM	Receiver Autonomous Integrity	STATS	statistics
	Monitoring	STBY	standby
RAM	random access memory	STD	standard
REF	reference	STRMSCP	Stormscope
REM	remaining (fuel remaining)	SUA	Special Use Airspace
REQ	required	SUSP	suspend
RES	reserve (fuel reserve entered by	SVS	Synthetic Vision System
	pilot)	SW	software
REV	reverse, revision, revise	SYS	system
RF	Constant Radius Turn to Fix		5,500
RMI	Radio Magnetic Indicator	T	true
RMT	remote	TA	Traffic Advisory
RNG	range	TACAN	Tactical Air Navigation System
RNWY	runway	TAF	Terminal Aerodrome Forecast
ROL	roll	TAS	True Airspeed
ROM	read only memory	TAS	•
rpm	revolutions per minute	TAT	Traffic Advisory System
RST FUEL	reset fuel		Total Air Temperature
RSV		TAWS	Terrain Awareness and Warning
NOV	reserve (tuel reserve entered by pilot)	TCA	System Tarminal Control Area
RT	•	TCA	Terminal Control Area
RVRSNRY	right	TCAS	Traffic Collision Avoidance System
	reversionary receive	TEL	telephone
RX	receive	TEMP	temperature
c	an uth	TERM	terminal
S	south	TF	Track Between Two Fixes
SA	Selective Availability	TFR	Temporary Flight Restriction
SAT	Static Air Temperature	T HDG	True Heading
SBAS	Satellite-Based Augmentation	TIS	Traffic Information System
CCIT	System	TIT	Turbine Inlet Temperature
SCIT	Storm Cell Identification and	TKE	Track Angle Error
	Tracking	TMA	Terminal Maneuvering Area
SD	Secure Digital	TMR/REF	Timer/Reference
sec	second(s)	Торо	topographic
SEL, SLCT	select	Track	Direction of aircraft movement
SFC	surface		relative to a ground position; also
SIAP	Standard Instrument Approach		'Ground Track'
	Procedures	Track Angle Error	The angle difference between the
SID	Standard Instrument Departure		desired track and the current track
SIGMET	Significant Meteorological	TRG	target
	Information	TRK	track
Sim	simulator	TRSA	Terminal Radar Service Area
SLP/SKD	slip/skid	TRUNC	truncated

TTL	total	VM	Heading Vector to Manual	
TURN	procedure turn		Termination	
TX	transmit	VMC	Visual Meteorological Conditions	
		VNAV, VNV	vertical navigation	
UNAVAIL	unavailable	VOL	volume	
USR	user	VOR	VHF Omni-directional Range	
UTC	Coordinated Universal Time	VORTAC	very high frequency omnidirectional	
UTM/UPS	Universal Transverse Mercator/		range station and tactical air	
	Universal Polar Stereographic Grid		navigation	
		VPL	Vertical Protection Level	
V, Vspeed	velocity (airspeed)	VPROF	VNV profile, vertical profile	
VA	Heading Vector to Altitude	VPTH	VNV path, vertical path	
VAPP	VOR approach	VR	Heading Vector to Radial	
VAR	variation	VS	vertical speed	
VD	Heading Vector to DME Distance	VSI	Vertical Speed Indicator	
Vdc	volts, direct current	VSR	Vertical Speed Required	
VERT	vertical	VTF	vector to final	
Vertical Figure of Merit A measure of the uncertainty in				
	the aircraft's vertical position	W	watt(s), west	
Vertical Speed Required The vertical speed necessary		WAAS	Wide Area Augmentation System	
	to descend/climb from a current	WGS-84	World Geodetic System - 1984	
	position and altitude to a defined	WPT	waypoint(s)	
	target position and altitude, based	WW	world wide	
	upon current groundspeed	WX	weather	
VFOM	Vertical Figure of Merit			
VFR	Visual Flight Rules	XFER, XFR	transfer	
VHF	Very High Frequency	XPDR	transponder	
VI	Heading Vector to Intercept	XTALK	cross-talk	
VLOC	VOR/Localizer Receiver	XTK	cross-track	

FREQUENTLY ASKED QUESTIONS

If a particular aspect of G1000 operational capability is not addressed by these commonly asked questions or in the index, contact Garmin (see the copyright page or back cover for contact information) or a Garmin-authorized dealer. Garmin is dedicated to supporting its products and customers.

WHAT IS SBAS?

The Satellite Based Augmentation System (SBAS) uses a system of ground stations to correct any GPS signal errors. These ground stations correct for errors caused by ionospheric disturbances, timing, and satellite orbit errors. It also provides vital integrity information regarding the health of each GPS satellite. The signal correction is then broadcast through geostationary satellites. This correction information can then be received by any SBAS-enabled GPS receiver.

SBAS is designed to provide the additional accuracy, availability, and integrity necessary to enable users to rely on GPS for all phases of flight.

There are several SBAS systems serving different parts of the world. The Wide Area Augmentation System (WAAS) is currently available in the United States, including Alaska and Hawaii. The European Geostationary Navigation Overlay Service (EGNOS) offers coverage of Europe, parts of the middle east and northern Africa. The Multi-functional Satellite Augmentation System (MSAS) covers mainly Japan and parts of northern Australia.

How does SBAS affect approach operations?

Both LNAV/VNAV and LPV approaches use the accuracy of SBAS to include vertical (glide path) guidance capability. The additional accuracy and vertical guidance capability allows improved instrument approaches to an expanded number of airports throughout the U.S.

The implementation of LPV approaches further improves precision approach capabilities. LPV approaches are designed to make full use of the improved GPS signal from the SBAS. This approach combines the LNAV/VNAV vertical accuracy with lateral guidance similar to the typical Instrument Landing System (ILS). LPV approaches allow lower approach minimums.

WHAT IS RAIM AND HOW DOES IT AFFECT APPROACH OPERATIONS?

When SBAS is unavailable, the GPS receivers use Receiver Autonomous Integrity Monitoring (RAIM) to perform the following functions:

- Monitor and verify integrity and geometry of tracked GPS satellites
- Notify pilot when satellite conditions do not provide necessary coverage to support a certain phase of flight
- Predict satellite coverage of a destination area to determine whether the number of available satellites is sufficient to satisfy requirements (refer to the System Overview Section for instructions on RAIM prediction)
- Detect and exclude bad satellites from the navigation solution (Fault Detection and Exclusion, FDE)

RAIM ensures that satellite geometry allows for a navigation solution calculation within a specified protection limit (4.0 nm for oceanic, 2.0 nm for enroute, 1.0 nm for terminal, and 0.3 nm for non-precision approaches). Without SBAS or RAIM, GPS position accuracy integrity cannot be monitored.

WHY MIGHT THERE BE NO APPROACHES AVAILABLE FOR A FLIGHT PLAN?

Approaches are available for the final destination airport in a flight plan or as a direct-to (keep in mind that some VOR/VORTAC identifiers are similar to airport identifiers). If a destination airport does not have a published approach, the G1000 indicates "NONE" for the available procedures.

What happens when an approach is selected? Can a flight plan with an approach, a departure, or an arrival be stored?

When an approach, departure, or arrival is loaded into the active flight plan, a set of approach, departure, or arrival waypoints is inserted into the flight plan, along with a header line showing the title of the selected instrument procedure. The original enroute portion of the flight plan remains active, unless the instrument procedure is activated. This may be done either when the procedure is loaded or at a later time.

Flight plans can also be stored with an approach, a departure, or an arrival. Note that the active flight plan is erased when the system is turned off. Also, the active flight plan is overwritten when another flight plan is activated. When storing flight plans with an approach, a departure, or an arrival, the G1000 uses the waypoint information from the current database to define the waypoints. If the database is changed or updated, the G1000 System automatically updates the information, provided the procedure has not been modified. Should an approach, departure, or arrival procedure no longer be available, the flight plan becomes locked until the procedure is deleted from the flight plan.

CAN "SLANT GOLF" ("/G") BE FILED USING THE G1000?

"/G" may be filed for a flight plan. GPS approaches are not to be flown with an expired database. See the approved Airplane Flight Manual (AFM) as well as the Aeronautical Information Manual (AIM) for more information.

WHAT DOES THE OBS SOFTKEY DO?

The **OBS** Softkey is used to select manual sequencing of waypoints. Activating OBS mode sets the current active-to waypoint as the primary navigation reference and prevents the system from sequencing to the next waypoint in a flight plan. When OBS mode is cancelled, automatic waypoint sequencing is continued, and the G1000 automatically activates the next waypoint in the flight plan once the aircraft has crossed the present active waypoint.

Normal (OBS not activated)

- Automatic sequencing of waypoints
- Manual course change on HSI not possible
- Always navigates 'TO' the active waypoint
- Must be in this mode for final approach course

OBS

- Manual sequencing 'holds' on selected waypoint
- Manually select course to waypoint from HSI
- Indicates 'TO' or 'FROM' waypoint
- Cannot be set for final approach course or published holding patterns

When OBS mode is active, the G1000 allows the pilot to set a desired course to/from a waypoint using the **CRS/BARO** Knob and HSI (much like a VOR).

The most common application for using the **OBS** Softkey is the missed approach. The G1000 suspends automatic waypoint sequencing (indicated by a 'SUSP' annunciation placed on the HSI) when the missed approach point (MAP) is crossed. This prevents the G1000 from automatically sequencing to the missed approach holding point (MAHP). During this time, the **OBS** Softkey designation changes to **SUSP**. Selecting the **SUSP** Softkey reactivates automatic waypoint sequencing. The **OBS** Softkey then resumes its normal functionality.

Why might the G1000 not automatically sequence to the next waypoint?

The G1000 only sequences flight plan waypoints when automatic sequencing is enabled (i.e., no 'OBS' or 'SUSP' annunciation on the HSI). For automatic sequencing to occur, the aircraft must also cross the *bisector* of the turn being navigated. The bisector is a line passing through the waypoint common to two flight plan legs at an equal angle from each leg.

HOW CAN A WAYPOINT BE SKIPPED IN AN APPROACH, A DEPARTURE, OR AN ARRIVAL?

The G1000 allows the pilot to manually select any approach, departure, or arrival leg as the active leg of the flight plan. This procedure is performed on the MFD from the Active Flight Plan Page by highlighting the desired waypoint and selecting the **ACT LEG** Softkey then the **ENT** Key to approve the selection. The GPS then provides navigation along the selected flight plan leg.

When does turn anticipation begin?

The G1000 smooths adjacent leg transitions based on a normal 15° bank angle (with the ability to roll up to 30°) and provides three pilot cues for turn anticipation:

- A waypoint alert ('Next DTK ###° in # seconds' or 'Next HDG ###° in # seconds') appears on the PFD 10 seconds before the turn point and flashes as it counts down to zero.
- A flashing turn advisory ('Turn [right/left] to ###° in # seconds') appears on the PFD 10 seconds before the turn and flashes as it counts down to zero. 'Turn [right/left] to ###° now' or 'Next [DTK/HDG] to ###° now' is displayed when the pilot is to begin the turn and the HSI (GPS mode) automatically sequences to the next DTK or HDG value.
- The To/From indicator on the HSI flips momentarily to indicate that the midpoint of the turn has been crossed.

When does the CDI scale change?

Once a departure is activated, the G1000 Course Deviation Indicator (CDI) full scale deflection is set to 0.3 nm. The CDI scale changes to 1.0 nm (terminal mode) then ramps up to 2.0 nm (enroute mode) at 30 nm from the departure airport. When 31 nm from the destination, the CDI scale smoothly transition from 2.0 nm back to 1.0 nm (terminal mode). At 2.0 nm before the FAF during an active approach, the CDI scale transitions down further based on the type of approach activated (LNAV, LNAV/VNAV, LPV). When a missed approach is activated, the CDI is set to 0.3 nm. See the Flight Instruments Section for more details on CDI scaling.

WHY DOES THE HSI NOT RESPOND LIKE A VOR WHEN OBS MODE IS ACTIVE?

Unlike a VOR, the CDI scale used on GPS equipment is based on the crosstrack distance to the desired course, not on the angular relationship to the destination. Therefore, the CDI deflection on the GPS is constant regardless of the distance to the destination and does not become less sensitive when further away from the destination.

WHAT IS THE CORRECT MISSED APPROACH PROCEDURE? How IS THE MISSED APPROACH HOLDING POINT SELECTED?

To comply with TSO specifications, the G1000 does not automatically sequence past the MAP. The first waypoint in the missed approach procedure becomes the active waypoint when the **SUSP** Softkey is selected *after* crossing the MAP. All published missed approach procedures must be followed, as indicated on the approach plate.

To execute the missed approach procedure prior to the MAP (not recommended), select the Active Flight Plan Page and use the **ACT LEG** Softkey to activate the missed approach portion of the procedure.

After a missed approach, how can the same approach be re-selected? How can a new approach be activated?

NOTE: Do not attempt to reactivate the current approach prior to crossing the missed approach point (MAP). If an attempt to do so is made, an alert message "Are you sure you want to discontinue the current approach?" appears. The G1000 directs the pilot back to the transition waypoint and does not take into consideration any missed approach procedures, if the current approach is reactivated.

After flying the missed approach procedure, the pilot may reactivate the same approach for another attempt by pressing the **PROC** Key. Once the clearance is given for another attempt, activate the approach by highlighting 'ACTIVATE APPROACH' using the large **FMS** Knob and pressing the **ENT** Key. The G1000 provides navigation along the desired course to the waypoint and rejoins the approach in sequence from that point.

To activate a new approach for the same airport, select the new procedure by pressing the **PROC** Key. Choose 'SELECT APPROACH', select the desired approach from the list shown, and press the **ENT** Key. Select the desired transition, then activate the approach using the **ENT** Key.

To activate a new approach to a different airport, press the **Direct-to** Key and select the desired airport using the **FMS** Knobs. Press the **ENT** Key to accept the selected airport, then follow the steps in the preceding paragraph to select an approach for the new airport.

GENERAL TIS INFORMATION

INTRODUCTION

NOTE: Aircraft without an operating transponder are invisible to TIS.

The Traffic Information Service (TIS) provides traffic advisory information to non-TAS/TCAS-equipped aircraft. TIS is a ground-based service providing the relative locations of all ATCRBS Mode-A and Mode-C transponder equipped aircraft within a specified service volume. The TIS ground sensor uses real-time track reports to generate traffic notification. The G1000 System displays TIS traffic information on the Traffic Map Page of the MFD. TIS information may also be displayed for overlay on the MFD Navigation Map Page, as well as on the PFD Inset Map. Surveillance data includes all transponder-equipped aircraft within the coverage volume. The G1000 System displays up to eight traffic targets within a 7.5 nm radius, from 3,000 feet below, to 3,500 feet above the requesting aircraft.

TIS VS. TAS/TCAS

The Traffic Information System (TIS) requires contact with a ground station through a data link radio in order to receive traffic information. Traffic Advisory (TAS) and Traffic Collision Avoidance Systems (TCAS) are self-contained. TAS/TCAS uses an airborne interrogator with a half-second update rate, while TIS utilizes the terminal Mode-S ground interrogator and accompanying data link to provide a five-second update rate. TIS and TAS/TCAS have similar ranges.

TIS LIMITATIONS

NOTE: TIS is not intended to be used as a collision avoidance system and does not relieve the pilot of the responsibility to "see and avoid" other aircraft. TIS should not be used for avoidance maneuvers during instrument meteorological conditions (IMC) or when there is no visual contact with the intruder aircraft.

NOTE: Refer to the TIS Limitations section of the Aeronautical Information Manual (AIM) for a more comprehensive explanation of limitations and anomalies associated with TIS.

TIS relies on surveillance of the Mode-S radar system, which is a "secondary surveillance" radar system similar to that used by ATCRBS. Many limitations are inherent in secondary radar surveillance. Information provided by TIS is neither better nor more accurate than the information used by ATC. TIS is intended only to assist in visual acquisition of other aircraft in visual meteorological conditions (VMC). While TIS is a useful aid for visual traffic avoidance, system limitations must be considered to ensure proper use. No recommended avoidance maneuvers are given, nor authorized, as a direct result of a TIS intruder display or TIS advisory.

- TIS operation may be intermittent during turns or other maneuvering.
- TIS is dependent on two-way, line-of-sight communications between the aircraft and the Mode-S radar antenna. Whenever the structure of the aircraft comes between the transponder antenna and the ground-based radar antenna, the signal may be temporarily interrupted.
- Other limitations and anomalies associated with TIS are described in the AIM.

604

WARNING: Garmin is not responsible for Mode S geographical coverage. Operation of the ground stations is the responsibility of the FAA. Refer to the AIM for a Terminal Mode S radar site map.

NOTE: TIS is unavailable at low altitudes in many areas of the United States. This is often the case in mountainous regions.

TIS information is collected during a single radar sweep. Collected information is then sent through the Mode S uplink on the next radar sweep. Because of this, the surveillance information is approximately five seconds old. TIS ground station tracking software uses prediction algorithms to compensate for this delay. These algorithms use track history data to calculate expected intruder positions consistent with the time of display. Occasionally, aircraft maneuvering may cause variations in this calculation and create slight errors on the Traffic Map Page. Errors affect relative bearing information and target track vector. This can cause a delay in the displayed intruder information. However, intruder distance and altitude typically remain relatively accurate and may be used to assist in spotting traffic.

The following errors are common examples:

- When the client or intruder aircraft maneuvers excessively or abruptly, the tracking algorithm may report incorrect horizontal position until the maneuvering aircraft stabilizes.
- When a rapidly closing intruder is on a course that intercepts the client aircraft course at a shallow angle (either overtaking or head-on) and either aircraft abruptly changes course within 0.25 nm, TIS may display the intruder aircraft on the incorrect side of the client aircraft.

These are rare occurrences and are typically resolved within a few radar sweeps once the client/intruder aircraft course stabilizes.

Pilots using TIS can provide valuable assistance in the correction of malfunctions by reporting observations of undesirable performance. Reports should identify the time of observation, location, type and identity of the aircraft, and describe the condition observed. Reports should also include the type of transponder and transponder software version. Since TIS performance is monitored by maintenance personnel, not ATC, malfunctions should be reported in the following ways:

- By telephone to the nearest Flight Service Station (FSS) facility
- By FAA Form 8000-7, Safety Improvement Report (postage-paid card can be obtained at FAA FSSs, General Aviation District Offices, Flight Standards District Offices, and General Aviation Fixed Base Operators).

MAP SYMBOLS

AIRPORTS

Item	Symbol
Unknown Airport	
Non-towered, Non-serviced Airport	
Towered, Non-serviced Airport	
Non-towered, Serviced Airport	•
Towered, Serviced Airport	
Restricted (Private) Airport	R
Heliport	•

NAVAIDS

Item	Symbol
Intersection	
LOM (compass locator at outer marker)	
NDB (non-directional radio beacon)	©
VOR	@
VOR/DME	100
VOR/ILS	+
VORTAC	&
TACAN	€

BASEMAP

Item	Symbol
Interstate Highway	
State Highway	
US Highway	
National Highway	
City	•
State/Province Border	ST/PRV BORDER
International Border	INTL BORDER
Road	
Railroad	
Latitude/Longitude	

AIRSPACE BOUNDARIES

Item		Symbol
ICAO Control Area		
Class B Airspace		
Mode C Tower Area		
Warning Area Pro	hibited Area	
Alert Area Res	stricted Area	
Caution Area Tra	ining Area	
Danger Area Un	known Area	
Class C		
Terminal Radar Servi	ce Area	
Mode C Area		
Military Operations Area (MOA)		

HAZARD AVOIDANCE FEATURES

Feature	Symbol
Terrain Proximity/TAWS display enabled	<u> </u>
Traffic display enabled	t
NEXRAD display enabled	
Cloud Top display enabled	***
Echo Top display enabled	مظله
XM Lightning display enabled	+++
Cell Movement display enabled	
SIGMETs/AIRMETs display enabled	SIGMET AIRMET
METARs display enabled	₩
City Forecast display enabled	
Surface Analysis display enabled	1
Freezing Levels display enabled	
Winds Aloft display enabled	. ^∙
County Warnings display enabled	**
Cyclone Warnings display enabled	9
Loss of hazard avoidance feature (loss of GPS position)	X
Turbulence	
Icing Potential	•
PIREPs	-
AIREPs	

TRAFFIC

Item	Symbol
Non-threat Traffic	③
Proximity Advisory	\Diamond
Traffic Advisory, Out of Range	
Traffic Advisory	0

MISCELLANEOUS

Item	Symbol
ARTCC Frequency or FSS Frequency	Ť
Map Pointer (when panning)	B
Elevation Pointer (on Topography Scale when panning)	♦
Measuring Pointer	
Wind Vector	×
Overzoom Indicator	
User Waypoint	
Vertical Navigation Along Track Waypoint	
Parallel Track Waypoint	•
Unanchored Flight Path Waypoint	0
Top of Descent (TOD)	∮ T0D
Bottom of Descent (BOD)	•
Navigating using Dead Reckoning	1 DR

TERRAIN AND OBSTACLE COLORS AND SYMBOLS

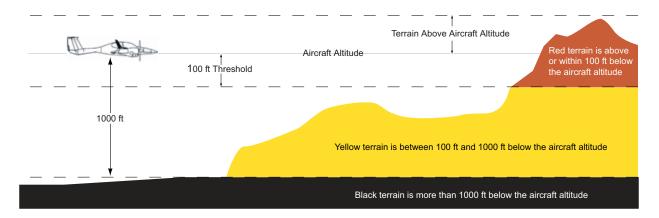


Figure F-1 Terrain Proximity Color Chart

Unlighted	nlighted Obstacle Lighted Obstacle Obstacle Obstacle		Obstacle Location	
< 1000' AGL	> 1000' AGL	< 1000' AGL	> 1000' AGL	Onstacle Focation
.		*	*	Red obstacle is above or within 100 ft below the aircraft altitude
A		**	**	Yellow obstacle is between 100 ft and 1000 ft below the aircraft altitude
A		**	**	Gray obstacle is more than 1000 ft below aircraft altitude

Table F-1 Obstacle Colors

APPENDICES

TELEPHONE/TEXT MESSAGING

TELEPHONE

Internal Phone	External Phone	Description
		Phone is Idle
		Phone is ringing
		Phone has a dial tone (off hook) or connected to another phone
		Phone dialed is busy
		Phone is dialing another phone
		Phone has failed
		Phone status not known
		Phone is disabled
	DATA TX	Phone is reserved for data transmission
•••••		Calling other phone or incoming call from other phone
		Other phone is on hold
		Phones are connected

TEXT MESSAGING

Message Symbol	Description
\boxtimes	Received text message that has not been opened
\boxtimes	Received text message that has been opened
Ø	Saved text message, draft not sent
<u> </u>	System is sending text message
\supset	Text message has been sent
X	System failed to send text message
Ø	Predefined text message

A		AODA 401 F10 F00 F0	07
AAirport Directory	586	AOPA A import Directors	
Activate a Flight Plan	208	AOPA Airport Directory5	
Active channel		Approach6	
Active frequency		Activating2	
ADF		ILS4	
AC-U-KWIK		Loading 205, 240, 24	
ADF	101, 313, 300, 30,	Missed4	
ADF mode	112 114	Removing2	
ANT mode		Approach box50	
Volume		Approach channel 205, 24	
ADF audio		Approach Mode, AFCS 439, 454, 4	55
ADF/BFO		APR softkey 242, 25	
ADF/DME tuning		Arrival procedure190, 203, 236, 238, 263, 265, 2	74
ADF frequency tuning		Attitude and Heading Reference System (AHRS)2, 7, 1.	2–13
ADF volume		Attitude Indicator46,	50
AHRS		Audio alerting system5	64
Aircraft range		Audio Panel2	, 9
		Audio Panel fail-safe operation1	29
Air Data Computer (ADC)	· Z	Automatic Flight Control System (AFCS) 1, 413–40	60
Airport	1.00	Controls 414–4	
Information		Example procedures 446–4	53
Airport Directory		Status Annunciations4	
Air Report (AIRÉP)		Status Bar4	
Airspace Alerts		Status Box4	
Airspeed Indicator		Automatic squelch1	
Airspeed Reference	424	Autopilot413, 441–4	
Airways	224	Disconnect 415, 433, 44	
Collapsed	221	Auto-tuning1	
Expanded	221	Auto-tuning, COM	97
Alerting system	563	Auto-tuning, NAV1	06
Alert levels		Auto Zoom1	36
Alerts		Auxiliary Pages (AUX)	
Aircraft		AUX - system status page 478, 499, 500, 516, 517,	
Audio voice		521	310,
Alerts Window		Aviation Symbols 148, 19	90
Along Track Offset		Awadon Symbols	50
ALT		В	
Altimeter	46, 51		43
Altitude		Backlighting	
Constraints	•	Barometric Altimeter Setting46,	
Altitude Alerting		Bearing/distance, measuring1	43
Altitude capture		Bearing Information47,	
Altitude Hold Mode (ALT)		Bearing Line 362, 30	
Altitude Reference	421, 422, 429	Bearing Pointer	
Ammeter	84	Bearing Source	
Annunciations		Bus voltage	84
AFCS Status			
G1000 System	9, 570–571	C	
Test tone	11, 564	Calibrated Airspeed2	47
Annunciation Window		CDI60, 239, 254, 265, 273, 25	80
Annunciator lights	124	Chart Not Available 482, 50	
ANT/BFO	114	Chart options 490, 5	
Antenna Stabilization	367	Chart setup box 496, 5	14

480, 481, 480, 481, 480, 481, 480, 481, 480, 481, 480, 481, 480, 481, 480, 481, 480, 481, 480, 481, 480, 481,	499	Departure procedure chart	486, 507
ChartView database		Dilution of Precision (DOP)	16
ChartView plan view	491	Direct-to161, 185, 186, 187, 188, 189, 226	, 227, 263, 265,
ChartView profile view		280	
Checklists		Display backup	9, 93
		Display controls	
Closest Point		DME	
COM channel spacing	101	HOLD mode	115
COM frequency box91,	. 94	NAV1 mode	
Command Bars, flight director	418	NAV2 mode	
Communication (COM) Frequency Box		Tuning mode	
COM tuning failure		DME audio	
Connext Data Request 320, 323, 330, 332, 3		DME Information	
Controls		DR Mode	
AFCS 414–4	415	Dit Mode	,,
PFD/MFD17–18,		E	
Softkeys 19-			C1
Control Wheel Steering (CWS) 415, 4		Electronic checklists 41–42, 461, 5	51, 552, 553
Coolant temperature82,		Electronic Stability	46 I
Copy a Flight Plan2		Electronic Stability and Protection	461, 545
Course Deviation Indicator (CDI)	200	Emergency checklist	
Changing scale(CDI)	SO1	Emergency frequency	129
Changing scale	001	Endurance	
D		Engine Airframe Unit	2
		Engine Indication System (EIS)	79–88
Databases6, 7, 11, !		Engine load	
Database synchronization		Engine Page	82
Data entry 26-		ENGINE softkey	79
Data Link Receiver		Entertainment inputs	127
Datalink receiver troubleshooting		ESP 4	
Data logging	555	Estimated Position Error (EPE)	16
Data Logging	554	_	
Date and time		F	
Day/Night views 496, !	514	Field of View (SVS)	159
Day view496, 497, 514, !		Flight director4	
Dead Reckoning	· 77	Pitch modes	
DEC FUEL softkey	87	Roll modes	
Decision Height (DH)	74	Flight ID	
Declutter, Display		Flight Instruments	
Declutter maps20,		Flight Level Change Mode (FLC)	
		Flight plan	424, 430
Delete Flight Plans2	209	Closest point to reference	
Deleting		Storing	
An entire airway 210, 2	211		
An entire procedure 210, 2	211	Flight Plan Pages (FPL)Flight timer	20
An individual waypoint	210		
Flight Plan Items	209	FliteCharts	
Density Altitude2		FliteCharts®	
Departure	∟ ⊤ <i>J</i>	FliteCharts cycle	51/
Procedure201, 215, 233, 2	235	FliteCharts expiration	51/
Select233, 236, 240, 2		FliteCharts functions	
Time233, 230, 240, 2		FliteCharts softkeys	502
Timer		FPA	228, 270
HIHRI	40	Frequency	

Nearest		HSI magen
Frequency spacing Frequently asked questions		HSI single
Fuel		
Calculations		Icing
Efficiency		IDENT fund
Endurance		ID indicato
Flow		ILS approa
Flow totalizer		Indicated A
Quantity Remaining		Indicated A
Required		Info box
Statistics		Infrared (IR
Temperature		Inset Map Intersection
Used		Informat
Fuel on Board	249	Inverting a
Fuel Page		101
FUEL softkey	86	Iridium
		Iridium sate
G		
Gain		J
Garmin Connext Weather 320, 321, 323, 324	, 325, 326,	Jeppesen a
328, 329, 330, 331, 332, 338, 346, 349, 350	101 515	
Garmin ESP TM		L
Garmin Flight Data Services	46 I	Land Symb
Gearbox temperatureGeodetic Sea Level (GSL)		Lightning -
GFC 700 AFCS		Line Replac
Glidepath		LNAV
Glidepath Indicator		Logging Da
Glidepath Mode (GP) 430,		LO SENS
Glideslope	278	Low Altitud
Glideslope Indicator		LPV approa
Glideslope Mode (GS)	432, 454	гі у арріос
Global Positioning System (GPS)		M
Navigation	185–284	Manual Ele
Go Around Mode (CA)		Map
Go Around Mode (GA)GPS Window		Panning
Ground Mapping		Map Pages
GSR 56		Map symbo
GTX 33 Transponder		Marker bea
GWX 70	351	Marker Bea
		MASQ prod
Н		Measurem
Heading	46	Menus
Heading Bug	46	Message a
Heading Select Mode (HDG)	436, 447	Message A GWX 68
HI SENS	111	METAR
Horizontal Scan360, 361, 362, 363, 364,		Minimum [
Horizontal Situation Indicator (HSI)		Missed App
HSI double green arrow	103	

HSI magenta arrow HSI single green arrow	103 103
I	
lcing	
IDENT function	
ID indicator	
ILS approach	454
Indicated Airspeed	48
Indicated Altitude	
Info box	
Infrared (IR) Satellite	326
Inset Map	4/
Intersection	100 170
Information	169-170
Inverting a flight plan IOI	204
Iridium 530,	
Iridium	531, 332
illululli Satellite Hetwork	327, 334
J	
Jeppesen aviation database	E0.4
Jeppesen aviation database	364
L	
Land Symbols	147
Lightning325, 326,	328 338
Line Replaceable Units (LRU)	2–5 10
LNAV	254
Logging Data	554
LO SENS	
Low Altitude Annunciation	73
LPV	
LPV approach	446
М	
Manual Electric Trim (MET)	413, 441
Map	420
Panning	138
Map Pages (MAP)	29
Map symbols	605
Marker beacon	
Marker Beacon Annunciations	/2
MASQ processing	89
Measurement units, changing displayed	34
Menus	20 E76 E70
Mossage duvisories 303, 3/2, 3/3,	7/۵, 5/8
Message Advisories GWX 68	578 570
METAR325, 326,	270, 279
Minimum Descent Altitude (MDA)	JZO, JJZ JZO, JJZ
Missed Approach 190, 244, 251, 254,	280, 456

Mode S 116, 117	Pilot profiles 36–37
Mode selection softkeys117	Pilot Weather Report (PIREP) 316, 325, 326, 328, 345
Morse code identifier105	Pitch Hold Mode (PIT)420
Multi Function Display (MFD) 2	Pitch modes, flight director 419–425
Controls 17–18	Pitch Reference420
Softkeys 24	Power-up page551
,	Power up settings124
N	Power-up, system7
National Weather Service (NWS)312	Precipitation325, 326, 328, 334
NAV1 audio104	Predefined message 538, 539, 541
NAV2 audio104	Primary Flight Display (PFD)2
NAV frequency box 91	Controls 17–18
' '	Softkeys 19–21
Navigation Database 228, 229	Procedure examples, AFCS 446–458
·	Procedure Pages (PROC) 31
Map187	Profile View326
Navigation Mode, AFCS437–438, 448–449	Trome view 320
Navigation mode selection103	Q
Navigation (NAV) Frequency Box 46	
Navigation Source 60–61	Quick tuning 121.500 MHz 96
Navigation Status Box 46	R
Nav radio selection103	
Nearest 165 166 167 169 191 191	Radar Altitude 75
Airport165, 166, 167, 168, 181–184	RAIM15, 239, 251, 252, 253, 599
Airport Minimum Runway Length168	Range157
Airports Page 166, 167, 168	Range, aircraft 86
Airport Surface Matching168	Receiver Autonomous Integrity Monitoring (RAIM)15–16,
VOR 181–182	251
Nearest Airport(s)242	Required
Nearest airports, frequency tuning 97	Vertical Speed271
Nearest Pages (NRST) 30	Vertical Speed Indicator271
NEXRAD328	Required Obstacle Clearance (ROC)394
Night view496, 497, 514, 515	Reversionary mode129
Non-path descent428, 452–453	Reversionary Mode8–9
Normal display operation8	Roll Hold Mode (ROL)435
NOTAMs488	Roll modes, flight director 434–437
	Roll Reference435
0	RVSI 271, 272
OBS Mode 65	RX indicator 95
Obstacles 574, 575	
Oil	S
Pressure82, 84	SafeTaxi 461, 475, 478
Temperature82, 84	SafeTaxi®461
Omni Bearing Selector (OBS) 600–601	SafeTaxi database479
Other Statistics 247, 249	SBAS 251, 253, 599
Outside Air Temperature (OAT)46, 67	Scheduler461–462, 549
Overspeed protection, autopilot459	Sector Scan366
1	Secure Digital (SD) card6, 41, 551, 584
P	Selected Altitude 421, 423, 425, 429, 446
Page groups 28–31	Selected Attitude 421, 423, 423, 429, 440 Selected Altitude Capture Mode (ALTS)421, 422, 423, 425
Page menus 26	Selected Altitude Capture Mode (ALTS)421, 422, 423, 423 Selected Altitude Intercept Arc160
Parallel Track 214, 215	Selected Course47, 56, 438, 440
1 drailer frack 214, 213	Jeicetea Coarse 77, 30, 430, 440

Selected Heading	· 47, 56, 436	TOPO SCALE	
Selecting a COM radio		Total flight hours	86
Sequencing, automatic	601	Track Indicator	55
Servos	441	Traffic	
SIGMET 3	304, 325, 326, 328, 339	Annunciation	47
SiriusXM		Traffic Advisory System (TAS)360, 361,	
Radio	286	Traffic Advisory (TA)	
SiriusXM radio volume		Traffic Annunciation	
SiriusXM Weather		Traffic Information Service (TIS)	
AIRMETs		Voice alerts	
SIGMETs		Transponder	72
Slip/Skid Indicator		Transponder code entry	120
Softkeys		Transponder data box	90.01
MFD		Transponder ground made	117
PFD		Transponder ground mode	110
		Transponder mode field	110
Split COM Operation	2/	Transponder standby mode	
STAB		Transponder Status Box	46
Standby frequency ADF	94, 97, 103	Trim adapter	
		Trim, Manual Electric	
Standby frequency field	94	Trip Planning	
Stereo headsets	·124	Trip statistics	
Stuck microphone	129	True Airspeed	
Sunrise		Turbulence	
Sunset	248	Turn anticipation	601
SVS troubleshooting	559	Turn Rate İndicator	
Symbols, map	605	TX indicator	95
Synthetic vision (SVS)			
System annunciations		U	
System Page (EIS)		Unable to display chart	182 503
System power-up	·7	Updating Garmin databases	
SYSTEM softkey	84	Updating Jeppesen databases	400
System Time	46	Opualing Jeppesen databases	499
System fille	-10	User-Defined Holding Pattern	223
Т		V	
• •	02.04.06	•	
Tachometer		Vertical deviation	427
TAS		Vertical deviation guidance	229
Telephone		Vertical Deviation Indicator (VDI)	271, 272
Temporary Flight Restriction (TFF		Vertical navigation	
Terminal Aerodrome Forecast (TA		Direct-to	
Terminal procedures charts		Vertical Navigation (VNV)	
Terrain	<i></i> 574	Flight control	425–429
Color indications	607	Vertical Path Tracking Mode (VPTH)	
Terrain-SVS	388, 545	Vertical Scan	
Text message	534, 535, 538, 541	Vertical speed guidance	
Text messaging		Vertical Speed Indicator (VSI)	
Tilt		Vertical Speed Mode (VS)	
Timer	,	Vertical Speed Mode (VS) Vertical Speed Reference	
Departure	40	VFR code	
Flight	39		
Timer, PFD generic	38	Video settings	
TOD		Video system	
TOPO DATA		VNAV	
Top of Descent		VNV	270, 598
וסף טו מבשכפוונ	ZIU, ZII	VNV guidance	

Disabling	226
Enabling	226
VNV Indications	- 70
VNV Target Altitude 425-	428
VNV Target Altitude Capture Mode (ALTV)	429
Voice Alerts, TIS	- 72
Voice alerts, TIS Traffic	
Voice Alerts, TIS Traffic	
Voltmeter	- 84
Volume level	
ADF 112,	114
VOR	
Nearest 181–	
VOR selection	
VSI	
VS TGT 228,	270
W	
WAAS254, 446, 575,	599
Waypoint	
Automatic sequencing 600,	601
Skipping	601
Waypoint Pages (WPT)	
Waypoint Selection Submenu186, 193, 197,	252
Weather Attenuated Color Highlight (WATCH)367, 30	68, 369
Wind	156
Winds Aloft325, 326, 328,	342
X	
XM	
Radio	
Receiver troubleshooting	561
XM channel list	524
XM radio entertainment	127
XM satellite radio 522, 524,	525
XM Satellite Radio	
XM service class	523
_	
Z	
Zoom	

Garmin International, Inc. 1200 East 151st Street Olathe, KS 66062, U.S.A. p:913.397.8200 f:913.397.8282 Garmin AT, Inc. 2345 Turner Road SE Salem, OR 97302, U.S.A. p:503.391.3411 f:503.364.2138

Garmin (Europe) Ltd.
Liberty House, Houndsdown Business Park
Southampton, Hampshire, SO40 9LR, U.K.
p:44 (0) 23 8052 4000
f:44 (0) 23 8052 4004

Aviation Support: 44 (0) 87 0850 1243

Garmin Corporation No. 68, Jangshu 2nd Road Shijr, Taipei County, Taiwan p:886/02.2642.9199 f:886/02.2642.9099

www.garmin.com

HALFWAY (T)