GARMIN

Pilot's Guide

Beecicraft 936 Sertes

SYSTEM OVERVIEW

> FLIGHT INSTRUMENTS

EIS

AUDIO PANEL \& CNS

FLIGHT MANAGEMENT

HAZARD AVOIDANCE

AFCS

ADDITIONAL FEATURES

APPENDICES

INDEX

Copyright © 2017 Garmin Ltd. or its subsidiaries. All rights reserved.

This manual reflects the operation of System Software version 2780.00 or later for the G1000 NXi Beechcraft G36 Series. Some differences in operation may be observed when comparing the information in this manual to earlier or later software versions.

Garmin International, Inc.
1200 East 151st Street
Olathe, Kansas 66062, U.S.A.
Tel: 913.397.8200
Fax: 913.397.8282
Aircraft On Ground (AOG) Hotline: 913.397.0836
Aviation Dealer Technical Support: 888.606.5482
Garmin AT, Inc.
2345 Turner Road SE
Salem, OR 97302, U.S.A.
Tel: 503.581.8101
Fax 503.364.2138

Garmin (Europe) Ltd.

Liberty House, Hounsdown Business Park
Southampton, Hampshire SO40 9LR U.K.
Tel: +44 (0) 2380524000
Fax: +44 (0) 2380524004
Aviation Support: +44 (0) 3708501243

Garmin Corporation

No. 68, Zhangshu 2nd Road
Xizhi District, New Taipei City, Taiwan
Tel: 34-93-357-2608
Fax: 34-93-429-4484

Website Address: www.garmin.com
Except as expressly provided herein, no part of this manual may be reproduced, copied, transmitted, disseminated, downloaded or stored in any storage medium, for any purpose without the express written permission of Garmin. Garmin hereby grants permission to download a single copy of this manual and of any revision to this manual onto a hard drive or other electronic storage medium to be viewed for personal use, provided that such electronic or printed copy of this manual or revision must contain the complete text of this copyright notice and provided further that any unauthorized commercial distribution of this manual or any revision hereto is strictly prohibited.

Garmin ${ }^{\circledR}$, G1000 ${ }^{\circledR}$ NXi, WATCH ${ }^{\circledR}$, FliteCharts ${ }^{\circledR}$, and SafeTaxi ${ }^{\circledR}$ are registered trademarks of Garmin International, Inc. or its subsidiaries. Garmin ESP ${ }^{T M}$, Garmin SVT ${ }^{T M}$, SurfaceWatch ${ }^{T M}$, and Connext ${ }^{\text {Tm }}$ are trademarks of Garmin International, Inc. or its subsidiaries. These trademarks may not be used without the express permission of Garmin.

Skywatch ${ }^{\circledR}$ and Stormscope ${ }^{\circledR}$ are registered trademarks of L-3 Communications. Ryan ${ }^{\circledR}$, CCAD $^{\circledR}$ and Avidyne ${ }^{\circledR}$ are registered trademarks of Avidyne Corporation. AC-U-KWIK ${ }^{\circledR}$ is a registered trademark of Penton Business Media Inc. Bendix/King ${ }^{\oplus}$ and Honeywell ${ }^{\oplus}$ are registered trademarks of Honeywell International, Inc. Becker ${ }^{\circledR}$ is a registered trademark of Becker Flugfunkwerk GmbH. NavData® is a registered trademark of Jeppesen, Inc. Wi-Fi® is a registered trademark of the Wi-Fi Alliance. SiriusXM Weather and SiriusXM Satellite Radio are provided by SiriusXM Satellite Radio, Inc. The Bluetooth ${ }^{\circledR}$ word mark and logos are owned by the Bluetooth SIG, Inc. and any use of such marks by Garmin is under license.

AOPA Membership Publications, Inc. and its related organizations (hereinafter collectively "AOPA") expressly disclaim all warranties, with respect to the AOPA information included in this data, express or implied, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. The information is provided "as is" and AOPA does not warrant or make any representations regarding its accuracy, reliability, or otherwise. Under no circumstances including negligence, shall AOPA be liable for any incidental, special or consequential damages that result from the use or inability to use the software or related documentation, even if AOPA or an AOPA authorized representative has been advised of the possibility of such damages. User agrees not to sue AOPA and, to the maximum extent allowed by law, to release and hold harmless AOPA from any causes of action, claims or losses related to any actual or alleged inaccuracies in the information. Some jurisdictions do not allow the limitation or exclusion of implied warranties or liability for incidental or consequential damages so the above limitations or exclusions may not apply to you.

AC-U-KWIK and its related organizations (hereafter collectively "AC-U-KWIK Organizations") expressly disclaim all warranties with respect to the AC-U-KWIK information included in this data, express or implied, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. The information is provided "as is" and AC-U-KWIK Organizations do not warrant or make any representations regarding its accuracy, reliability, or otherwise. Licensee agrees not to sue AC-U-KWIK Organizations and, to the maximum extent allowed by law, to release and hold harmless AC-U-KWIK Organizations from any cause of action, claims or losses related to any actual or alleged inaccuracies in the information arising out of Garmin's use of the information in the datasets. Some jurisdictions do not allow the limitation or exclusion of implied warranties or liability for incidental or consequential damages so the above limitations or exclusions may not apply to licensee.

Printed in the U.S.A.

1. WARNING: Do not use terrain avoidance displays as the sole source of information for maintaining separation from terrain and obstacles. Garmin obtains terrain and obstacle data from third party sources and cannot independently verify the accuracy of the information.

WARNING: Always refer to current aeronautical charts and NOTAMs for verification of displayed aeronautical information. Displayed aeronautical data may not incorporate the latest NOTAM information.
(1)

WARNING: Do not use geometric altitude for compliance with air traffic control altitude requirements. The primary barometric altimeter must be used for compliance with all air traffic control altitude regulations, requirements, instructions, and clearances.
4. WARNING: Do not use basemap information (land and water data) as the sole means of navigation. Basemap data is intended only to supplement other approved navigation data sources and should be considered only an aid to enhance situational awareness.

WARNING: Do not rely solely upon the display of traffic information to accurately depict all of the traffic within range of the aircraft. Due to lack of equipment, poor signal reception, and/or inaccurate information from aircraft or ground stations, traffic may be present that is not represented on the display.
4. WARNING: Do not use data link weather information for maneuvering in, near, or around areas of hazardous weather. Information contained within data link weather products may not accurately depict current weather conditions.

1. WARNING: Do not use the indicated data link weather product age to determine the age of the weather information shown by the data link weather product. Due to time delays inherent in gathering and processing weather data for data link transmission, the weather information shown by the data link weather product may be older than the indicated weather product age.

(1)

WARNING: The displayed minimum safe altitude (MSAs) are only advisory in nature and should not be relied upon as the sole source of obstacle and terrain avoidance information. Always refer to current aeronautical charts for appropriate minimum clearance altitudes.
(1) WARNING: Always obtain qualified instruction prior to operational use of this equipment.
4. WARNING: Do not use a QFE altimeter setting with this system. System functions will not operate properly with a QFE altimeter setting. Use only a QNH altimeter setting for height above mean sea level, or the standard pressure setting, as applicable.

1
WARNING: Do not use GPS to navigate to any active waypoint identified as a 'NON WGS84 WPT' by a system message. 'NON WGS84 WPT' waypoints are derived from an unknown map reference datum that may be incompatible with the map reference datum used by GPS (known as WGS84) and may be positioned in error as displayed.

WARNING: When using the autopilot to fly an approach with vertical guidance, the autopilot will not level the aircraft at the MDA/DH even if the MDA/DH is set in the altitude preselect.

WARNING: Do not rely solely upon the display of traffic information for collision avoidance maneuvering. The traffic display does not provide collision avoidance resolution advisories and does not under any circumstances or conditions relieve the pilot's responsibility to see and avoid other aircraft.

WARNING: Because of variation in the earth's magnetic field, do not rely on the accuracy of attitude and heading indications in the following geographic areas: North of 72° North latitude at all longitudes; South of 70° South latitude at all longitudes; North of 65° North latitude between longitude $75^{\circ} \mathrm{W}$ and $120^{\circ} \mathrm{W}$. (Northern Canada); North of 70° North latitude between longitude $70^{\circ} \mathrm{W}$ and $128^{\circ} \mathrm{W}$. (Northern Canada); North of 70° North latitude between longitude $85^{\circ} \mathrm{E}$ and $114^{\circ} \mathrm{E}$. (Northern Russia); South of 55° South latitude between longitude 120° E and 165° E. (Region south of Australia and New Zealand).
(1)

WARNING: Do not rely on information from a lightning detection system display as the sole basis for hazardous weather avoidance. Range limitations and interference may cause the system to display inaccurate or incomplete information. Refer to documentation from the lightning detection system manufacturer for detailed information about the system.

WARNING: Use appropriate primary systems for navigation, and for terrain, obstacle, and traffic avoidance. Garmin SVT is intended as an aid to situational awareness only and may not provide either the accuracy or reliability upon which to solely base decisions and/or plan maneuvers to avoid terrain, obstacles, or traffic.

WARNING: Intruder aircraft at or below 500 ft . AGL may not appear on the Garmin SVT display or may appear as a partial symbol.

WARNING: Do not use the Garmin SVT runway depiction as the sole means for determining the proximity of the aircraft to the runway or for maintaining the proper approach path angle during landing.
(4. WARNING: Do not use TAWS information for primary terrain or obstacle avoidance. TAWS is intended only to enhance situational awareness.

1. WARNING: Do not use SurfaceWatch ${ }^{T M}$ information as the primary method of flight guidance during airborne or ground operations. SurfaceWatch does not have NOTAM or ATIS information regarding the current active runway, condition, or information about the position of hold lines.

CAUTION: Do not clean display surfaces with abrasive cloths or cleaners containing ammonia. They will harm the anti-reflective coating.

CAUTION: Repairs should only be made by an authorized Garmin service center. Unauthorized repairs or modifications could void both the warranty and affect the airworthiness of the aircraft.

NOTE: Do not rely solely upon data link services to provide Temporary Flight Restriction (TFR) information. Always confirm TFR information through official sources such as Flight Service Stations or Air Traffic Control.

NOTE: All visual depictions contained within this document, including screen images of the system panel and displays, are subject to change and may not reflect the most current system and aviation databases. Depictions of equipment may differ slightly from the actual equipment.

NOTE: The United States government operates the Global Positioning System and is solely responsible for its accuracy and maintenance. The GPS system is subject to changes which could affect the accuracy and performance of all GPS equipment. Portions of the system utilize GPS as a precision electronic NAVigation AID (NAVAID). Therefore, as with all NAVAIDs, information presented by the system can be misused or misinterpreted and, therefore, become unsafe.

NOTE: This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

NOTE: Interference from GPS repeaters operating inside nearby hangars can cause an intermittent loss of attitude and heading displays while the aircraft is on the ground. Moving the aircraft more than 100 yards away from the source of the interference should alleviate the condition.

NOTE: Use of polarized eyewear may cause the flight displays to appear dim or blank.
NOTE: This product, its packaging, and its components contain chemicals known to the State of California to cause cancer, birth defects, or reproductive harm. This notice is being provided in accordance with California's Proposition 65. If you have any questions or would like additional information, please refer to our web site at www.garmin.com/prop65.

NOTE: Operating the system in the vicinity of metal buildings, metal structures, or electromagnetic fields can cause sensor differences that may result in nuisance miscompare annunciations during start up, shut down, or while taxiing. If one or more of the sensed values are unavailable, the annunciation indicates no comparison is possible.

NOTE: The system responds to a terminal procedure based on data coded within that procedure in the Navigation Database. Differences in system operation may be observed among similar types of procedures due to differences in the Navigation Database coding specific to each procedure.

NOTE: The FAA has asked Garmin to remind pilots who fly with Garmin database-dependent avionics of the following:

- It is the pilot's responsibility to remain familiar with all FAA regulatory and advisory guidance and information related to the use of databases in the National Airspace System.
- Garmin equipment will only recognize and use databases that are obtained from Garmin or Jeppesen. Databases obtained from Garmin or Jeppesen that have a Type 2 Letter of Authorization (LOA) from the FAA are assured compliance with all data quality requirements (DQRs). A copy of the Type 2 LOA is available for each applicable database and can be viewed at http://fly.garmin.com by selecting 'Aviation Database Declarations.'
- Use of a current Garmin or Jeppesen database in your Garmin equipment is required for compliance with established FAA regulatory guidance, but does not constitute authorization to fly any and all terminal procedures that may be presented by the system. It is the pilot's responsibility to operate in accordance with established AFM(S) and regulatory guidance or limitations as applicable to the pilot, the aircraft, and installed equipment.

NOTE: The pilot/operator must review and be familiar with Garmin's database exclusion list as discussed in SAIB CE-14-04 to determine what data may be incomplete. The database exclusion list can be viewed at www.flygarmin.com by selecting 'Database Exclusions List.'

NOTE: The pilot/operator must have access to Garmin and Jeppesen database alerts and consider their impact on the intended aircraft operation. The database alerts can be viewed at www.flygarmin.com by selecting 'Aviation Database Alerts.'

NOTE: If the pilot/operator wants or needs to adjust the database, contact Garmin Product Support.
NOTE: Garmin requests the flight crew report any observed discrepancies related to database information. These discrepancies could come in the form of an incorrect procedure; incorrectly identified terrain, obstacles and fixes; or any other displayed item used for navigation or communication in the air or on the ground. Go to FlyGarmin.com and select 'Aviation Data Error Report'.

NOTE: Operate G1000NXi system power through at least one cycle in a period of four days of continuous operation to avoid an autonomous system reboot.

NOTE: The system supports approval of AC 120-76C Hardware Class 3, Software Type B Electronic Flight Bag (EFB) electronic aeronautical chart applications. Possible additional requirements may make a secondary source (traditional paper or additional electronic display) necessary onboard the aircraft. If the secondary source is a Portable Electronic Device (PED), its use must be consistent with guidance in AC 120-76C.

NOTE: When using Stormscope, there are several atmospheric phenomena in addition to nearby thunderstorms that can cause isolated discharge points in the strike display mode. However, clusters of two or more discharge points in the strike display mode do indicate thunderstorm activity if these points reappear after the screen has been cleared.

Record of Revisions				
Part Number	Revision	Date	Page Range	Description
$190-02179-00$	A	$1 / 5 / 17$	i-I-6	Initial Release for GDU 20.05
	B	$5 / 18 / 17$	i-I-6	Updated SurfaceWatch Information
				Clerical

SECTION 1 SYSTEM OVERVIEW
1.1 System Description 1
Line Replaceable Units (LRU) 1
1.2 System Controls 4
PFD/MFD Controls 4
Secure Digital Cards 7
1.3 System Operation 8
System Power-up 8
Normal Operation 9
Reversionary Mode 10
System Annunciations 11
System Status 13
AHRS Operation 14
GPS Receiver Operation 16
1.4 Accessing System Functionality 21
Softkey Function 21
Menus 26
MFD Page Groups. 27
System Settings 30
System Utilities 38
1.5 Display Backlighting 43
SECTION 2 FLIGHT INSTRUMENTS
2.1 Flight Instruments 48
Airspeed Indicator 48
Attitude Indicator 50
Altimeter 51
Vertical Speed Indicator (VSI) 54
Vertical Deviation 54
Horizontal Situation Indicator (HSI) 56
Course Deviation Indicator (CDI) 60
2.2 Supplemental Flight Data 67
Temperature Displays. 67
Wind Data 67
Generic Timer 68
Vertical Navigation (VNV) Indications 69
2.3 PFD Annunciations and Alerting Functions 70
Marker Beacon Annunciations. 70
Altitude Alerting 70
Low Altitude Annunciation 71
Minimum Descent Altitude/Decision Height Alerting 71
2.4 Abnormal Operations 73
Abnormal GPS Conditions 73
Unusual Attitudes 74
SECTION 3 ENGINE INDICATION SYSTEM
3.1 Engine Display 76
Engine Page 78
3.2 EIS Display (Reversionary Mode) 81
SECTION 4 AUDIO PANEL AND CNS
4.1 Overview 83
PFD Controls and Frequency Display 84
Audio Panel Controls 86
4.2 COM Operation 88
COM Tuning Boxes 88
COM Transceiver Manual Tuning 89
Auto-Tuning the COM Frequency 89
Frequency Spacing 92
4.3 NAV Operation 93
NAV Tuning Boxes 93
NAV Radio Selection and Activation 94
NAV Receiver Manual Tuning 94
Auto-Tuning a NAV Frequency from the MFD 95
Marker Beacon Receiver. 97
DME Tuning 98
4.4 Mode S Transponder 99
Transponder Controls 99
Transponder Mode Selection 100
Entering a Transponder Code 102
IDENT Function 103
Flight ID Reporting. 103
4.5 Additional Audio Panel Functions 104
Power-Up 104
Mono/Stereo Headsets 104
Speaker 104
Intercom 104
Split COM 106
Clearance Recorder and Player 107
Entertainment Inputs 107
4.6 Audio Panels Preflight Procedure 109
4.7 Abnormal Operation. 110
Stuck Microphone 110
COM Tuning Failure. 110
Audio Panel Fail-Safe Operation. 110
Reversionary Mode 110
SECTION 5 FLIGHT MANAGEMENT
5.1 Introduction 111
Navigation Status Box and Data Bar. 113
5.2 Using Map Displays 114
Map Orientation 114
Map Range 116
Map Panning 118
Measuring Bearing and Distance 120
Topography 121
Map Symbols 124
Airways 129
Additional Navigation Map Items 131
IFRVFFR Charts 134
5.3 Waypoints 137
Airports 138
Intersections 146
NDBs 148
VORS 150
VRPs 152
User Waypoints 154
5.4 Airspaces 160
5.5 Direct-to-Navigation 164
5.6 Flight Planning 169
Flight Plan Creation 170
Flight Plan Import/Export 174
Adding Waypoints to an Existing Flight Plan. 179
Adding Airways to a Flight Plan 180
Adding Procedures to a Stored Flight Plan 182
Flight Plan Storage 188
Flight Plan Editing 190
Along Track Offsets 194
Parallel Track 195
Activating a Flight Plan Leg 197
Inverting a Flight Plan 197
Flight Plan Views 198
Closest Point of FPL 199
User-Defined Holding Patterns 200
5.7 Vertical Navigation 204
Altitude Constraints 206
Vertical Situation Display (VSD) 209
5.8 Procedures 212
Departures 214
Arrivals 216
Approaches 218
5.9 Trip Planning 228
Trip Planning 228
5.10 Abnormal Operation 232
SECTION 6 HAZARD AVOIDANCE
6.1 Data Link Weather 236
Activating Data Link Weather Services 236
Weather Product Age 238
Displaying Data Link Weather Products 240
Weather Product Overview 248
FIS-B Weather Status 280
6.2 Stormscope Lightning Detection System 282
Using the Stormscope Page 282
Setting Up Stormscope on the Navigation Map 284
6.3 Terrain Displays 286
Relative Terrain Symbology 287
TAWS-B Page 290
TAWS-B Alerting Displays 291
Forward Looking Terrain Avoidance 294
Additional TAWS-B Alerting 295
System Status. 297
6.4 Traffic Information Service (TIS) 298
Displaying Traffic Data 299
Traffic Map Page. 300
TIS Alerts 301
System Status 303
6.5 TAS Traffic 305
Theory of Operation 305
TAS Alerts 309
System Test 310
Operation 311
6.6 ADS-B Traffic 317
ADS-B System Overview 317
ADS-B with TAS 318
Conflict Situational Awareness \& Alerting 319
Airborne and Surface Applications. 320
Traffic Description. 321
Operation 321
ADS-B System Status 327
SECTION 7 AUTOMATIC FLIGHT CONTROL SYSTEM
7.1 AFCS Overview 331
Additional AFCS Controls 333
7.2 Flight Director Operation 335
Activating the Flight Director 335
AFCS Status Box 336
Flight Director Modes. 337
Command Bars 337
7.3 AFCS Modes 338
Vertical Modes 338
Lateral Modes 344
Combination Modes (VNV, APR, NAV, GA) 348
7.4 Autopilot and Yaw Damper Operation 360
Flight Control 360
Engagement. 361
Control Wheel Steering 361
Disengagement 362
7.5 AFCS Annunciations and Alerts 363
Overspeed Protection. 364
SECTION 8 ADDITIONAL FEATURES
8.1 Synthetic Vision Technology (SVT) 366
SVT Operation 367
SVT Features 369
Field of View 377
8.2 SafeTaxi 379
8.3 Charts 381
ChartView. 382
FliteCharts 391
IFR/VFR Charts 395
8.4 Database Cycle Number And Revisions 396
Cycle Number and Revision 396
8.5 SiriusXM Radio Entertainment 398
Activating SiriusXM Satellite Radio Services 398
Using SiriusXM Radio. 399
8.6 SurfaceWatch 402
Information Box 402
Alerts 403
Surfacewatch Setup 406
8.7 Flight Data Logging 408
8.8 Connext Setup 410
8.9 Electronic Checklists 412
8.10 Abnormal Operation 414
SiriusXM Data Link Receiver Troubleshooting 414
APPENDICES
Annunciations and Alerts 415
CAS Message Prioritization. 416
CAS Annunciations 417
Audio Alerting System Test 418
System Message Advisories 418
Database Management 429
Loading Updated Databases 429
Updating Databases 431
Updating Databases Using Flight Stream 510 434
Magnetic Field Variation Database Update 438
Garmin Aviation Glossary 439
Frequently Asked Questions 449
Map Symbols 453
INDEXIndexI-1

Blank Page

SECTION 1 SYSTEM OVERVIEW

1．1 SYSTEM DESCRIPTION

This section provides an overview of the Gl000 NXi Integrated Avionics System as installed in the Beechcraft G36 Bonanza．The system presents flight instrumentation，position，navigation，communication，and identification information to the pilot through large－format displays．

The optional Flight Stream 510 device provides a Bluetooth ${ }^{\circledR}$ connection between the system and a mobile device．GPS，AHRS，ADS－B，traffic，SiriusXM audio，and weather data can then be shared with the mobile device， and flight plans can be transferred to or from the mobile device．Also，database updates may also be performed using the Flight Stream 510 WiFi link．

LINE REPLACEABLE UNITS（LRU）

The system consists of the following Line Replaceable Units（LRUs）：
－GDU 1050 （1）－The GDU 1050 is configured as a Primary Flight Display（PFD）．The display communicates with the MFD and with the \＃l GIA 63W Integrated Avionics Unit through a High－Speed Data Bus（HSDB） Ethernet connection．
－GDU 1055 （1）－The GDU 1055 is configured as an MFD．The display communicates with the PFD and with the \＃2 GIA 63W Integrated Avionics Unit through a High－Speed Data Bus（HSDB）Ethernet connection．
－GIA 63W（2）－Functions as the main communication hub，linking all LRUs with the PFD and MFD．Each GIA 63W contains a GPS SBAS receiver，VHF COM／NAV／GS receivers，a flight director（FD）and system integration microprocessors．Each GIA 63W is paired with the PFD and MFD via HSDB connection．The GIA 63Ws are not paired together and do not communicate with each other directly．
－GDC 72 ／74A（1）－Processes data from the pitot／static system as well as the OAT probe．This unit provides pressure altitude，airspeed，vertical speed and OAT information to the system，and it communicates with the GIA 63（W）s，the displays，and the GRS 77／79，using an ARINC 429 digital interface（it also interfaces directly with the GTP 59）．The GDC 72／74A is designed to operate in Reduced Vertical Separation Minimum（RVSM） airspace．
－GRS 77 ／ 79 （1）－Provides aircraft attitude and heading information via ARINC 429 to both displays and both GIA 63Ws．The GRS 77／79 contains advanced sensors（including accelerometers and rate sensors）and interfaces with the GMU 44 to obtain magnetic field information，with the GDC 74A to obtain air data，and with both GIA $63 / 63 \mathrm{~W}$ s to obtain GPS information．AHRS modes of operation are discussed later in this document．
－GEA 71 （1）－Receives and processes signals from the engine and airframe sensors．This unit communicates with both GIA 63Ws using an RS－485 digital interface．
－GMU 44 （1）－Measures local magnetic field．Data is sent to the GRS unit for processing to determine aircraft magnetic heading．The GMU 44 receives power directly from the GRS unit and communicates with the GRS unit using an RS－485 digital interface．

NOTE：For information on non－Garmin equipment，consult the applicable optional interface user＇s guide． This document assumes that the reader is already familiar with the operation of this additional equipment．

1.2 SYSTEM CONTROLS

NOTE: The Audio Panel (GMA 1347) is described in the CNS \& Audio Panel section.
The system controls are located on the PFD and MFD bezels and audio panel. The controls for the PFD and MFD are discussed within the following pages of this section.

PFD/MFD CONTROLS

Figure 1-2 PFD/MFD Controls
(1) NAV VOLID Knob Turn to control NAV audio volume (shown in the NAV Frequency Box as a percentage). Press to toggle Morse code identifier audio ON/OFF.
(2) NAV Frequency Trans- Transfers the standby and active NAV frequencies. fer Key
(3) NAV Knob Turn to tune NAV receiver standby frequencies (large knob for MHz; small for kHz). Press to toggle cyan tuning box between NAV1 and NAV2
(4) *Heading Knob
(5) Joystick
(6) CRS/BARO Knob Turn large knob for altimeter barometric pressure setting.

Turn the small knob to set the pilot-selected course on the HSI when the VOR1, VOR2, or OBS/SUSP mode is selected. Pressing this knob centers the CDI on the currently selected VOR. The pilot-selected course provides course reference to the pilot-side flight director when operating in Navigation and Approach modes.
Press to re-center the CDI and return course pointer directly TO bearing of active waypoint/ station.

(7) COM Knob

(8) COM Frequency Transfers the standby and active COM frequencies.

Transfer Key (EMERG) Press and hold two seconds to tune the emergency frequency (121.5 MHz) automatically into the active frequency field.
(9) COM VOL/SQ Knob Turn to control COM audio volume level (shown as a percentage in the COM Frequency Box). Press to turn the COM automatic squelch ON/OFF.
(10) Direct-to Key (D>)
(11) FPL Key
(12) CLR Key
(DFLT MAP)
(13) MENU Key
(14) PROC Key
(15) ENT Key

Activates the direct-to function and allows the user to enter a destination waypoint and establish a direct course to the selected destination (specified by identifier, chosen from the active route).
Displays flight plan information.
Erases information, cancels entries, or removes menus.
Press and hold to display the MFD Navigation Map Page (MFD only).
Displays a context-sensitive list of options for accessing additional features or making setting changes.
Gives access to IFR departure procedures (DPs), arrival procedures (STARs), and approach procedures (IAPs) for a flight plan or selected airport.
Validates/confirms menu selection or data entry.

(16) FMS Knob Press to turn the selection cursor ON/OFF.

(Flight Management Data Entry: With cursor ON, turn to enter data in the highlighted field (large knob moves System Knob) cursor location; small knob selects character for highlighted cursor location).

Scrolling: When a list of information is too long for the window/box, a scroll bar appears, indicating more items to view. With cursor ON, turn large knob to scroll through the list.
Page Selection: Turn knob on MFD to select the page to view (large knob selects a page group; small knob selects a specific page from the group).
(17) *ALT SEL Knob

Sets the selected altitude in the Selected Altitude Box (the large knob selects the thousands, the small knob selects the hundreds). In addition to providing the standard system altitude alerter function, selected altitude provides an altitude setting for the Altitude Capture/Hold
(18) *AP Key
(19) *FD Key
(20) *NAV Key
(21) *ALT Key
(22) *VS Key
(23) *FLC Key
(24) *YD Key
(25) *HDG Key
(26) *APR Key
(27) *VNV Key (if equipped)
(28) *NOSE UP Key
(29) *NOSE DN Key mode of the AFCS.
Engages/disengages the Autopilot and Flight Director in the default vertical and lateral modes.
Activates/deactivates the Flight Director only. Pressing the FD key turns on the Flight Director in the default vertical and lateral modes. Pressing the FD key again deactivates the Flight Director and removes the command bars, unless the Autopilot is engaged. If the Autopilot is engaged, the $\mathbf{F D}$ key is disabled.
Selects/deselects the Navigation mode.
Selects/deselects the Altitude Hold mode.
Selects/deselects the Vertical Speed mode.
Selects/deselects the Flight Level Change mode.
Engages/disengages the Yaw Damper.
Selects/deselects the Heading Select mode.
Selects/deselects the Approach mode.
Selects/deselects Vertical Navigation mode

Controls the active pitch reference for the Pitch Hold, Vertical Speed, and Flight Level Change modes.
Controls the active pitch reference for the Pitch Hold, Vertical Speed, and Flight Level Change modes.
*This Key only appears on the MFD.

SECURE DIGITAL CARDS

NOTE：Refer to the Appendices for instructions on updating the aviation databases．

NOTE：Ensure that the system is powered off before inserting the SD card．
The GDU 1050／1055 data card slots use Secure Digital（SD）cards and are located on the top right portion of the display bezels．Each display bezel is equipped with two SD card slots．

Inserting and Removing an SD card：

Insert the SD card in the SD card slot，pushing the card in until the spring latch engages．The front of the card
should remain flush with the face of the display bezel．To remove，gently press on the SD card to release the spring latch and eject the card．

Figure 1－3 PFD／MFD Display Bezel SD Card Slots

1.3 SYSTEM OPERATION

This section discusses powering up the system, normal and reversionary display operation, system status, AHRS modes of operation, and GPS receiver operation.

SYSTEM POWER-UP

NOTE: See the Appendices for additional information regarding system-specific annunciations and alerts.

NOTE: See the Pilot's Operating Handbook (POH) for specific procedures concerning avionics power application and emergency power supply operation.

The system is integrated with the aircraft electrical system and receives power directly from electrical busses. The PFD, MFD, and supporting sub-systems include both power-on and continuous built-in test features that exercise the processor, RAM, ROM, external inputs and outputs to provide safe operation.

When powering up the system, test annunciations are displayed and key annunciator lights also become momentarily illuminated on the audio panel and the display bezels. On the PFD, the AHRS begins to initialize and displays 'AHRS/DG ALIGN: Remain Stationary'. All system annunciations should disappear typically within one minute of power-up.
When the MFD powers up, the MFD Power-up Page displays the following information:

- System version
- Land database name and version
- Safe Taxi database name and effective dates
- Terrain database name and version
- Navigation database name and effective dates
- Airport Directory name and effective dates
- FliteCharts/ChartView database information
- Crew Profile
- Obstacle database name and effective dates
- Copyright

Current database information includes the valid operating dates, cycle number and database type. When this information has been reviewed for currency (to ensure that no databases have expired), the pilot is prompted to continue. Pressing the ENT Key acknowledges this information and displays the Navigation Map Page.

NORMAL OPERATION

NOTE：In normal operating mode，backlighting can only be adjusted from the PFD（see Section 1．5）．In reversionary mode，it can be adjusted from the remaining display．

In normal operating mode，the PFD presents graphical flight instrumentation（attitude，heading，airspeed， altitude，vertical speed），replacing the traditional flight instrument cluster（see the Flight Instruments Section for more information）．The MFD normally displays a full－color moving map with navigation information（see the Flight Management Section），while the left portion of the MFD is dedicated to the Engine Indication System （see the EIS Section）．Both displays offer control for COM and NAV frequency selection．

Figure 1－4 System Normal Operation

SYSTEM ANNUNCIATIONS

NOTE：Upon power－up，certain windows remain invalid as system equipment begins to initialize．All windows should be operational within one minute of power－up．If any window continues to remain flagged，the system should be serviced by a Garmin－authorized repair facility．

When an LRU or an LRU function fails，a large red＇ X ＇is typically displayed on windows associated with the failed data（refer to Table l－1 for all possible flags and the responsible LRUs）．Refer to the Pilot＇s Operating Handbook (POH) for additional information regarding pilot responses to these annunciations．
The status of detected LRUs can be checked on the Aux－System Status Page．Active LRUs are indicated by green check marks；failed by red or amber＇X＇s．Failed LRUs should be noted and a service center or Garmin－ authorized dealer informed．

Viewing LRU information：

1）Use the FMS Knob to select the Aux－System Status Page．
2）To place the cursor in the＇LRU Info＇Box，
Press the LRU Softkey．
Or：
a）Press the MENU Key．
b）With＇Select LRU Window＇highlighted，press the ENT Key．
3）Use the FMS Knob to scroll through the box to view LRU status information．
NOTE：Refer to the POH for additional information regarding pilot responses to these annunciations．

SYSTEM STATUS

The System Status Page displays the status and software version numbers for all detected system LRUs. Pertinent information on all system databases is also displayed. Active LRUs are indicated by green check marks and failed LRUs are indicated by red "X"s. Failed LRUs should be noted and a service center or Garmin dealer informed.

Figure 1-6 Example System Status Page
The LRU and ARFRM Softkeys on the System Status Page select the applicable list (LRU Information or Airframe window) through which the FMS Knob can be used to scroll information within the selected window.
Pressing the MFD1 DB Softkey (label annunciator turns green indicting the softkey is selected) places the cursor in the database window. Use the FMS Knob to scroll through database information for the MFD. Pressing the softkey again will change the softkey label to PFD1 DB. PFD 1 database information is now displayed in the database window. Pressing the softkey a third time will change the softkey label back to MFD1 DB. MFD database information is displayed again in the database window.
The ANN Test Softkey, when selected, causes an annunciation test tone to be played.

NOTE: Refer to the Appendices for specific AHRS alert information.

NOTE: Aggressive maneuvering while AHRS is not operating normally may degrade AHRS accuracy.
In addition to using internal sensors, the AHRS uses GPS information, magnetic field data and air data to assist in attitude/heading calculations. In normal mode, the AHRS relies upon GPS and magnetic field measurements. If either of these external measurements is unavailable or invalid, the AHRS uses air data information for attitude determination. Four AHRS modes of operation are available and depend upon the combination of available sensor inputs. Loss of air data, GPS, or magnetometer sensor inputs is communicated to the pilot by message advisory alerts.

The AHRS corrects for shifts and variations in the Earth's magnetic field by applying the Magnetic Field Variation Database. The Magnetic Field Variation Database is derived from the International Geomagnetic Reference Field (IGRF). The IGRF is a mathematical model that describes the Earth's main magnetic field and its annual rate of change. The database is updated approximately every 5 years. See the Appendices for information on updating the Magnetic Field Variation Database. The system will prompt you on startup when an update is available. Failure to update this database could lead to erroneous heading information being displayed to the pilot.

Figure 1-7 AHRS Operation

GPS INPUT FAILURE

NOTE：In－flight initialization of AHRS，when operating without any valid source of GPS data and at true air speed values greater than approximately 200 knots，is not guaranteed．Under these rare conditions，it is possible for in－flight AHRS initialization to take an indefinite amount of time which would result in an extended period of time where valid AHRS outputs are unavailable．

The system provides two sources of GPS information．If a single GPS receiver fails，or if the information provided from one of the GPS receivers is unreliable，the AHRS seamlessly transitions to using the other GPS receiver．An alert message informs the pilot of the use of the backup GPS path．If both GPS inputs fail，the AHRS continues to operate in reversionary No－GPS mode so long as the air data and magnetometer inputs are available and valid．

AIR DATA INPUT FAILURE

A failure of the air data input has no effect on AHRS output while AHRS is operating in normal mode．A failure of the air data input while the AHRS is operating in reversionary No－GPS mode results in invalid attitude and heading information on the PFD（as indicated by red＂X＂flags）．

MAGNETOMETER FAILURE

If the magnetometer input fails，the AHRS transitions to one of the reversionary No－Magnetometer modes and continues to output valid attitude information．However，if the aircraft is airborne，the heading output on the PFD does become invalid（as indicated by a red＂X＂）．

GPS RECEIVER OPERATION

Each GIA 63W Integrated Avionics Unit (IAU) contains a GPS receiver. Information collected by the specified receiver (GPS1 for the \#1 IAU or GPS2 for the \#2 IAU) may be viewed on the Aux - GPS Status Page.

These GPS sensor annunciations are most often seen after system power-up when one GPS receiver has acquired satellites before the other, or one of the GPS receivers has not yet acquired a SBAS signal. While the aircraft is on the ground, the SBAS signal may be blocked by obstructions causing one GPS receiver to have difficulty acquiring a good signal. Also, while airborne, turning the aircraft may result in one of the GPS receivers temporarily losing the SBAS signal.

If the sensor annunciation persists, check for a system failure message in the Messages Window on the PFD. If no failure message exists, check the GPS Status Page and compare the information for GPS1 and GPS2. Discrepancies may indicate a problem.

Figure 1-8 GPS Status Page (RAIM or SBAS Selected)

The GPS Status Page provides the following information:

- Constellation

Satellites currently in view are shown at their respective positions on a sky view diagram．The sky view is always in a north－up orientation，with the outer circle representing the horizon，the inner circle representing 45° above the horizon，and the center point showing the position directly overhead．

Each satellite is represented by an oval containing the Pseudo－random noise（PRN）number（i．e．，satellite identification number）．Satellites whose signals are currently being used are represented by solid ovals．
－Satellite Status
This box provides information regarding signal status．The accuracy of the aircraft＇s GPS fix is calculated using Estimated Position Uncertainty（EPU），Dilution of Precision（DOP），and horizontal and vertical figures of merit（HFOM and VFOM）．EPU is the radius of a circle centered on an estimated horizontal position in which actual position has 95% probability of laying．EPU is a statistical error indication and not an actual error measurement．

DOP measures satellite geometry quality（i．e．，number of satellites received and where they are relative to each other）on a range from 0.0 to 9．9，with lower numbers denoting better accuracy．HFOM and VFOM， measures of horizontal and vertical position uncertainty，are the current 95% confidence horizontal and vertical accuracy values reported by the GPS receiver．
The current calculated GPS position，time，altitude，ground speed，and track for the aircraft are displayed below the satellite signal accuracy measurements．
－GPS Status
The GPS solution type（ACQUIRING，2D NAV，2D DIFF NAV，3D NAV，3D DIFF NAV）for the active GPS receiver（GPS1 or GPS2）is shown in the upper right of the GPS Status Page．When the receiver is in the process of acquiring enough satellite signals for navigation，the receiver uses satellite orbital data（collected continuously from the satellites）and last known position to determine the satellites that should be in view． ＇Acquiring＇is indicated as the solution until a sufficient number of satellites have been acquired for computing a solution．

When the receiver is in the process of acquiring a 3D differential GPS solution，3D NAV is indicated as the solution until the 3D differential fix has finished acquisition．SBAS（Satellite－Based Augmentation System） indicates＇Inactive＇．When acquisition is complete，the solution status indicates 3D DIFF NAV and SBAS indicates＇Active＇．

Viewing GPS receiver status information：

1）Use the large FMS Knob to select the Auxiliary Page Group（see Section 1.4 for information on navigating MFD page groups）．
2）Use the small FMS Knob to select GPS Status Page．
a) Turn the small FMS Knob counter-clockwise to display a list of flight plan waypoints (the FPL list is populated only when navigating a flight plan).
b) Turn the small FMS Knob clockwise to display the Flight Plan, Nearest, Recent, or User waypoints, if required.
c) Turn the large FMS Knob clockwise to select the desired waypoint. The system automatically fills in the identifier, facility, and city fields with the information for the selected waypoint.
d) Press the ENT Key to accept the waypoint entry.
6) Use the FMS Knob to enter an arrival time and press the ENT Key.
7) Use the FMS Knob to enter an arrival date and press the ENT Key.
8) With the cursor highlighting 'Compute RAIM?', press the ENT Key. Once RAIM availability is computed, one of the following is displayed:

- 'Compute RAIM?'—RAIM has not been computed for the current waypoint, time, and date combination
- 'Computing Availability'—RAIM calculation in progress
- 'RAIM Available'—RAIM is predicted to be available for the specified waypoint, time, and date
- 'RAIM not Available'—RAIM is predicted to be unavailable for the specified waypoint, time, and date

Predicting RAIM availability at present position:

1) Select the GPS Status Page.
2) If necessary, press the RAIM Softkey.
3) Press the FMS Knob. The 'Waypoint' field is highlighted.
4) Press the MENU Key.
5) With 'Set WPT to Present Position' highlighted, press the ENT Key.
6) Press the ENT Key to accept the waypoint entry.
7) Use the FMS Knob to enter an arrival time and press the ENT Key.
8) Use the FMS Knob to enter an arrival date and press the ENT Key.
9) With the cursor highlighting 'Compute RAIM?', press the ENT Key. Once RAIM availability is computed, one of the following is displayed:

- 'Compute RAIM?'—RAIM has not been computed for the current waypoint, time, and date combination
- 'Computing Availability'—RAIM calculation in progress
- 'RAIM Available'—RAIM is predicted to be available for the specified waypoint, time, and date
- 'RAIM not Available'—RAIM is predicted to be unavailable for the specified waypoint, time, and date

SBAS Selection (SBAS Softkey is selected)

In certain situations, such as when the aircraft is outside or on the fringe of the SBAS coverage area, it may be desirable to disable EGNOS, WAAS or MSAS (although it is not recommended). When disabled, the SBAS field in the GPS Status box indicates Disabled. There may be a small delay for the GPS Status box to be updated upon WAAS and MSAS enabling/disabling.

Disabling SBAS:

1) Select the GPS Status Page.
2) If necessary, press the SBAS Softkey.
3) Press the FMS Knob, and turn the large FMS Knob to highlight 'EGNOS', 'MSAS' or 'WAAS'.
4) Press the ENT Key to uncheck the box.
5) Press the FMS Knob to remove the cursor.

- GPS Satellite Signal Strengths

The GPS Status Page can be helpful in troubleshooting weak (or missing) signal levels due to poor satellite coverage or installation problems. As the GPS receiver locks onto satellites, a signal strength bar is displayed for each satellite in view, with the appropriate satellite PRN number (01-32 or 120-138 for WAAS) below each bar. The progress of satellite acquisition is shown in three stages, as indicated by signal bar appearance:

- No bar—Receiver is looking for the indicated satellite
- Hollow bar-Receiver has found the satellite and is collecting data
- Cyan bar-Receiver has collected the necessary data and the satellite signal can be used
- Green bar—Satellite is being used for the GPS solution
- Checkered bar—Receiver has excluded the satellite (Fault Detection and Exclusion)
- "D" indication—Denotes the satellite is being used as part of the differential computations

Each satellite has a 30-second data transmission that must be collected (signal strength bar is hollow) before the satellite may be used for navigation (signal strength bar becomes solid).

1.4 ACCESSING SYSTEM FUNCTIONALITY

SOFTKEY FUNCTION

Selection softkeys are located along the bottom of the displays. The softkeys shown depend on the softkey level previously selected. The bezel keys below the softkey labels can be used to press the appropriate softkey. There are three types of softkeys. One selects a simple on/off state, indicated by an annunciator on the softkey label displayed as green (on) or gray (off). The next type of soffkey selects among several options, indicated by the softkey label changing (with the exception of the Map Range keys) to reflect the name of the chosen option. The last type of softkey, when pressed displays another set of softkeys available for the selected function. Also, these softkeys revert to the previous level after 45 seconds of inactivity. When a softkey function is disabled, the softkey label is subdued (dimmed)

Figure 1-9 Softkeys (First-Level PFD Configuration)

PFD SOFTKEYS

The PFD softkeys provide control over the PFD display and some flight management functions, including GPS, NAV, terrain, traffic, and weather (optional). Each softkey sublevel has a Back Softkey which can be pressed to return to the previous level. If messages remain after acknowledgement, the Alerts Softkey is black on white. The Alerts Softkey is visible in all softkey levels. For the top level softkeys and the transponder (XPDR) levels, the Ident Softkey remains visible.

The following table describes PFD Softkey functions. Softkeys which display another set of softkeys are indicated in the table by showing the given set as an increased level. For example, the Map/HSI softkey is shown in the Level 1 column. When pressed, the Map/HSI softkey will display another set of softkeys and these softkeys are explained in the Level 2 column. If a softkey on Level 2 provides yet another set of softkey functions, those new available softkeys are then explained in the Level 3 column, etc.

Level 1	Level 2	Level 3	Level 4	Description
Map/HSI				Displays the PFD Map display settings softkeys.
	Layout			Displays the PFD Map selection softkeys.
		Map Off		Removes the PFD map from display.
		Inset Map		Displays the Inset Map.
		HSI Map		Displays the HSI Map.
		TFC Map		Replaces the PFD Map with a dedicated traffic display.
				Displays/removes the name of the selected data link weather provider (SiriusXM) and the weather product icon and age box (for enabled weather products).

Level 1	Level 2	Level 3	Level 4	Description
	Detail			Selects desired amount of map detail: All (No Declutter): All map features visible Detail 3: Declutters land data Detail 2: Declutters land and SUA data Detail 1: Removes everything except for the active flight plan
	Traffic			Displays traffic information on PFD Map.
	Topo			Displays topographical data (e.g., coastlines, terrain, rivers, lakes) and elevation scale on PFD Map.
	Rel Ter			Displays relative terrain information on the PFD Map.
	NEXRAD			Displays XM NEXRAD weather and coverage on PFD Map (subscription optional).
	METAR			Displays METAR information on PFD Map (subscription optional).
	Lightning			Adds/removes the display of SiriusXM lightning information on PFD Map.
		LTNG Off		Disables lightning function on PFD Map. The softkey annunciator is green when the lightning function is off.
		Datalink		Selects the data link weather source for the PFD Map.
		STRMSCP		Adds or removes the display of Stormscope information on the PFD Map. The softkey annunciator is green when the function is on. When the function is off, the annunciator is gray (optional).
TFC Map				Replaces the PFD Map with a dedicated traffic display.
PFD Opt				Displays second-level softkeys for additional PFD options.
	SVT			Displays additional SVT overlay softkeys.
		Pathways		Displays Pathway Boxes on the Synthetic Vision Display.
		Terrain		Enables synthetic terrain depiction.
		HDG LBL		Displays compass heading along the Zero-Pitch line.
		APT Sign		Displays position markers for airports within approximately 15 nm of the current aircraft position. Airport identifiers are displayed when the airport is within approximately 9 nm .
	Wind			Displays the wind option softkeys.
		Off		Wind information not displayed.
		Option 1		Headwind/Tailwind and crosswind components.
		Option 2		Wind direction arrow and speed.
		Option 3		Wind direction arrow with direction and speed.
	DME			Displays DME Information Window (optional).

Level 1	Level 2	Level 3	Level 4	Description
	Bearing 1			Cycles the Bearing 1 Information Window through NAV1, NAV2, GPS/ waypoint identifier and GPS-derived distance information, ADF/frequency, and Off.
	Bearing 2			Cycles the Bearing 2 Information Window through NAV1, NAV2, GPS/ waypoint identifier and GPS-derived distance information, ADF/frequency, and Off.
	ALT Units			Displays softkeys to select altitude unit parameters.
		Meters		When enabled, displays altimeter in meters.
		IN		Press to display the BARO setting as inches of mercury.
		HPA		Press to display the BARO setting as hectopacals.
	STD Baro			Sets barometric pressure to 29.92 in Hg (1013 hPa if metric units are selected).
OBS				Selects OBS mode on the CDI when navigating by GPS (only available with active leg). When OBS is on, the softkey annunciator is green.
CDI				Cycles through FMS, NAV1, and NAV2 navigation modes on the CDI.
DME				Displays the DME Tuning Window, allowing tuning and selection of the DME (optional).
XPDR				Displays the transponder selection softkeys.
	Standby			Selects transponder Standby Mode (transponder does not reply to any interrogations).
	On			Activates transponder (transponder replies to identification interrogations).
	ALT			Altitude Reporting Mode (transponder replies to identification and altitude interrogations).
	VFR			Automatically enters the VFR code (1200 in the U.S.A. only).
	Code			Displays transponder code selection softkeys 0-7.
		0-7		Use numbers to enter code.
		Ident		Activates the Special Position Identification (SPI) pulse for 18 seconds, identifying the transponder return on the ATC screen.
		BKSP		Removes numbers entered, one at a time.
	Ident			Activates the Special Position Identification (SPI) pulse for 18 seconds, identifying the transponder return on the ATC screen.
Ident				Activates the Special Position Identification (SPI) pulse for 18 seconds, identifying the transponder return on the ATC screen.
Tmr/Ref				Displays Timer/References Window.
Nearest				Displays Nearest Airports Window.

Table 1-2 PFD Softkeys

MFD SOFTKEYS

The MFD softkeys provide control over flight management functions, including GPS, NAV, terrain, traffic, and weather (optional). There are many softkey functions available on the MFD depending on the page group and screen selected.

The following table provides an example of the MFD Softkey functions accessed from the Navigation Map screen. Further information concerning softkeys providing more navigation and flight planning functions may be found in the Flight Management Section. Terrain, traffic, and weather softkey descriptions may be found in the Hazard Avoidance section. Further description of optional equipment and corresponding softkey functions may be found in the Additional Features Section.

Level 1	Level 2	Level 3	Description
Engine			Displays EIS - Engine Page and second-level engine softkeys; select again to exit page (see the EIS Section for more information).
	Engine		Displays second-level softkeys for additional EIS configuration.
	Lean		Displays default EIS display.
		CYL SLCT	Displays EIS lean display.
		Assist	Allows selection of engine cylinder to view additional information.
	System		Enables/disables leaning assist mode.
		DEC Fuel	Decreases calculated fuel remaining by 1 gallon for each softkey press.
		INC Fuel	Increases calculated fuel remaining by 1 gallon for each softkey press.
		RST Fuel	Resets calculated fuel remaining to default and resets fuel used to zero.
Map Opt			Displays system oil pressure and temperature, fuel calculations, and electrical system information.
	Traffic		Displays traffic information on Navigation Map Page.
	Inset		Displays inset window second level softkeys.
		Off	Removes VSD inset from Navigation Map Page.
		VSD	Displays VSD profile information of terrain/obstacles along the current track, vertical track vector, and selected altitude. Auto: Automatically displays either VSD profile information for active flight plan information or along current track with no active flight plan. FPL: Displays VSD profile information for active flight plan. TRK: Displays VSD profile information along current track.

Level 1	Level 2	Level 3	Description
	TER		Displays terrain on the map；cycles through the following： Off：No terrain information shown on MFD Map． Topo：Displays topographical data（e．g．，coastlines，terrain，rivers， lakes）and elevation scale on MFD Map． REL：Displays relative terrain information on the MFD Map．
	AWY		Displays airways on the map；cycles through the following： Off：No airways are displayed． On：All airways are displayed． LO：Only low altitude airways are displayed． HI：Only high altitude airways are displayed．
	STRMSCP		Displays Stormscope information on Navigation Map（optional）．
	NEXRAD		Displays XM NEXRAD weather and coverage on Navigation Map Page （optional）．
	XM LTNG		Displays XM lightning information on Navigation Map Page（optional）．
	METAR		Displays METAR information on Inset Map（subscription optional）．
	Legend		Displays legends for the displayed XM Weather products（optional）．
Detail			Selects desired amount of map detail；cycles through the following levels： Detail All：All map features visible． Detail－3：Declutters land data． Detail－2：Declutters land and SUA data． Detail－1：Removes everything except for the active flight plan．
Charts			When available，displays optional airport and terminal procedure charts．
	CHRT Opt		Displays chart display settings softkeys（if available）．
	Show Map		Displays the WPT－Airport Information page．
	Info		Pressing the Info 1 or Info 2 Softkey returns to the airport diagram when the view is on a different chart．
	DP		Displays departure procedure chart．
	STAR		Displays standard terminal arrival procedure chart．
	APR		Displays approach procedure chart．
	WX		Displays weather information．
	NOTAM		Displays NOTAM information for selected airport，when available．
Checklist			When available，displays optional checklists

MENUS
The system has a MENU Key that, when pressed, displays a context-sensitive list of options. This options list allows the user to access additional features or make settings changes which specifically relate to the currently displayed window/page. There is no all-encompassing menu. Some menus provide access to additional submenus that are used to view, edit, select, and review options. Menus display 'No Options' when there are no options for the window/page selected. The main controls used in association with all window/page group operations are described in Section 1.2. Softkey selection does not display menus or submenus.

Navigating the Page Menu Window:

1) Press the MENU Key to display the Page Menu Window.
2) Turn the FMS Knob to scroll through a list of available options (a scroll bar appears to the right of the window when the option list is longer than the window).
3) Press the ENT Key to select the desired option.
4) The CLR Key may be pressed to remove the menu and cancel the operation. Pressing the FMS Knob also removes the displayed menu.

Figure 1-10 Page Menu Examples

MFD PAGE GROUPS

NOTE：Refer to other supporting sections in this Pilot＇s Guide for details on specific pages．
Information on the MFD is presented on pages grouped according to function．The page group and active page title are displayed in the upper center of the screen，below the Navigation Status Box．In the bottom right corner of the screen，a page group window is displayed by turning either FMS Knob．The page group tabs are displayed along the bottom of the window．The page titles are displayed in a list above the page group tabs．The current page group and current page within the group are shown in cyan．For some of these pages（Airport／ Procedures／Weather Information，XM，Procedure Loading），the active title of the page changes while the page name in the list remains the same．

Figure 1－11 Page Title and Page Groups
The main page groups are navigated using the FMS Knob；specific pages within each group can vary depending on the configuration of optional equipment．

Selecting a page using the FMS Knob：

1）Turn the large FMS Knob to display the list of page groups；continue turning the large FMS Knob until the desired page group is selected
2）Turn the small FMS Knob to display the desired page within a specific page group．
There are also several pages（Airport Information／Procedures／Weather Information and XM pages）selected first from within a main page group with the FMS Knob，then with the appropriate softkey at the bottom of the page（or from the page menu）．In this case，the page remains set to the selected page until a different page softkey is pressed，even if a different page group is selected．

Page Group	Pages within Page Group
MAP (Map Page Group)	- Navigation Map - IFR/VFR Charts - Traffic Map - Stormscope - Weather Data Link (service optional) - Terrain/ TAWS-B
WPT (Waypoint Page Group)	- Airport/Procedures/Weather Information Pages - Airport Information (Info $\mathbf{1}$ Softkey) - Airport Directory Information (Info 2 Softkey) - Departure Information (DP Softkey) - Arrival Information (STAR Softkey) - Approach Information (APR Softkey) - Weather Information (optional) (WX Softkey) - Intersection Information - NDB Information - VOR Information - VRP Information - User Waypoint Information
Aux (Auxiliary Page Group)	- Trip Planning - Utility - GPS Status - System Setup 1/2 - XM Radio Pages - XM Information (Info Softkey) - XM Radio (Radio Softkey) - System Status - ADS-B Status - Connext Setup - Databases

Page Group	Pages within Page Group
FPL (Flight Plan Page Group)	• Active Flight Plan
	- Wide View, Narrow View (View Softkey)
	• Flight Plan Catalog
	- Stored Flight Plan (via New Softkey)
	- SurfaceWatch Setup (optional)
NRST (Nearest Page Group)	• Nearest Airports
	• Nearest Intersections
	• Nearest NDB
	• Nearest VOR
	• Nearest VRP
	• Nearest User WPTS
	• Nearest Frequencies
	• Nearest Airspaces

Table 1-4 Page Group and Pages

PROCEDURE PAGES (PROC)

The Procedure Pages may be accessed at any time on the MFD by pressing the PROC Key. A menu is initialized, and when a departure, approach, or arrival is selected, the appropriate Procedure Loading Page is opened. Turning the FMS Knob does not scroll through the Procedure pages

- Departure Loading
- Arrival Loading
- Approach Loading

SYSTEM SETTINGS

System settings are managed from the System Setup Pages. The System Setup pages allow management of the crew profiles. Also, fields shown in cyan text may be edited for following system parameters:

- Time display format (local or UTC)
- Displayed measurement units
- Barometric Transition Alert
(see the Flight Instruments Section)
- Airspace alerts
(see the Flight Management Section)
- Arrival alert
- SurfaceWatch Alerts (optional) (see the Additional Features Section)
- Flight Director Format (Single Cue Only - can not edit) (see the Flight Instruments Section)
- MFD Data Bar (Navigation Status Box) fields (see the Flight Management Section)
- GPS Course Deviation Indicator (CDI) range (see the Flight Instruments Section)
- COM transceiver channel spacing (see the Audio Panel and CNS Section)
- Displayed nearest airports
(see the Flight Management Section)
- Audio Voice Format

Restoring system setup defaults:

1) Select the Aux - System Setup 1 or 2 Page.
2) Press the Defaults Softkey; or press the MENU Key, highlight 'Restore Page Defaults', and press the ENT Key. The message 'Restore Setup X Page Defaults?' is displayed.
3) With 'OK' highlighted, press the ENT Key.

Figure 1－12 System Setup 1／2 Pages

CREW PROFILES

System settings may be saved under a crew profile. When the system is powered on, the last selected crew profile is shown on the MFD Power-up Splash Screen (Figure 1-8). The system can store up to 25 profiles; the currently active profile, the amount of memory used, and the amount of memory available are shown at the top of the System Setup Page in the box labeled 'Crew Profile'. From here, crew profiles may be created, selected, renamed, or deleted. Crew profiles may also be exported from the system to an SD card, or imported from an SD card into the system.

Creating a profile:

1) Select the Aux - System Setup 1 or 2 Page.
2) Press the FMS Knob momentarily to activate the flashing cursor.
3) Turn the large FMS Knob to highlight 'Create' in the Crew Profile Box.
4) Press the ENT Key. A 'Create Profile' window is displayed.
5) Use the FMS Knob to enter a profile name up to 16 characters long and press the ENT Key. Crew profile names cannot begin with a blank as the first letter.
6) In the next field, use the small FMS Knob to select the desired settings upon which to base the new profile. Profiles can be created based on Garmin factory defaults, default profile settings (initially based on Garmin factory defaults unless edited by the pilot), or other previously created profile settings.
7) Press the ENT Key.
8) With 'Create' highlighted, press the ENT Key to create the profile

Or:
Use the large FMS Knob to select 'Create \& Activate' and press the ENT Key to activate the new profile.
9) To cancel the process, select 'Cancel' with the large FMS Knob and press the ENT Key.

Selecting an active profile:

1) Select the Aux - System Setup Page.
2) Press the FMS Knob momentarily to activate the flashing cursor.
3) Turn the large FMS Knob to highlight the active profile field in the Crew Profile Box.
4) Turn the small FMS Knob to display the crew profile list and highlight the desired profile.
5) Press the ENT Key. The system loads and displays the system settings for the selected profile.

Renaming a profile:

1) Select the Aux - System Setup Page.
2) Press the FMS Knob momentarily to activate the flashing cursor.
3) Turn the large FMS Knob to highlight 'Rename' in the Crew Profile Box.
4) Press the ENT Key.

Crew Profile Importing and Import Results Window

Crew Profiles Available for Import from SD Card

Import Successful

Figure 1-15 Pilot Profile Import (Aux - System Setup Page)

Exporting a profile to an SD card:

1) Insert the SD card for storing the Crew Profile into the top card slot on the MFD.
2) Turn the FMS Knob to select the Aux - System Setup Page.
3) Press the Export Softkey. The system displays the Crew Profile Exporting window.

Or:
a) Press the MENU Key.
b) Turn the FMS Knob to highlight 'Export Crew Profile' and press the ENT Key.
4) To export the crew profile using the current selected profile, press the ENT Key with 'Export' highlighted. To change the selected profile, turn the large FMS Knob to highlight the 'Profile Name' field, then scroll to the desired profile name with the large and small FMS Knobs, then press the ENT Key. Then press the ENT Key with 'Export' highlighted.
5) If the selected profile to be exported is the same as an existing profile file name on the SD card, the system displays an 'Overwrite existing profile? OK or CANCEL' prompt. Press the ENT Key to replace the profile on the SD card with the profile to be exported, or turn the FMS Knob to highlight 'CANCEL' and press the ENT Key to return to the Pilot Profile Exporting window without exporting the profile.
6) If successful, the window displays 'Crew profile export succeeded.' With 'OK' highlighted, press the ENT or CLR Keys, or press the FMS Knob to return to the Aux - System Setup Page.

Crew Profile Exporting Window, Enter a Name to Use for Exported Profile

Export Successful

Figure 1-16 Pilot Profile Export on the Aux - System Setup Page

DISPLAY UNITS

Units in which various quantities are displayed on the system screens are listed on the System Setup Page. The Navigation Angle reference, the Temperature units, and the Position units can be set from here.

Category	Settings	Affected Quantities	Exceptions
Navigation Angle	Magnetic (North)* True (North)	Heading Course Bearing Track Desired Track Wind direction (Trip Planning Page)	
Distance and Speed	Metric Nautica\|*	Crosstrack error (HSI) Bearing distances (information windows) DME distance (information window) Flight plan distances Map ranges DIS, GS, TAS, XTK fields (Navigation Status Box) All distances on MFD Altitude buffer distance (System Setup) Arrival Alert trigger distance (System Setup) All speeds on MFD	Airspeed Indicator True Airspeed (PFD) Wind speed vector Map range (Traffic Page, Terrain Proximity/TAWS Page) CDI scaling (System Setup) Fuel range calculation (EIS)
Altitude and Vertical Speed	Feet* Meters	All altitudes on MFD All elevations on MFD	Altimeter Vertical Speed Indicator VNV altitudes (Active Flight Plan)
Temperature	Celsius* Fahrenheit	All temperatures on PFD Total Air Temperature (Trip Planning Page)	Engine Indication System (EIS)
Fuel and Fuel Flow***	Gallons	Fuel parameters (Trip Planning Page)	Engine Indication System (EIS)
Weigh**	Pounds* Kilograms	N/A	N/A
Position	HDDDMM.MM'* HDDDMM'SS.S"	All positions	N/A

[^0]
Table 1-5 Display Units Settings (System Setup Page)

Changing a display unit setting:

1) While on the System Setup 1 Page, press the FMS Knob momentarily to activate the flashing cursor.
2) Turn the large FMS Knob to highlight the desired field in the Display Units Box.
3) Turn the small FMS Knob to select the desired units.
4) Press the ENT Key. Press the CLR Key to cancel the action without changing the units.

ARRIVAL ALERTS

The Arrival Alert Box on the System Setup 1 Page allows the Alerts Window arrival alerts to be turned＇On／ Off＇and the alert trigger distance（up to 99.9 units）set for alerts in the Alerts Window and the PFD Navigation Status Box．An arrival alert can be set to notify the pilot with a message upon reaching a user－specified distance from the final destination（the direct－to waypoint or the last waypoint in a flight plan）．When Arrival Alerts is set to＇On＇，and the set distance is reached，an＂Arrival at waypoint＂message is displayed in the PFD Navigation Status Box，and a＂WPT ARRIVAL－Arriving at waypoint－［xxxx］＂is displayed in the Alerts Window．When Arrival Alerts is set to＇Off＇，only the PFD Navigation Status Box message＂Arriving at waypoint＂is displayed，and it is displayed when the time to the final destination is approximately ten seconds．

Figure 1－17 Arrival Alert Settings（System Setup 1 Page）

Enabling／disabling the Alerts Window arrival alert：

1）Use the FMS Knob to select the Aux－System Setup 1 Page．
2）Press the FMS Knob momentarily to activate the flashing cursor．
3）Turn the large FMS Knob to select the＇On／Off＇field in the Arrival Alert Box．
4）Turn the small FMS Knob clockwise to turn the airspace alert On or counterclockwise to turn the alert Off．

Changing the arrival alert trigger distance：

1）Use the FMS Knob to select the Aux－System Setup 1 Page．
2）Press the FMS Knob momentarily to activate the flashing cursor．
3）Turn the large FMS Knob to highlight the distance field in the Arrival Alert Box．
4）Use the FMS Knob to enter a trigger distance and press the ENT Key．

AUDIO ALERTS

The Audio Box on the System Setup 2 Page allows the audio alert voice setting（male or female）．

Changing the audio alert voice：

1）Use the FMS Knob to select the Aux－System Setup 2 Page．
2）Press the FMS Knob momentarily to activate the flashing cursor．
3）Turn the large FMS Knob to highlight the voice field in the Audio Box．
4）Use the FMS Knob to select the desired voice setting and press the ENT Key．

SYSTEM UTILITIES

For flight planning purposes, timers, trip statistics, and a scheduler feature are provided on the Aux - Utility Page. The timers available include a stopwatch-like generic timer, a total time in flight timer, and a record of the time of departure. Trip statistics-odometer, trip odometer, and average trip and maximum groundspeeds-are displayed from the time of the last reset.

Figure 1-18 Utility Page

TIMERS

The system timers available on the Aux - Utility Page include:

- Stopwatch-like generic timers
- Total-time-in-flight timer
- Time since departure

The generic timer can be set to count up or down from a specified time (HH:MM:SS). When the countdown on the timer reaches zero the digits begin to count up from zero. If the timer is reset before reaching zero on a countdown, the digits are reset to the initial value. If the timer is counting up when reset, the digits return to zero.

Setting the generic timer:

1) Use the FMS Knob to select the Aux - Utility Page.
2) Press the FMS Knob momentarily to activate the flashing cursor.
3) Turn the small FMS Knob to select the timer counting direction (Up/Dn) and press the ENT Key.
4) If a desired starting time is desired:
a) Use the large FMS Knob to highlight the $\mathrm{HH}: \mathrm{MM}: S S$ field.
b) Use the FMS Knob to enter the desired time and press the ENT Key.
5) Turn the large FMS Knob to highlight 'Start?' and press the ENT Key to start the timer. The field changes to 'Stop?'.
6) To stop the timer, press the ENT Key with 'Stop?' highlighted. The field changes to 'Reset?'.
7) To reset the timer, press the ENT Key with 'Reset?' highlighted. The field changes back to 'Start?' and the digits are reset.

The flight timer can be set to count up from zero starting at system power-up or from the time that the aircraft lifts off; the timer can also be reset to zero at any time.

Setting the flight timer starting criterion:

1) Use the FMS Knob to select the Aux - Utility Page.
2) Press the FMS Knob momentarily to activate the flashing cursor.
3) Turn the large FMS Knob to highlight the field next to the flight timer.
4) Turn the small FMS Knob to select the starting criterion (Pwr-On or In-Air) and press the ENT Key.

Resetting the flight timer:

1) Use the FMS Knob to select the Aux - Utility Page.
2) Press the MENU Key.
3) With 'Reset Flight Timer' highlighted, press the ENT Key.

SCHEDULER

The system＇s Scheduler feature can be used to enter and display reminder messages（e．g．，＂Change oil＂， ＂Switch fuel tanks＂，＂Overhaul＂）in the Alerts Window on the PFD．Messages can be set to display based on a specific date and time（event），once the message timer reaches zero（one－time；default setting），or recurrently whenever the message timer reaches zero（periodic）．Message timers set to periodic alerting automatically reset to the original timer value once the message is displayed．When power is cycled，messages are retained until deleted，and message timer countdown is restarted．

Entering a scheduler message：

1）Select the Aux－Utility Page．
2）Press the FMS Knob momentarily to activate the flashing cursor．
3）Turn the large FMS Knob to highlight the first empty scheduler message naming field．
4）Use the FMS Knob to enter the message text to be displayed in the Alerts Window and press the ENT Key．
5）Press the ENT Key again or use the large FMS Knob to move the cursor to the field next to＇Type＇．
6）Turn the small FMS Knob to select set the message alert type：
－Event—Message issued at the specified date／time
－One－time—Message issued when the message timer reaches zero（default setting）
－Periodic—Message issued each time the message timer reaches zero
7）Press the ENT Key again or use the large FMS Knob to move the cursor to the next field．
8）For periodic and one－time message，use the FMS Knob to enter the timer value（HHH：MM：SS）from which to countdown and press the ENT Key．
9）For event－based messages：
a）Use the FMS Knob to enter the desired date（DD－MMM－YYY）and press the ENT Key．
b）Press the ENT Key again or use the large FMS Knob to move the cursor to the next field．
c）Use the FMS Knob to enter the desired time（HH：MM）and press the ENT Key．
10）Press the ENT Key again or use the large FMS Knob to move the cursor to enter the next message．

1．5 DISPLAY BACKLIGHTING

The PFD and MFD display backlighting，the PFD and MFD bezel，and the Audio Panel keys can be adjusted manually in one of two ways：
－Using the individual dimmer bus control for the desired display，or
－Using the PFD Setup Menu and the following procedures．In normal operating mode，backlighting can only be adjusted from the PFD．In reversionary mode，adjustments can be made from any remaining displays．

Adjusting display backlighting：

1）Press the PFD MENU Key to display the PFD Setup Menu．＇Auto＇is now highlighted next to＇PFD Display＇．If desired，turn the large FMS Knob to select＇Auto＇next to＇MFD Display＇．
2）Turn the small FMS Knob to select＇Manual＇and press the ENT Key．The intensity value is now highlighted．
3）Use the FMS Knob to enter the desired backlighting then press the ENT Key．
4）To remove the menu，press the CLR or MENU Key．

Adjusting key backlighting：

1）Press the PFD MENU Key to display the PFD Setup Menu．＇Auto＇is now highlighted next to＇PFD Display＇．
2）Turn the large FMS Knob to highlight＇PFD Display＇or＇MFD Display＇，as desired．
3）Turn the small FMS Knob in the direction of the green arrowhead to display＇PFD Key＇or＇MFD Key＇．
4）Turn the large FMS Knob to highlight＇AUTO＇．
5）Turn the small FMS Knob to select＇Manual＇and press the ENT Key．The intensity value is now highlighted．
6）Use the FMS Knob to enter the desired backlighting and press the ENT Key．
7）To remove the menu，press the CLR or MENU Key．

Blank Page

SECTION 2 FLIGHT INSTRUMENTS

NOTE：The Automatic Flight Control System（AFCS）provides additional readouts and bugs on selected flight instruments．Refer to the AFCS Section for details on these bugs and readouts，as they appear on the display during certain AFCS flight director modes．

The system includes an easy－to－scan Primary Flight Display（PFD）that features a large horizon，airspeed，attitude， altitude，vertical speed，and course deviation information．In addition to the flight instruments，navigation， communication，terrain，traffic，and weather information are also presented on the PFD and explained in other sections of this Pilot＇s Guide．

The following flight instruments and supplemental flight data are displayed on the PFD：
－Airspeed Indicator，showing
－Indicated Airspeed
－True Airspeed
－Ground Speed
－Airspeed awareness ranges
－Vspeed reference bugs
－Attitude Indicator with slip／skid indication
－Altimeter，showing
－Trend vector
－Barometric setting
－Selected altitude
－Vertical Deviation，Glideslope，and Glidepath Indicators
－Vertical Speed Indicator（VSI）
－Vertical Navigation（VNV）indications
－Outside air temperature（OAT）
－ISA temperature deviation
－Horizontal Situation Indicator，showing
－Turn Rate Indicator
－Bearing pointers and information windows
－Navigation source
－Course Deviation Indicator（CDI）
－DME Information Window（optional）
－DME Tuning Window
－Transponder Mode，Code，and Ident／Reply
－References Window，showing
－Generic timer
－Vspeed values
－Barometric or temperature compensated minimum descent altitude（MDA）or decision height（DH）
－Wind data

The PFD also displays various alerts and annunciations．

Figure 2－2 Additional PFD Information

2.1 FLIGHT INSTRUMENTS

AIRSPEED INDICATOR

NOTE: Refer to the AFM/POH for airspeed criteria and Vspeed values.

The Airspeed Indicator displays airspeed on a moving tape rolling number gauge. The numeric labels and major tick marks on the moving tape are shown at intervals of 10 knots. The minor tick marks on the moving tape are shown at intervals of 5 knots. Speed indication starts at 20 knots, with 40 knots of airspeed viewable at any time. The indicated airspeed is displayed inside the black pointer. The pointer remains black until reaching never exceed speed $\left(\mathrm{V}_{\mathrm{NE}}\right)$, then it becomes red. The true airspeed is displayed in knots below the Airspeed Indicator. The ground speed is displayed to the left of the true airspeed.

Figure 2-4 Red Pointer Showing Airspeed Above $V_{\text {NE }}$

Figure 2-3 Airspeed Indicator

A color-coded (red, white, green, amber) speed range strip is located on the moving tape. The colors denote flaps operating range, normal operating range, caution range, and never-exceed speed $\left(\mathrm{V}_{\mathrm{NE}}\right)$. Speeds above the never-exceed speed $\left(\mathrm{V}_{\mathrm{NE}}\right)$, appear in the high speed warning range, represented on the airspeed tape by red/ white "barber pole" coloration.
A red low speed awareness range extends up to the low speed awareness velocity, $\mathrm{V}_{\text {LSA }}$. An aural stall warning is generated as the aircraft approaches a stall condition.
The Airspeed Trend Vector is a vertical magenta line that appears to the right of the color-coded speed range strip when airspeed is either accelerating or decelerating. One end of the magenta line is anchored to the tip of the airspeed pointer while the other end moves continuously up or down corresponding to the rate of acceleration or deceleration. For any constant rate of acceleration or deceleration, the moving end of the line
shows approximately what the indicated airspeed value will be in six seconds．If the trend vector crosses V_{NE} ， the number in the indicated airspeed pointer changes to amber．The trend vector is absent if the speed remains constant or if any data needed to calculate airspeed is not available due to a system failure．
Black reference bugs with cyan letters appear along the right side of the airspeed scale denote GLIDE， V_{X} ，and V_{Y} ．The pilot can enable／disable the display of these bugs，as well as change their values．When the indicated airspeed is below 20 knots，enabled Vspeeds Reference Bugs and their numeric values appear in a list at the bottom of the airspeed tape，ordered from highest to lowest．

Table 2－1 Vspeed Bug Labels

Figure 2－5 VSpeed References

Enabling／disabling or modifying individual Vspeed Reference Bugs：

1）Press the Tmr／Ref Softkey．
2）Turn the large FMS Knob to highlight the desired Vspeed value．
3）Use the small FMS Knob to change the Vspeed in 1 －kt increments（when a speed has been changed from a default value，an asterisk appears next to the speed）．

4）Press the ENT Key or turn the large FMS Knob to highlight the On／Off field
5）Turn the small FMS Knob clockwise to On or counterclockwise to Off．
6）To remove the window，press the CLR Key or the Tmr／Ref Softkey．

References Window

References Window Menu

Figure 2－6 References Window and Menu

The pilot can also enable/disable all Vspeed Reference Bugs as a group.

Enabling/disabling Vspeed Reference Bugs as a group:

1) Press the Tmr/Ref Softkey.
2) Press the MENU Key.
3) Turn the FMS Knob to scroll as needed to highlight the desired selection.
4) Press the ENT Key.
5) To remove the References Window, press the CLR Key or the Tmr/Ref Softkey.

A solid white triangle represents the first notch of flaps speed. This reference is always enabled and its value cannot be changed by the pilot.

Figure 2-7 First Notch of Flaps Speed

ATTITUDE INDICATOR

Attitude information is displayed over a virtual blue sky and brown ground with a white horizon line. The Attitude Indicator displays the pitch, roll, and slip/skid information.

Figure 2-8 Attitude Indicator

The horizon line is part of the pitch scale. Above and below the horizon line, major pitch marks and numeric labels are shown for every 10°, up to 90°. Minor pitch marks are shown for intervening 5° increments, up to 25° below and 45° above the horizon line. Between 20° below to 20° above the horizon line, minor pitch marks
occur every 2.5° ．When the Garmin Synthetic Vision System（Garmin SVT ${ }^{\text {TM }}$ ）is activated，the pitch scale is reduced to 10° up and 7.5° down；refer to the Additional Features section for more information about Synthetic Vision．

The inverted white triangle indicates zero on the roll scale．Major tick marks at 30° and 60° and minor tick marks at $10^{\circ}, 20^{\circ}$ ，and 45° are shown to the left and right of the zero．Angle of bank is indicated by the position of the pointer on the roll scale．

The Slip／Skid Indicator is the bar beneath the roll pointer．The indicator bar moves with the roll pointer and moves laterally away from the pointer to indicate uncoordinated flight．Slip（inside the turn）or skid（outside the turn）is indicated by the location of the bar relative to the pointer．

Figure 2－9 Slip／Skid Indication

ALTIMETER

The Altimeter displays 600 feet of barometric altitude values at a time on a moving tape rolling number gauge． Numeric labels and major tick marks are shown at intervals of 100 feet．Minor tick marks are at intervals of 20 feet．The indicated altitude is displayed inside the black pointer．
The Selected Altitude is displayed above the Altimeter in the box indicated by a selection bug symbol．A bug corresponding to this altitude is shown on the tape．If the Selected Altitude exceeds the range shown on the tape，the bug appears at the upper or lower edge of the tape．When the metric value is selected it is displayed in a separate box above the Selected Altitude．

A magenta Altitude Trend Vector extends up or down the left of the altitude tape，the end resting at the approximate altitude to be reached in six seconds at the current vertical speed．The trend vector is not shown if altitude remains constant or if data needed for calculation is not available due to a system failure．

Setting the Selected Altitude：

Turn the ALT Knob to set the Selected Altitude．Turn the large knob for $1000-\mathrm{ft}$ increments，small knob for 100 －ft increments．If the Metric overlays are enabled，the large knob adjusts the Selected Altitude in 500－meter increments；the small knob adjusts the Selected Altitude in 50－meter increments．．
If a Minimum Descent Altitude／Decision Height（MDA／DH）value has been set，this altitude is also available for the Selected Altitude．

STD BARO

Figure 2－11 Standard Barometric Setting

Changing altimeter barometric pressure setting units：

1）Press the PFD Opt Softkey to display the second－level softkeys．
2）Press the ALT Units Softkey．
3）Press the IN Softkey to display the barometric pressure setting in inches of mercury（in Hg ）．
Or，press the HPA Softkey to display the barometric pressure setting in hectopascals（hPa）．
4）Press the Back Softkey twice to return to the top－level softkeys．
The Baro Transition Alerts flash the barometric pressure setting to remind the pilot to change the barometric pressure setting to or from standard．Two alerts are available．The altitude Baro Transition Alert occurs when climbing through the transition altitude beginning at 200 feet below this altitude．The flight level Baro Transition Alert occurs when descending through the transition flight level beginning at 200 feet above this flight level． The barometric pressure setting stops flashing after the pilot changes the barometric pressure setting．The pilot can enable／disable either Baro Transition Alert，and choose the altitude or flight level used to trigger the alerts．

Setting the Baro Transition Alerts：

1）Use the FMS Knob to select the Aux－System Setup 1 Page on the MFD．
2）Press the FMS Knob to activate the cursor．
3）To enable／disable the Baro Transition Alert based on altitude，turn the large FMS Knob to highlight the＇On＇or ＇Off＇field for the BARO Transition Alert Altitude in the BARO Transition Alert Box．

4）If desired，turn the small FMS Knob to set the BARO Transition Alert Altitude On or Off．
5）Turn the large FMS Knob to highlight the Altitude field．
6）Use the FMS Knobs to change the altitude and press the ENT Key to accept or press the CLR Key to return to the previous altitude selection．

7）Turn the large FMS Knob to highlight the＇On＇or＇Off＇field for the BARO Transition Alert Level．
8）If desired，turn the small FMS Knob to set the BARO Transition Alert Flight Level On or Off．
9）Turn the large FMS Knob to highlight the Flight Level field．
10）Use the FMS Knobs to change the Flight Level for the alert and press the ENT Key to accept or press the CLR Key to return to the previous altitude selection．
11）Push the FMS Knob to deactivate the cursor．

VERTICAL SPEED INDICATOR (VSI)

Δ
 NOTE: The Glidepath Indicator is only available on GPS approaches supporting SBAS vertical guidance when SBAS is available.

The Glidepath Indicator is a vertical deviation scale for GPS approach service levels supporting SBAS vertical guidance (LVNAV, LPV) or advisory vertical guidance (LNAV+V, LP+V, Visual). The Glidepath Indicator, a magenta diamond (Figure 2-14) appears on the display as soon as the Final Approach Fix (FAF) becomes the active waypoint, and GPS is the selected navigation source. Full-scale deflection (two dots) is angular with upper and lower limits. The upper limit is $+/-492$ feet (150 meters) and lower limit depends on approach service level as follows:

- LNAV/VNAV, LNAV+V, LP+V, Visual is +/- 148 feet (45 meters).
- LPV is +/- 49 feet (15 meters).

If the approach downgrades past the final approach fix (FAF), "NO GP" is displayed in place of the diamond.
nOTE: The Glidepath Indicator appears on the display as soon as the Final Approach Fix (FAF) becomes the active waypoint. Depending on procedure design, pilot action, and/or ATC clearance, the aircraft may be centered on or above the glidepath when the Glidepath Indicator appears.

While executing an SBAS approach with an LNAV/VNAV approach service level, and between the FAF and MAP, the Vertical Deviation Limit Indicators appear as vertical white lines (Figure 2-15) indicating the area where deviation exceeds allowable limits for the glidepath. The Vertical Deviation Limit Indicator provides a scaled representation of $+/-75$ feet of the calculated glidepath. The "window" between the lines represents the area of acceptable deviation. The length of the lines change while progressing through the final approach. When the Glidepath Indicator enters an excessive deviation area, the Glidepath and Vertical Deviation Limit Indicators become amber.

Figure 2-14 Glidepath Indicator

Figure 2-15 Glidepath Indicator and Vertical Deviation Limit Indicators

HORIZONTAL SITUATION INDICATOR (HSI)

The Horizontal Situation Indicator (HSI) displays a rotating compass card in a heading-up orientation. Letters indicate the cardinal points with numeric labels every 30°. Major tick marks are at 10° intervals and minor tick marks are at 5° intervals. A digital reading of the current heading appears on top of the HSI. The HSI also presents turn rate, course deviation, bearing, and selected navigation source information. The HSI is available in two formats: a 360° compass rose and a 210° HSI Map. The HSI Map is mutually exclusive with the Inset Maps.

Enabling/disabling the HSI Map on the PFD:

1) Press the Map/HSI Softkey.
2) Press the Layout Softkey.
3) Press the HSI Map Softkey to enable the HSI Map.

Or:
Press the Map Off Softkey to disable the HSI Map.
The HSI with the HSI map disabled presents a Course Deviation Indicator (CDI) with a Course Pointer, To/ From Indicator, and a sliding deviation bar and scale. The Course Pointer is a single line arrow (GPS, VOR1, and LOC) or a double line arrow (VOR2 and LOC2) which points in the direction of the set course. The To/ From Indicator rotates with the Course Pointer and appears when the system is receiving the active NAVAID.

Figure 2-16 Horizontal Situation Indicator ($360^{\circ} \mathrm{HSI}$)

The HSI Map is a 210° expanded compass rose which also includes a navigation map with overlay capabilities such as topographical，weather，and land information．The HSI Map contains a Course Pointer，a combined To／ From Indicator with a sliding deviation indicator，and a lateral deviation scale．Upon passing a station，the To／ From Indicator points to the tail of the aircraft．Depending on the navigation source，the CDI on the HSI Map can appear either as an arrowhead（GPS，VOR，OBS）as a diamond（LOC）．Refer to the Flight Management Section for information about using HSI Map overlays．

Figure 2－17 HSI Map a conventional To／From flag．Depending on the navigation source，the CDI on the can appear in two different ways：an arrowhead（GPS，VOR，OBS）or a diamond（LOC）．

Adjusting the Selected Heading：

Turn the HDG Knob to set the Selected Heading．
Press the HDG Knob to synchronize the bug to the current heading．

Adjusting the Selected Course：

Turn the CRS Knob to set the Selected Course．
Press the CRS Knob to re－center the CDI and return the course pointer to the bearing of the active waypoint or navigation station．

Figure 2-18 Heading and Course Indications

Navigation angles (track, heading, course, bearing) are corrected to the computed magnetic variation ('Mag Var') or referenced to true north (denoted ' T '), set on the Aux - System Setup 1 Page. When an approach referenced to true north has been loaded into the flight plan, the system generates a message to change the navigation angle setting to 'True' at the appropriate time.

Figure 2-19 Heading and Course Indications (True)

Changing the navigation angle true/magnetic setting:

1) Use the FMS Knob to select the Aux - System Setup 1 Page on the MFD.
2) Press the FMS Knob to activate the cursor.
3) Turn the large FMS Knob to highlight NAV Angle setting in the Display Units box.
4) Turn the small FMS Knob to highlight the desired setting and press the ENT Key.

- Magnetic - Angles corrected to the computed magnetic variation (Mag Var)
- True - References angles to true north (T)

TURN RATE INDICATOR

The Turn Rate Indicator is located directly above the rotating compass card. Tick marks to the left and right of the lubber line denote half-standard and standard turn rates. A magenta Turn Rate Trend Vector shows the current turn rate. The end of the trend vector gives the heading predicted in six seconds, based on the present turn rate. A standard-rate turn is shown on the indicator by the trend vector stopping at the standard turn rate tick mark, corresponding to a predicted heading of 18° from the current heading. At rates greater than $4 \mathrm{deg} / \mathrm{sec}$, an arrowhead appears at the end of the magenta trend vector and the prediction is no longer valid.

Figure 2-20 Turn Rate Indicator and Trend Vector

BEARING POINTERS AND INFORMATION WINDOWS

Two bearing pointers and associated information can be displayed on the HSI for NAV and GPS sources by pressing the PFD Opt Softkey then either the Bearing 1 or Bearing 2 Softkey．The bearing pointers are cyan and are single－line（BRG1）or double－line（BRG2）．A pointer symbol is shown in the information window to indicate the navigation source．The bearing pointers never override the CDI and are visually separated from the CDI by a white ring．Bearing pointers may be selected but not necessarily visible due to data unavailability．

Figure 2－21 HSI with Bearing and DME Information

When a bearing pointer is displayed，the associated information window is also displayed．The Bearing Information windows（Figure 2－21）are displayed at the lower sides of the HSI and give the following information：
－Bearing source（NAV，GPS）
－Pointer icon（BRG1＝single line，BRG2＝double line）
－Station／waypoint identifier（NAV，GPS）
－GPS－derived great circle distance to bearing source
－Frequency（NAV）

When the NAV radio is tuned to an ILS frequency the bearing source and the bearing pointer is removed from the HSI．When NAV1 or NAV2 is the selected bearing source，the frequency is replaced by the station identifier when the station is within range．If GPS is the bearing source，the active waypoint identifier is displayed instead of a frequency．

The bearing pointer is removed from the HSI and dashes are displayed in the information window if the NAV radio is not receiving a VOR station or if GPS is the bearing source and an active waypoint is not selected．

Selecting bearing display and changing sources:

1) Press the PFD Opt Softkey.
2) Press either Bearing 1 or Bearing 2 Softkey to display the desired bearing pointer and information window with the NAV 1 source.
3) Press the bearing softkey again to display the bearing pointer with the NAV 2 source.
4) Press the bearing softkey again to display the bearing pointer with GPS as the source.
5) To remove the bearing pointer and information window, press either Bearing 1 or Bearing 2 Softkey again.

DME INFORMATION WINDOW

NOTE: DME radio installation is optional.

The DME Information Window is displayed above the Bearing 1 Information Window and shows the DME label, tuning mode (NAV1, NAV2, or HOLD), frequency, and distance. When a signal is invalid, the distance is replaced by "-.- - NM". Refer to the Audio Panel and CNS Section for information on tuning the radios.

Displaying the DME Information Window:

1) Press the PFD Opt Softkey.
2) Press the DME Softkey to display the DME Information Window above the Bearing 1 Information Window.
3) To remove the DME Information Window, press the DME Softkey again.

COURSE DEVIATION INDICATOR (CDI)

The Course Deviation Indicator (CDI) moves left or right from the course pointer along a lateral deviation scale to display aircraft position relative to the course. If the course deviation data is not valid, the CDI is not displayed.

Figure 2-22 Course Deviation Indicator

The CDI can display two sources of navigation, GPS or VOR/LOC. The color indicates the current navigation source, magenta for GPS and green for VOR and LOC. The full scale limits for the CDI are defined by an GPSderived distance when coupled to the GPS. If the CDI exceeds the maximum deviation on the scale (two dots) while navigating with GPS, the crosstrack error (XTK) is displayed below the white aircraft symbol. When navigating using a VOR or localizer (LOC), the CDI uses the same angular deviation as a mechanical CDI.

Figure 2-23 Navigation Sources

Changing navigation sources:

1) Press the CDI Softkey to change from GPS to VOR1 or LOC1. This places the cyan tuning box over the NAV1 standby frequency in the upper left corner of the PFD.
2) Press the CDI Softkey again to change from VOR1 or LOC1 to VOR2 or LOC2. This places the cyan tuning box over the NAV2 standby frequency.
3) Press the CDI Softkey a third time to return to GPS.

Figure 2-24 Selecting a Navigation Source

The system automatically changes from GPS to LOC navigation source and changes the CDI scaling accordingly when all of the following occur:

- A localizer or ILS approach has been loaded into the active flight plan
- The final approach fix (FAF) is the active leg, the FAF is less than 15 nm away, and the aircraft is moving toward the FAF
- A valid localizer frequency has been tuned

GPS CDI SCALING

When GPS is the selected navigation source，the flight plan legs are sequenced automatically and annunciations appear on the HSI for the flight phase．Flight phase annunciations are normally shown in magenta，but when cautionary conditions exist the color changes to amber．If the current leg in the flight plan is a heading leg，HDG LEG is annunciated in magenta beneath the aircraft symbol．

The current GPS CDI scale setting is displayed as System CDI on the Aux－System Setup 1 Page and the full－scale deflection setting may also be selected（ $2.0 \mathrm{~nm}, 1.0 \mathrm{~nm}, 0.3 \mathrm{~nm}$ ，or Auto）from this page．If the selected scaling is smaller than the automatic setting for enroute and terminal phases，the CDI is scaled accordingly and the selected setting is displayed rather than the flight phase annunciation．

Changing the selected GPS CDI setting：

1）Use the FMS Knob to select the Aux－System Setup 1 Page on the MFD．
2）Press the FMS Knob to activate the cursor．
3）Turn the large FMS Knob to highlight the Format Allowed selection in the GPS CDI box．
4）Turn the small FMS Knob to highlight the desired setting and press the ENT Key．
5）To cancel the selection，press the FMS Knob or the CLR Key．
When set to Auto（default），the GPS CDI scale automatically adjusts to the desired limits based upon the current phase of flight（Figure 2－26，Table 2－2）．

Figure 2－26 Automatic CDI Scaling
－Once a departure procedure is activated，the CDI is scaled for departure（ 0.3 nm ）．
－The system switches from departure to terminal CDI scaling（ 1.0 nm ）under the following conditions：
－The next leg in the departure procedure is not aligned with the departure runway
－The next leg in the departure procedure is not a CA，CD，CF，CI，CR，DF，FA，FC，FD，FM，IF，or TF（see Glossary for leg type definitions）
－After any leg in the departure procedure that is not a CA or FA
－At 30 nm from the departure airport，the enroute phase of flight is automatically entered and CDI scaling changes to 2.0 nm over a distance of 1.0 nm ，except under the following conditions：

Flight Phase	Annunciation＊	Automatic CDI Full－scale Deflection		
Departure	DPRT	0.3 nm		
Terminal	TERM	1.0 nm		
Enroute	ENR	2.0 nm		
Oceanic	OCN	4.0 nm		
$\begin{array}{l}\text { Approach } \\ \text {（Non－precision）}\end{array}$	LNAV			
$\begin{array}{l}\text { Approach } \\ \text {（Non－precision with } \\ \text { Advisory Vertical } \\ \text { Guidance）}\end{array}$	LNAV＋V	1.0 nm decreasing to 350 feet depending on		
variables（Figure 2－27）			$]$	Approach （Non－precision with Advisory Vertical Guidance）
:---				
Approach （LNAV／VNAV）				
Approach （LPV）				
Approach （Non－precision with Advisory Vertical Guidance）				
Approach （LP）				
LIVNAL				

＊Flight phase annunciations are normally shown in magenta，but when cautionary conditions exist the color changes to amber．

Table 2－2 Automatic GPS CDI Scaling

OBS MODE

NOTE：VNV is inhibited while automatic waypoint sequencing has been suspended．
Enabling Omni－bearing Selector（OBS）Mode suspends the automatic sequencing of waypoints in a GPS flight plan（GPS must be the selected navigation source），but retains the current Active－to waypoint as the navigation reference even after passing the waypoint．OBS is annunciated to the lower right of the aircraft symbol when OBS Mode is selected．
While OBS Mode is enabled，a course line is drawn through the Active－to waypoint on the moving map．If desired，the course to／from the waypoint can now be adjusted．When OBS Mode is disabled，the GPS flight

2．2 SUPPLEMENTAL FLIGHT DATA

In addition to the flight instruments，the PFD also displays various supplemental information，including temperatures，wind data，and Vertical Navigation（VNV）indications．

TEMPERATURE DISPLAYS

The Outside Air Temperature（OAT）and deviation from International Standard Atmosphere（ISA）temperature are displayed in the lower left corner of the PFD．Both temperatures are displayed in degrees Celsius（ ${ }^{\circ} \mathrm{C}$ ）or Fahrenheit（ ${ }^{\circ} \mathrm{F}$ ），depending on the selected temperature units on the Aux－System Setup 1 Page．

OAT $-5^{\circ} \mathrm{C}$ ISA $+0^{\circ} \mathrm{C}$

Figure 2－31 Outside Air Temperature

WIND DATA

Wind direction and speed in knots can be displayed relative to the aircraft in a window to the upper left of the HSI．When the window is selected for display，but wind information is invalid or unavailable，the window displays NO WIND DATA．Wind data can be displayed in three different ways．

Figure 2－32 Wind Data

Displaying wind data:

1) Press the PFD Opt Softkey.
2) Press the Wind Softkey to display wind data to the left of the HSI.
3) Press one of the numbered Option softkeys to change how wind data is displayed:

- Option 1: Headwind/tailwind and crosswind arrows with numeric speed components
- Option 2: Wind direction arrow and speed
- Option 3: Wind direction arrow with numeric direction and speed

4) To remove the window, press the Off Softkey.

GENERIC TIMER

VERTICAL NAVIGATION (VNV) INDICATIONS

When a VNV flight plan has been activated, VNV indications (VNV Target Altitude, RVSI, VDI) appear on the PFD in conjunction with the "TOD within l minute" message and "Vertical track" voice alert. See the Flight Management and AFCS sections for details on VNV features. VNV indications are removed from the PFD according to the criteria listed in the table. Refer to the Flight Management section for additional VNAV indications.

Top of Descent Message

Figure 2-33 Vertical Navigation Indications (PFD)

Criteria	VNV Indication Removed		
	Required Vertical Speed (RVSI)	Vertical Deviation (VDI)	VNV Target Altitude*
Aircraft > 1 min before the next TOD due to flight plan change	X	X	X
VNV cancelled (CNCL VNV Softkey pressed on MFD)	X	X	X
Distance to active waypoint cannot be computed due to unsupported flight plan leg type (see Flight Management Section)	X	X	X
Aircraft > 250 feet below active VNV Target Altitude	X	X	X
Current crosstrack or track angle error has exceeded limit	X	X	X
Active altitude-constrained waypoint can not be reached within maximum allowed flight path angle and vertical speed	X	X	

Table 2-3 VNV Indication Removal Criteria

LOW ALTITUDE ANNUNCIATION

NOTE：A Low Altitude Annunciation is available only when SBAS is available．This annunciation is only available when TAWS－B alerting has been inhibited，has failed，or is unavailable．

When the Final Approach Fix（FAF）is the active waypoint in a GPS SBAS approach using vertical guidance， a Low Altitude Annunciation may appear if the current aircraft altitude is at least 164 feet below the prescribed altitude at the FAF．A black－on－amber LOW ALT annunciation appears to the top left of the Altimeter，flashes for several seconds，then remains displayed until the condition is resolved．

Figure 2－36 Low Altitude on GPS SBAS Approach MIN box appears with the altitude in cyan text．The bug appears on the altitude tape in cyan（or magenta for COMP MIN）once in range．
－When the aircraft passes through 100 feet of the MDA／DH，the bug and text become white．
－Once the aircraft reaches MDA／DH，the bug and text become amber and a＂Minimums．Minimums，＂voice alert occurs．

2.4 ABNORMAL OPERATIONS

ABNORMAL GPS CONDITIONS

The annunciations listed in Table 2-4 can appear on the HSI when abnormal GPS conditions occur (Figure 2-39). Refer to the Flight Management Section for more information on Dead Reckoning Mode.

Annunciation	Location	Description
GPS LOI	Right of HSI	Loss of Integrity Monitoring-GPS integrity is insufficient for the current phase of flight
GPS INTEG OK	Right of HSI	Integrity OK-GPS integrity has been restored to within normal limits (annunciation displayed for 5 seconds)
DR	Lower left of aircraft symbol	lead Reckoning-System is using projected position rather than GPS position to compute navigation data and sequence active flight plan waypoints

Table 2-4 Abnormal GPS Conditions Annunciated on HSI

Figure 2-39 Example HSI Annunciations

In Dead Reckoning Mode the CDI is removed from the display when GPS is the selected navigation source. The following items on the PFD are then shown in amber:

- Current Track Bug
- Wind Data
- Ground Speed
- Distances in the Bearing Information Windows
- GPS bearing pointers

These items should be verified when operating in Dead Reckoning Mode as they become increasingly inaccurate over time.

SECTION 3 ENGINE INDICATION SYSTEM

NOTE：Refer to the Aircraft Flight Manual（AFM）for limitations．
The system offers improved flight operations and reduces crew workload by automatically monitoring critical system parameters and providing system alerts during all phases of flight．The Engine Indication System（EIS） displays electrical，fuel，and engine information on the left side of the Multi Function Display（MFD）．EIS information can also be fully expanded to an entire page by pressing the Engine Softkey or turning the large FMS Knob to select the EIS－Engine Page

Green bands on the instruments indicate normal ranges of operation；amber and red bands indicate caution and warning，respectively．White or uncolored bands indicate areas outside of normal operation not yet in the caution or warning ranges．When unsafe operating conditions occur，the corresponding displays flash to indicate cautions and warnings．If sensory data to an instrument becomes invalid or unavailable，a red＂X＂is displayed across the instrument．

Figure 3－1 MFD with EIS display

3.1 ENGINE DISPLAY

Figure 3-2 Engine Display
Figure 3-3 Engine System Display
（1）Manifold Pressure Indicator （IN HG）
（2）Tachometer Indicator （RPM）
（3）Fuel Flow Indicator （FFLOW GPH）
（4）Cylinder Head Temperature Indicator （CHT）
（5）Oil Temperature Indicator （OIL ${ }^{\circ} \mathrm{C}$ ）
（6）Oil Pressure Indicator （OIL PSI）
（7）Calculated Fuel Remaining （GAL REM）
（8）Calculated Fuel Used （GAL Used）
（9）Calculated Endurance （ENDUR）
（10）Calculated Range （RANGE NM）
（11）Ampmeter （ALT Load）
（12）Voltmeter （Bus Volts）
（13）Fuel Quantity Indicator （Fuel QTY GAL）

Displays engine manifold pressure inches of mercury（IN HG）

Displays engine tachometer in revolutions per minute（RPM）

Displays fuel flow in gallons per hour（gph）

Displays cylinder head temperature in degrees Celsius $\left({ }^{\circ} \mathrm{C}\right)$

Displays oil temperature in degrees Celsius $\left({ }^{\circ} \mathrm{C}\right)$

Displays oil pressure in pounds per square inch（psi）

Displays the totalizer－based fuel remaining in gallons，adjusted using the DEC FUEL and INC FUEL Softkeys
Displays fuel used in gallons，based on fuel flow

Displays calculated endurance

Displays calculated range in nautical miles

Displays current loads for the alternator as a percentage of the capacity

Displays voltage for each bus

Displays the amount of fuel in gallons（gal）for each side of a standard fuel tank．

ENGINE PAGE

The EIS - Engine Page displays all engine, fuel, electrical, and fuel calculation information. To access this page, press the Engine Softkey. Refer to Table 3-1 for Engine Page softkey functions.

Level 1	Level 2	Level 2	Description
Engine			Displays EIS - Engine Page and second-level engine softkeys; press again to exit page
	Lean		Resets displayed fuel remaining to tabs and fuel used to zero
		CYL SLCT	Selects the engine cylinder to monitor during leaning operations
		Assist	Displays peak temperature maker above cylinder
	System		
		DEC Fuel	Decreases gallons of fuel remaining indication in one gallon increments
		INC Fuel	Increases gallons of fuel remaining indication in one gallon increments
		RST Fuel	Resets gallons of fuel remaining to zero (0).

Table 3-1 Engine Page Softkeys

EXHAUST GAS TEMPERATURE

Exhaust Gas Temperature (EGT) readout for the selected cylinder is shown at the right bottom corner of the graph on the Engine System Page. The temperature readout is displayed in degrees of Celsius $\left({ }^{\circ} \mathrm{C}\right)$.

Figure 3-4 Exhaust Gas Temperatures (Normal)

Cylinder Head Temperature

Cylinder Head Temperature (CHT) readout is shown at the right bottom corner of the graph on the Engine System Page.

Figure 3-5 Cylinder Head Temperatures (CHT)

Lean Engine Page

Figure 3－6 Exhaust Gas Temperatures（Lean Assist）

1）From the MFD Navigation Map Page．
2）Press the Engine softkey．
3）Press the Lean softkey．
From the Lean Page，the CYL SLCT and Assist Softkeys can be utilized to obtain information about specific cylinders on both the EGT and CHT graphs．Pressing the CYL SLCT Softkey cycles through the cylinders；the selected cylinder number is displayed in cyan．The CYL SLCT Softkey is disabled during warning or caution conditions or when the Assist Softkey is pressed．

Monitoring the desired cylinder＇s EGT and CHT：

From the Lean Page，press the CYL SLCT Softkey to cycle through each cylinder and view its EGT and CHT．The selected cylinder is shown in cyan．

When the Assist Softkey is selected，the system initially highlights and selects the cylinder number with the hottest EGT and displays its temperature below the EGT bar graph．A readout showing the difference between peak（ $\triangle \mathrm{PEAK}$ ）and the current temperature for the selected cylinder is displayed above the EGT bar graph．

As the mixture is leaned，a cyan line will appear above each cylinder to indicate EGT peak．
When the system detects the first cylinder to peak，the cylinder numbers below the EGT graph disappear， and the letter＂lst＂is annunciated below the first peaked cylinder to indicate the other cylinders are rich of peak．As the mixture is further leaned，＂Last＂is annunciated below the last peaked cylinder indicating all cylinders are lean of peak．Refer to the POH and AFM for the recommended mixture adjustment procedures．

Monitoring of the cylinder continues until the Assist Softkey is pressed again which disables lean assist and removes the peak lines from the bar graph and the temperature deviation from peak（ $\triangle \mathrm{PEAK}$ ）．The system then returns to seeking the hottest cylinder．

FUEL CALCULATIONS

NOTE: Fuel calculations do not use the aircraft fuel quantity indicators and are calculated from the last time the fuel was reset.

3．2 EIS DISPLAY（REVERSIONARY MODE）

In the event of a PFD or MFD display failure，the display（s）operating in Reversionary Mode are configured to present PFD symbology together with the EIS Display（refer to the System Overview for information about display reversionary mode）．

The Engine Display，in reversionary mode，is identical to the normal EIS Display on the MFD．

Blank Page

SECTION 4 AUDIO PANEL AND CNS

4．1 OVERVIEW

The Communication／Navigation／Surveillance（CNS）system includes the Audio Panels，communication radios， navigation radios，and Mode S transponders．The System Overview Section provides a block diagram description of the Audio Panels and CNS system interconnection．

CNS operation in the Beechcraft G36 is performed by the following Line Replaceable Units（LRUs）：
－Primary Flight Display（PFD）
－Audio Panel
－Multi Function Display（MFD）
－Mode S Transponder
－Integrated Avionics Unit（2）
The MFD／PFD controls are used to tune the communication transceivers and navigation radios．
The Audio Panel provides the traditional audio selector functions of microphone and receiver audio selection． The Audio Panel includes an intercom system（ICS）between the pilot，copilot，and passengers，a marker beacon receiver，and a COM clearance recorder．Ambient noise from the aircraft radios is reduced by a feature called Master Avionics Squelch（MASQ）．When no audio is detected，MASQ processing further reduces the amount of background noise from the radios．

The Mode S transponder is controlled with softkeys and the FMS Knob located on the Primary Flight Display （PFD）．The Transponder Data Box is located to the left of the System Time Box．The data box displays the active four－digit code，mode，and reply status．

PFD CONTROLS AND FREQUENCY DISPLAY

Figure 4-1 PFD Controls, NAV/COM Frequency Tuning Boxes, and DME Tuning Window
（1）NAV VOL／ID Knob－Controls NAV audio volume level．Press to turn the Morse code identifier audio on and off．Volume level is shown in the NAV frequency field as a percentage．
（2）NAV Frequency Transfer Key－Transfers the standby and active NAV frequencies．
（3）NAV Knob－Tunes the standby frequencies for the NAV receiver（large knob for MHz；small knob for kHz ）． Press to move the frequency selected for tuning（light blue numbers）and the Frequency Transfer Arrow between NAVl and NAV2．
（4）NAV Frequency Box－Displays NAV standby and active frequency fields，volume，and station ID．The frequency of the NAV radio selected for navigation is displayed in green．
（5）COM Frequency Box－Displays COM standby and active frequency fields and volume．The selected and decoded COM transceiver frequency is displayed in green．
（6）COM Knob－Tunes the standby frequencies for the COM transceiver（large knob for MHz；small knob for kHz ）．Press to move the frequency selected for tuning（light blue numbers）and the Frequency Transfer Arrow between COM1 and COM2．
（7）COM Frequency Transfer Key－Transfers the standby and active COM frequencies．Press and hold this key for two seconds to tune the emergency frequency $(121.500 \mathrm{MHz})$ automatically into the active frequency field．
（8）COM VOLSQ Knob－Controls COM audio volume level．Press to turn the COM automatic squelch on and off．Volume level is shown in the COM frequency field as a percentage．
（9）DME Tuning Window－Displays DME frequency pairing mode．Display by selecting the DME Softkey．
（10）ENT Key－Validates or confirms DME pairing mode and Auto－tune selection．
（11）FMS Knob－Flight Management System Knob，used to enter transponder codes，select DME modes，and Auto－tune entries when DME Tuning Window or NRST Window is present．Press the FMS Knob to turn the selection cursor on and off．The large knob moves the cursor in the window．The small knob selects individual characters for the highlighted cursor location．
（12）Transponder Data Box－Indicates the selected transponder code，operating mode，reply，and ident status for the applicable transponder．
（13）DME Softkey－Displays the DME Tuning Window．

AUDIO PANEL CONTROLS

Figure 4-2 Audio Panel Controls

NOTE: When a key is selected, a triangular annunciator above the key is illuminated.
(1) COM1 MIC - Selects the \#1 transmitter for transmitting. COM1 receive is simultaneously selected when this key is pressed allowing received audio from the \#l COM receiver to be heard. COM2 receive can be added by pressing the COM2 Key.
(2) COM1 - When selected, audio from the \#1 COM receiver can be heard.
(3) COM2 MIC - Selects the \#2 transmitter for transmitting. COM2 receive is simultaneously selected when this key is pressed allowing received audio from the \#2 COM receiver to be heard. COM1 receive can be added by pressing the COM1 Key.
(4) COM2 - When selected, audio from the \#2 COM receiver can be heard.
(5) COM3 MIC - Not used in Beechcraft G36 aircraft.
（6）COM3－Not used in Beechcraft G36 aircraft．
（7）COM 1／2－Split COM Key．Allows simultaneous transmission on COM1 and COM2 by the pilot and copilot．
（8）TEL－Not used in Beechcraft G36 aircraft．
（9）PA－Not used in Beechcraft G36 aircraft．
（10）SPKR－Selects and deselects the cabin speaker．COM and NAV receiver audio can be heard on the speaker．
（11）MKR／MUTE－Selects marker beacon receiver audio．Mutes the currently received marker beacon receiver audio．Unmutes automatically when new marker beacon audio is received．Also，stops play of recorded COM audio．
（12）HI SENS－Press to increase marker beacon receiver sensitivity．Press again to return to low sensitivity．
（13）DME－Turns optional DME audio on or off．
（14）NAV1－When selected，audio from the \＃l NAV receiver can be heard．
（15）ADF－Not used in Beechcraft G36 aircraft．
（16）NAV2－When selected，audio from the \＃2 NAV receiver can be heard．
（17）AUX－Not used in Beechcraft G36 aircraft．
（18）MAN SQ－Enables manual squelch for the intercom．When the intercom is active，press the PILOT Knob to illuminate SQ．Turn the PILOT／PASS Knobs to adjust squelch．
（19）PLAY－Press once to play the last recorded COM audio．Press again while audio is playing and the previous block of recorded audio is played．Each subsequent press plays each previously recorded block． Pressing the MKR／MUTE Key during play of a memory block stops play．
（20）PILOT－Selects and deselects the pilot intercom isolation．
（21）COPLT－Selects and deselects the copilot intercom isolation．
（22）PILOT Knob－Press to switch between volume and squelch control as indicated by illumination of VOL or SQ．Turn to adjust intercom volume or squelch．The MAN SQ Key must be selected to allow squelch adjustment．
（23）PASS Knob－Turn to adjust Copilot／Passenger intercom volume or squelch．The MAN SQ Key must be selected to allow squelch adjustment．
24）DISPLAY BACKUP Button－Manually selects Reversionary Mode．

4.2 COM OPERATION

COM TUNING BOXES

$136.975 \quad 35 \%$ VOL 1 C
 $118.075 \quad 128.75020$

Figure 4-3 COM Tuning Box Indications

NOTE: When turning on the system for use, the system remembers the last frequencies used and the active COM transceiver state prior to shutdown.
(1) Active Field - The COM Frequency Box is composed of four fields; the two active frequencies are on the left. An active COM frequency is displayed in green and indicates that the COM transceiver is selected on the Audio Panel (COM1 MIC or COM2 MIC Key). Both active COM frequencies appearing in white indicate that no COM radio is selected for transmitting (PA Key is selected on the Audio Panel).
(2) Frequency Transfer Arrow - Moves between the upper and lower radio frequency fields with the Frequency Tuning Box. Indicates which COM transciever is selected for frequency transfer between the Standby and Active fields.
(3) Standby Field - The COM Frequency Box is composed of four fields; the two standby frequencies are on the right. Frequencies in the standby field are displayed in either white or gray. The standby frequency in the tuning box is white. The other standby frequency is gray.
(4) Frequency Tuning Box - Moves between the upper and lower radio frequency fields with the Frequency Transfer Arrow. Indicates which COM transceiver is to be tuned in the Standby Field.
(5) Automatic Squelch Indication - Indicates that Automatic Squelch is disabled. Automatic Squelch quiets unwanted static noise when no audio signal is received, while still providing good sensitivity to weak COM signals. When Automatic Squelch is disabled, COM audio reception is always on. Continuous static noise is heard over the headsets and speaker, if selected.
（6）Transmit and Receive Indications－During COM transmission，a white TX appears by the active COM frequency replacing the Frequency Transfer Arrow．During COM signal reception，a white RX appears by the active COM frequency replacing the Frequency Transfer Arrow．
（7）Frequency Spacing－The COM radios can tune either $25-\mathrm{kHz}$ spacing（ 118.000 to 136.975 MHz ）or $8.33-\mathrm{kHz}$ spacing（ 118.000 to 136.990 MHz ）for 760 －channel or 3040 －channel configuration．When $8.33-\mathrm{kHz}$ channel spacing is selected，all of the $25-\mathrm{kHz}$ channel spacing frequencies are also available in the complete 3040－channel list．
（8）COM Volume－COM radio volume level can be adjusted from 0 to 100% using the VOL／SQ Knob． Turning the knob clockwise increases volume，turning the knob counterclockwise decreases volume． When adjusting volume，the level is displayed in place of the standby frequencies．Volume level indication remains for two seconds after the change．

COM TRANSCEIVER MANUAL TUNING

The COM frequency controls and frequency boxes are on the right side of each PFD．
Manually tuning a COM frequency：
1）Turn the COM Knob to tune the desired frequency（large knob for MHz；small knob for kHz）．
2）Press the Frequency Transfer Key to transfer the frequency to the active field．
3）Adjust the volume level with the COM VOL／SQ Knob．
4）Press the COM VOL／SQ Knob to turn automatic squelch on and off．

AUTO－TUNING THE COM FREQUENCY

COM frequencies can be automatically tuned from the following：
－Nearest Airports Window（PFD）
－WPT－Airport Information Page
－NRST－Nearest Airports Page

AUTO－TUNING FROM THE PFD

COM frequencies for the nearest airports can be automatically tuned from the Nearest Airports Window on the PFD．When the desired frequency is entered，it becomes a standby frequency．Pressing the Frequency Transfer Key places this frequency into the COM Active Frequency Field．

Auto-tuning a COM frequency for a nearby airport from the PFD:

1) Select the Nearest Softkey on the PFD to open the Nearest Airports Window. A list of 25 nearest airport identifiers and COM frequencies is displayed.
2) Turn the FMS Knob to scroll through the list and highlight the desired COM frequency.
3) Press the ENT Key to load the COM frequency into the COM Standby Frequency Field.
4) Press the Frequency Transfer Key to transfer the frequency to the COM Active Frequency Field.

Select the Nearest Softkey to Open the Nearest Airports Window

Figure 4-4 Nearest Airports Window (PFD)

AUTO-TUNING FROM THE MFD

Frequencies can be automatically loaded into the COM Frequency Box from pages in the NRST or WPT page group by highlighting the frequency and pressing the ENT Key.

Auto-tuning a COM frequency from the WPT and NRST Pages:

1) From any page that the COM frequency can be auto-tuned, activate the cursor by pressing the FMS Knob or selecting the appropriate softkey.
2) Turn the FMS Knob to place the cursor on the desired COM frequency.
3) Press the ENT Key to load the COM frequency into the standby field of the selected COM radio.
4) Press the Frequency Transfer Key on either PFD to transfer the frequency to the COM Active Frequency Field.

Or：
1）Press the MENU Key to display the page menu．
2）Turn the large FMS Knob to scroll through the menu options．
3）Press the ENT Key to place the cursor on the desired selection．
4）Scroll through the frequency selections with the FMS Knob or the ENT Key．
5）Press the ENT Key to load the COM frequency into the standby field of the selected COM radio．
6）Press the Frequency Transfer Key to transfer the frequency to the COM Active Frequency Field．

Nearest Airports Menu

Nearest Frequencies Menu

Nearest Airspaces Menu

Figure 4－5 Nearest Pages Menus
On the WPT－Airport Information Page，the cursor can be placed on the frequency field by pressing the FMS Knob and scrolling through the list．The frequency is transferred to the COM Standby Field with the ENT Key．

Figure 4－6 WPT－Airport Information Page

4．3 NAV OPERATION

NAV TUNING BOXES

Figure 4－8 NAV Tuning Box Indications
（1）Standby Fields－The NAV Frequency Box is composed of four fields；the two standby frequencies are on the left．Frequencies in the standby field are displayed in either white or gray．The standby frequency in the tuning box is white．The other standby frequency is gray．
（2）Frequency Transfer Arrow－Moves between the upper and lower radio frequency fields with the Frequency Tuning Box．Indicates which NAV transciever is selected for frequency transfer between the Standby and Active fields．
（3）Active Fields－The NAV Frequency Box is composed of four fields；the two active frequencies are on the right．An active NAV frequency is displayed in green．The active NAV radio is selected by pressing the CDI softkey on the PFD．Both active NAV frequencies appearing in white indicate that no NAV radio is selected．
（4）NAV Tuning Box－Moves between the upper and lower radio standby frequency fields with the Frequency Transfer Arrow．Indicates which NAV transceiver is to be tuned in the Standby Field．Moving the Frequency Tuning Box is accomplished by pressing the NAV knob on the PFD．
（5）VOR／LOC Morse Code Audio Indication－When the Morse code Identifier audio is on for a NAV radio， a white ID replaces the Frequency Transfer Arrow to the left of the active NAV frequency．In order to listen to either station identifier，press the NAV1 or NAV2 Key on the Audio Panel．Pressing the VOL／ID Knob turns on／off the Morse code audio only in the radio with the NAV Tuning Box．To turn on／off both NAV IDs，transfer the NAV Tuning Box between NAV1 and NAV2 by pressing the small NAV Knob and pressing the VOL／ID Knob again to turn the Morse code off in the other radio．
（6）Decoded Morse Code Station Identifier－The NAV Frequency Box displays the decoded Morse Code station identifier that is received from the navigation source．Audio verification of the selected station identifier is still required，and can be accomplished by selecting the corresponding NAV radio on the audio panel and pressing the NAV VOL／ID Knob．
(7) NAV VOLUME - NAV radio volume level can be adjusted from 0 to 100% using the VOLSQ Knob. Turning the knob clockwise increases volume, turning the knob counterclockwise decreases volume. When adjusting volume, the level is displayed in place of the standby frequencies. Volume level indication remains for two seconds after the change.

NAV RADIO SELECTION AND ACTIVATION

The NAV Frequency Box is composed of four fields; two standby fields and two active fields. The active frequencies are on the right side and the standby frequencies are on the left.
A NAV radio is selected for navigation by selecting the CDI Softkey located on the PFD. The active NAV frequency selected for navigation is displayed in green. Selecting the CDI Softkey once selects NAVl as the navigation radio. Selecting the CDI Softkey a second time selects NAV2 as the navigation radio. Selecting the CDI Softkey a third time activates GPS mode. Selecting the CDI Softkey again cycles back to NAV1.
While cycling through the CDI Softkey selections, the selected NAV standby frequency is selected for tuning, the Frequency Transfer Arrow is placed in the selected NAV Frequency Field, and the active NAV frequency color changes to green.
The three navigation modes that can be cycled through are:

- VOR1 (or LOCl) - If NAVl is selected, a green single line arrow (not shown) labeled either VOR1 or LOCl is displayed on the HSI and the active NAVl frequency is displayed in green.
- VOR2 (or LOC2) - If NAV2 is selected, a green double line arrow (shown) labeled either VOR2 or LOC2 is displayed on the HSI and the active NAV2 frequency is displayed in green.
- GPS - If GPS Mode is selected, a magenta single line arrow (not shown) appears on the HSI and neither NAV radio is selected. Both active NAV frequencies are then displayed in white and the previously selected NAV standby frequency remains selected for tuning.
See the Flight Instruments Section for selecting the DME and Bearing Information windows and using VOR or ADF as the source for the bearing pointer.

The NAV Frequency Box displays the decoded Morse Code station identifier that is received from the navigation source. Audio verification of the selected station identifier is still required, and can be accomplished by selecting the corresponding NAV radio on the audio panel and pressing the NAV VOL/ID Knob.

NAV radios are selected for listening by pressing the corresponding keys on the Audio Panel. Pressing the NAV1, NAV2, ADF, or DME Key selects and deselects the navigation radio source. Selected audio can be heard over the headset and the speakers (if selected). All radios can be selected individually or simultaneously.

NAV RECEIVER MANUAL TUNING

The NAV frequency controls and frequency boxes are on the left side of the PFDs.

Manually tuning a NAV frequency:

1) Turn the NAV Knob to tune the desired frequency in the NAV Tuning Box.
2) Press the Frequency Transfer Key to transfer the frequency to the NAV Active Frequency Field.
3) Adjust the volume level with the NAV VOL/ID Knob.
4) Press the NAV VOL/ID Knob to turn the Morse code identifier audio on and off.

AUTO-TUNING A NAV FREQUENCY FROM THE MFD

NAV frequencies can be selected and loaded from the following MFD pages:

- WPT - Airport Information
- WPT - VOR Information
- NRST - Nearest Airports
- NRST - Nearest VOR
- NRST - Nearest Frequencies (FSS, WX)
- NRST - Nearest Airspaces

The MFD provides auto-tuning of NAV frequencies from waypoint and nearest pages. During enroute navigation, the NAV frequency is entered automatically into the NAV standby frequency field. During approach activation the NAV frequency is entered automatically into the NAV active frequency field.
Frequencies can be automatically loaded into the NAV Frequency Box from pages in the NRST or WPT page group by highlighting the frequency and pressing the ENT Key.

Auto-tuning a NAV frequency from the WPT and NRST Pages:

1) From any page that the NAV frequency can be auto-tuned, activate the cursor by pressing the FMS Knob or the appropriate softkey.
2) Turn the FMS Knob to place the cursor on the desired NAV identifier or NAV frequency.
3) On the Nearest VOR and Nearest Airports pages, press the FREQ Softkey to place the cursor on the NAV frequency.
4) Press the ENT Key to load the NAV frequency into the standby field of the selected NAV radio.
5) Press the Frequency Transfer Key to transfer the frequency to the NAV Active Frequency Field.

Turn the FMS Knob to Scroll Through a List of Frequencies

Or:

1) When on the NRST pages, press the MENU Key on the MFD control unit to display the page menu.
2) Turn the large FMS Knob to scroll through the menu options.
3) Press the ENT Key to place the cursor in the desired window.
4) Scroll through the frequency selections with the FMS Knob or the ENT Key.
5) Press the ENT Key to load the NAV frequency into the standby field of the selected NAV radio.
6) Press the Frequency Transfer Key to transfer the frequency to the NAV Active Frequency Field.

Nearest Airports Menu

Nearest VOR Menu

Nearest Frequencies Menu

Nearest Airspaces Menu

Figure 4-10 Nearest Pages Menus
In the example shown, the VOR list is selected with the VOR Softkey or from the page menu. The FMS Knob or ENT Key is used to scroll through the list. The cursor is placed on the frequency with the FREQ Softkey and loaded into the NAV Tuning Box with the ENT Key.

Figure 4-11 Loading the NAV Frequency from the NRST - Nearest VOR Page
While enroute, NAV frequencies can also be auto-tuned from the NRST - Nearest Airports, WPT - Airport Information, WPT - VOR Information, and NRST - Nearest Frequencies Pages on the MFD in a similar manner using the appropriate softkeys or MENU Key, the FMS Knob, and the ENT Key.

AUTO-TUNING NAV FREQUENCIES ON APPROACH ACTIVATION

NOTE: The primary NAV frequency is auto-tuned upon loading a VOR or ILS/Localizer approach.

NOTE: When an ILS/LOC approach has been activated in GPS Mode, the system switches to NAV Mode as the final approach course is intercepted (within 15 nm of the FAF). See the Flight Management Section for details.

NAV frequencies are automatically loaded into the NAV Frequency field on approach activation, on both PFD1 and PFD2.

When loading or activating a VOR or ILS/LOC approach, the approach frequency is automatically transferred to a NAV frequency field as follows:

- If the current CDI navigation source is GPS, the approach frequency is transferred to the NAV1 or NAV2 active frequency fields. The frequency that was previously in the NAV1 or NAV2 active frequency fields are transferred to standby.
- If the current CDI navigation source is GPS, and if the approach frequency is already loaded into the NAV1 or NAV2 standby frequency field, the standby frequency is transferred to active.
- If the current CDI navigation source is NAV1 or NAV2, the approach frequency is transferred to the standby frequency fields of the selected CDI NAV radio.

MARKER BEACON RECEIVER

NOTE: The marker beacon indicators operate independently of marker beacon audio and cannot be turned off.

The marker beacon receiver is used as part of an ILS. The marker beacon receiver is always on and detects any marker beacon signals within the reception range of the aircraft.
The receiver detects the three marker tones - outer, middle, and inner - and provides the marker beacon annunciations located to the left of the Altimeter on the PFD.

Figure 4-12 Marker Beacon Keys
The Audio Panels provide three different states of marker beacon operation; On, Muted, and Deselected. Pressing the MKR/MUTE Key selects and deselects marker beacon audio. The key annunciator indicates when marker beacon audio is selected.

During marker beacon audio reception, pressing the MKR/MUTE Key mutes the audio but does not affect the marker annunciations. The marker tone is silenced, then waits for the next marker tone. The MKR/MUTE Key Annunciator is illuminated, indicating audio muting. The audio returns when the next marker beacon signal is received. If the MKR/MUTE Key is pressed during signal reception (O, M, I indication) while marker beacon audio is muted, the audio is deselected and the MKR/MUTE Key Annunciator is extinguished.

Pressing the HI SENS Key switches between high and low marker beacon receiver sensitivity. The HI SENS function (annunciator illuminated) is used to provide an earlier indication when nearing a marker during an approach. The LO SENS function (annunciator extinguished) results in a narrower marker dwell while over a station.

NOTE: When turning on the G1000 NXi for use, the system remembers the last frequency used for DME tuning and the NAV1, NAV2, or HOLD state prior to shutdown.

The G1000 NXi System tunes the optional DME transceiver. The UHF DME frequency is tuned by pairing with a VHF NAV frequency. DME frequency pairing is automatic and only the VHF NAV frequency is shown.
The DME Tuning Window is located to the right of the HSI in the lower right corner of the PFD. The DME transceiver is tuned by selecting NAV1, NAV2, or HOLD in the DME Tuning Window. Pressing the DME Softkey switches the DME Tuning Window on and off.

Figure 4-13 DME Tuning Window
The following DME transceiver pairing can be selected:

- NAV1 - Pairs the DME frequency from the selected NAVl frequency.
- NAV2 - Pairs the DME frequency from the selected NAV2 frequency.
- HOLD - When in the HOLD position, the DME frequency remains paired with the last selected NAV frequency.

Selecting DME transceiver pairing:

1) Press the DME Softkey to display the DME Tuning Window.
2) Turn the small FMS Knob to select the DME tuning mode.
3) Press the ENT Key to complete the selection.

Pressing the CLR Key or FMS Knob while in the process of DME pairing cancels the tuning entry and reverts back to the previously selected DME tuning state. Pressing the FMS Knob activates/deactivates the cursor in the DME Tuning Window.
See the Flight Instruments Section for displaying the DME information window.

4.4 MODE S TRANSPONDER

The Mode S Transponder provides Mode A, Mode C, and Mode S interrogation and reply capabilities. Selective addressing or Mode Select (Mode S) capability includes the following features:

- Level-2 reply data link capability (used to exchange information between aircraft and ATC facilities)
- Surveillance identifier capability
- Flight ID (Flight Identification) reporting - The Mode S Transponder reports aircraft identification as either the aircraft registration or a unique Flight ID.
- Altitude reporting
- Airborne status determination
- Transponder capability reporting
- Mode S Enhanced Surveillance (EHS) requirements (EHS requirements only available with GTX 33ES.)
- Acquisition squitter - Acquisition squitter, or short squitter, is the transponder 24-bit identification address. The transmission is sent periodically, regardless of the presence of interrogations. The purpose of acquisition squitter is to enable Mode S ground stations and aircraft equipped with a Traffic Avoidance System (TAS) to recognize the presence of Mode S-equipped aircraft for selective interrogation.
- Extended squitter - The extended squitter is transmitted periodically and contains information such as altitude (barometric and GPS), GPS position, and aircraft identification. The purpose of extended squitter is to provide aircraft position and identification to ADS-B Ground-Based Transceivers (GBTs) and other aircraft.
The Hazard Avoidance Section provides more details on traffic avoidance systems.

TRANSPONDER CONTROLS

Transponder function is displayed on three levels of softkeys on the PFD: Top-level, Mode Selection, and Code Selection. When the top-level XPDR Softkey is selected, the Mode Selection softkeys appear: Standby, On, ALT, VFR, Code, Ident, BACK.
When the Code Softkey is selected, the number softkeys appear: 0, 1, 2, 3, 4, 5, 6, 7, Ident, BKSP, Back. The digits 8 and 9 are not used for code entry. Selecting the numbered softkeys in sequence enters the transponder code. If an error is made, selecting the BKSP Softkey moves the code selection cursor to the previous digit. Selecting the BKSP Softkey again moves the cursor to the next previous digit.
Selecting the Back Softkey during code selection reverts to the Mode Selection Softkeys. Selecting the Back Softkey during mode selection reverts to the top-level softkeys.
The code can also be entered with the FMS Knob on either PFD. Code entry must be completed with either the softkeys or the FMS Knob, but not a combination of both.

Selecting the Ident Softkey while in Mode or Code Selection initiates the ident function and reverts to the top-level softkeys.
After 45 seconds of transponder control inactivity, the system reverts back to the top-level softkeys.

TRANSPONDER MODE SELECTION

Mode selection can be automatic (Altitude Mode) or manual (Standby, ON, and Altitude Modes). The Standby, On, and ALT Softkeys can be accessed by selecting the XPDR Softkey.

Selecting a transponder mode:

1) Select the XPDR Softkey to display the Transponder Mode Selection Softkeys.
2) Select the desired softkey to activate the transponder mode.

STANDBY MODE (MANUAL)

NOTE: In Standby Mode, the IDENT function is inhibited.
Standby Mode can be selected at any time by pressing the Standby Softkey. In Standby, the transponder is powered and new codes can be entered, but no replies or squitters are transmitted.. When Standby is selected, a white STBY indication and transponder code appear in the mode field of the Transponder Data Box.

Figure 4-15 Standby Mode

MANUAL ON MODE

On Mode can be selected at any time by pressing the On Softkey．An On indication will appear in the mode field of the Transponder Data Box．Selecting On mode enables transmission of transponder replies and squitters，but transmissions will not include altitude information．The On indication and transponder code in the Transponder Data Box will appear green while airborne and white while on the ground．When the transponder is operating with an air state of on－ground it will disable replies to Mode A，Mode C，and Mode S all－call interrogations so the aircraft will not show up on the traffic systems of other aircraft．

XPDR	6543 On	UTC
Ident	Tmr／Ref	Nearest

Figure 4－16 On Mode

ALTITUDE MODE

ALT Mode can be selected at any time by pressing the ALT Softkey．When ALT mode is selected， an ALT indication will appear in the mode field of the Transponder Data Box．Selecting ALT mode enables transmission of transponder replies and squitters．Transmissions will include pressure altitude information． The ALT indication and transponder code in the Transponder Data Box will appear green while airborne and white while on the ground．When the transponder is operating with an air state of on－ground it will disable replies to Mode A，Mode C，and Mode S all－call interrogations so the aircraft will not show up on the traffic systems of other aircraft．

REPLY STATUS

When the transponder sends replies to interrogations, a white R indication appears momentarily in the reply status field of the Transponder Data Box.

Figure 4-18 Reply Indication

VFR CODE

The VFR code can be entered either manually or by selecting the XPDR Softkey, then the VFR Softkey. When the VFR Softkey is selected, the pre-programmed VFR code is automatically displayed in the code field of the Transponder Data Box. Selecting the VFR Softkey again restores the previous identification code.

The pre-programmed VFR Code is set at the factory to 1200. If a VFR code change is required, contact a Garmin-authorized service center for configuration.

Figure 4-19 VFR Code

ENTERING A TRANSPONDER CODE

Entering a transponder code with softkeys:

1) Press the XPDR Softkey to display the Transponder Mode Selection Softkeys.
2) Press the Code Softkey to display the Transponder Code Selection Softkeys, for digit entry.
3) Press the digit softkeys to enter the code in the code field. When entering the code, the next softkey in sequence must be pressed within 10 seconds, or the entry is cancelled and restored to the previous code. Press the BKSP Softkey to move the code selection cursor to the previous digit. Five seconds after the fourth digit has been entered, the transponder code becomes active.

Entering a transponder code with the PFD FMS Knob:

1) Press the XPDR and the Code Softkeys as in the previous procedure to enable code entry.
2) Turn the small FMS Knob on the PFD to enter the first two code digits.
3) Turn the large FMS Knob to move the cursor to the next code field.
4) Enter the last two code digits with the small FMS Knob.
5) Press the ENT Key to complete code digit entry.

Pressing the CLR Key or small FMS Knob before code entry is complete cancels code entry and restores the previous code. Waiting for 10 seconds after code entry is finished activates the code automatically.

IDENT FUNCTION

NOTE：In Standby Mode，the Ident Softkey is inoperative．
Selecting the Ident Softkey sends a distinct identity indication to Air Traffic Control（ATC）．The indication distinguishes the identing transponder from all the others on the air traffic controller＇s screen．The Ident Softkey appears on all levels of transponder softkeys．When the Ident Softkey is selected，a green Ident indication is displayed in the mode field of the Transponder Data Box for a duration of 18 seconds．

After the Ident Softkey is selected while in Mode or Code Selection，the system reverts to the top－level softkeys．

Figure 4－20 Ident Softkey and Indication

FLIGHT ID REPORTING

NOTE：If the Flight ID is required but the system is not configured for it，contact a Garmin－authorized service center for configuration．

When the Flight ID must be entered before flight operation，the identifier is placed in the Timer／References Window on the PFD．The Flight ID is not to exceed seven characters．No space is needed when entering Flight ID．When a Flight ID contains a space，the system automatically removes it upon completion of Flight ID entry．

Entering a Flight ID：

1）Press the Tmr／Ref Softkey to display the Timer／References Window．
2）Press the FMS Knob to activate the selection cursor，if not already activated．
3）Turn the large FMS Knob to scroll down to the Flight ID．
4）Turn the small FMS Knob to enter the desired Flight ID．
5）Press the ENT Key to complete Flight ID entry．
If an error is made during Flight ID entry，pressing the CLR Key returns to the original Flight ID entry．While entering a Flight ID，turning the FMS Knob counterclockwise moves the cursor back one space for each detent of rotation．If an incorrect Flight ID is discovered after the unit begins operation，reenter the correct Flight ID using the same procedure．

4.5 ADDITIONAL AUDIO PANEL FUNCTIONS

POWER-UP

The Audio Panels perform a self-test during power-up. During the self-test all Audio Panel annunciator lights illuminate for approximately two seconds. Once the self-test is completed, most of the settings are restored to those in use before the unit was last turned off. The exceptions are the speaker and intercom, which are always selected during power up.

MONO/STEREO HEADSETS

Stereo headsets are recommended for use in this aircraft.
Using a monaural headset in a stereo jack shorts the right headset channel output to ground. While this does not damage the Audio Panel, a person listening on a monaural headset hears only the left channel in both ears. If a monaural headset is used at one of the passenger positions, any other passenger using a stereo headset hears audio in the left ear only.

SPEAKER

All of the radios can be heard over the cabin speaker. Pressing the SPKR Key selects and deselects the cabin speaker. Speaker audio is muted when the PTT is pressed. Certain aural alerts and warnings (autopilot, traffic, altitude) are always heard on the speaker, even when the speaker is not selected.
The speaker volume is adjustable within a nominal range. Contact a Garmin-authorized service center for volume adjustment.

INTERCOM

The Audio Panel includes a six-position intercom system (ICS) and two stereo music inputs for the pilot, copilot and up to four passengers. The intercom provides Pilot and Copilot isolation from the passengers and aircraft radios.

PILOT KEY Annunciator	COPLT KEY Annunciator	Pilot Hears	Copilot Hears	Passenger Hears
OFF	OFF	Selected radios, aural alerts, pilot, copilot, passengers, MUSIC INPUT \#1	Selected radios, aural alerts, pilot, copilot, passengers, MUSIC INPUT \#1	Selected radios, aural alerts, pilot, copilot, passengers, MUSIC INPUT \#2
ON	OFF	Selected radios, aural alerts, pilot	Copilot, passengers, MUSIC INPUT \#1	Copilot, passengers, MUSIC INPUT \#2
OFF	ON	Selected radios, aural alerts, pilot; passengers, MUSIC INPUT \#1	Copilot	Selected radios, aural alerts, pilot, passengers, MUSIC INPUT \#2
ON	ON	Selected radios, aural alerts, pilot, copilot	Selected radios, aural alerts, pilot, copilot	Passengers; MUSIC INPUT \#2

Table 4-1 ICS Isolation Modes
Pilot isolation is selected when the PILOT Annunciator is illuminated. During Pilot isolation, the pilot can hear the selected radios and aural alerts and warnings. The copilot and passengers can communicate with each other. The copilot is isolated from aural alerts and warnings.
Copilot isolation is selected when the COPLT Annunciator is illuminated. The copilot is isolated from the selected radios, aural alerts and warnings, and everyone else. The pilot and passengers can hear the selected radios, aural alerts, and communicate with each other.

When both the PILOT and COPLT Annunciators are illuminated, the pilot and copilot can hear the selected radios, aural alerts, and communicate with each other. The passengers are isolated from the pilot and copilot but can communicate with each other.

When both the PILOT and COPLT Annunciators are extinguished, everyone hears the selected radios, aural alerts, and is able to communicate with everyone else.

INTERCOM VOLUME AND SQUELCH

The PILOT/PASS Knob controls volume or manual squelch adjustment for the pilot and copilot/passenger. The small knob controls the pilot volume and squelch. The large knob controls the copilot/passenger volume and squelch. The VOL and SQ annunciations at the bottom of the unit indicate which function the knob is controlling. Pressing the PILOT/PASS Knob switches between volume and squelch control as indicated by the VOL or SQ annunciation being illuminated.

The MAN SQ Key allows either automatic or manual control of the squelch setting.

- When the MAN SQ Annunciator is extinguished (Automatic Squelch is on), the PILOT/PASS Knob controls only the volume (pressing the PILOT/PASS Knob has no effect on the VOL/SQ selection).
- When the MAN SQ Annunciator is illuminated (Manual Squelch), the PILOT/PASS Knob controls either volume or squelch (selected by pressing the PILOT/PASS Knob and indicated by the VOL or SQ annunciation).

Figure 4-21 Volume/Squelch Control

SPLIT COM

NOTE: Split COM performance is affected by the distance between the COM antennas and the separation of the tuned frequencies. If the selected COM1 and COM2 frequencies are too close together, interference may be heard during transmission on the other radio.

During Split COM operation, both the pilot and the copilot can transmit simultaneously over separate radios. The pilot can still monitor NAV1, NAV2, ADF, DME, and MKR Audio as selected, but the copilot is only able to monitor COM2.

Pressing the COM 1/2 Key selects Split COM operation. The COM $1 / 2$ Annunciator is illuminated indicating Split COM operation. COM1 and COM2 frequencies are displayed in green indicating that both transceivers are active. Split COM operation is cancelled by pressing the COM 1/2 Key again, at which time the annunciator is extinguished.

When Split COM operation is selected，COM1 is used by the pilot and COM2 is used by the copilot．The COM1 MIC Annunciator flashes when the pilot＇s microphone PTT is pressed．The COM2 MIC Annunciator flashes when the copilot＇s microphone PTT is pressed．

CLEARANCE RECORDER AND PLAYER

NOTE：Pressing the play key on the pilot＇s Audio Panel plays recorded audio to the Pilot．Pressing the play key on the Copilot＇s Audio Panel plays recorded audio to the Copilot．

The Audio Panel contains a digital clearance recorder that continually records up to 2.5 minutes of the selected COM radio signal．Recorded COM audio is stored in separate memory blocks．Once 2.5 minutes of recording time have been reached，the recorder begins recording over the stored memory blocks，starting from the oldest block．

The PLAY Key controls the play function．The PLAY annunciator remains lit to indicate when play is in progress．The PLAY annunciator turns off after playback is finished．
Pressing the PLAY Key once plays the latest recorded memory block and then returns to normal operation． Pressing the PLAY Key again during play of a memory block stops play．If a COM input signal is detected during play of a recorded memory block，play is halted．
Pressing the PLAY Key twice within one－half second while audio is playing plays the previous block of recorded audio．Each subsequent two presses of the PLAY Key within one－half second backtracks through the recorded memory blocks to reach and play any recorded block．
Powering off the unit automatically clears all recorded blocks．

ENTERTAINMENT INPUTS

NOTE：MUSIC INPUT \＃1 and MUSIC INPUT \＃2 cannot be completely turned off．Audio level for MUSIC INPUT \＃1 and MUSIC INPUT \＃2 can be adjusted by a Garmin－authorized service center．

The Audio Panel provides two stereo auxiliary entertainment inputs：MUSIC INPUT \＃1 and MUSIC INPUT \＃2． These inputs are compatible with popular portable entertainment devices such as MP3 players，cell phones， and tablets．Two $3.5-\mathrm{mm}$ stereo phone jacks are installed in convenient locations for audio connection．The headphone outputs of the entertainment devices are plugged into the MUSIC INPUT \＃l or MUSIC INPUT \＃2 jacks．
The current ICS state of isolation affects the distribution of the entertainment input MUSIC INPUT \＃1．

MUSIC INPUT \＃1

MUSIC INPUT \＃1 can be heard by the pilot and copilot when both the PILOT and the COPLT Annunciators are extinguished．MUSIC INPUT \＃1 can also be heard by the pilot when the COPLT Annunciator is illuminated and by the copilot when the PILOT Annunciator is illuminated．

MUSIC INPUT \#1 Muting

MUSIC INPUT \#l muting occurs when aircraft radio or marker beacon activity is heard. MUSIC INPUT \#l is always soft muted when an interruption occurs from these sources. Soft muting is the gradual return of MUSIC INPUT \#l to its original volume level. The time required for MUSIC INPUT \#l volume to return to normal is between one-half and four seconds.

MUSIC INPUT \#1 Muting Enable/Disable

Pressing and holding the MKR/MUTE Key for three seconds switches MUSIC INPUT \#1 muting on and off. When switching, either one or two beeps are heard; one beep indicates that music muting is enabled, two beeps indicate music muting is disabled. MUSIC INPUT \#l muting is reset (enabled) during power up.

MUSIC INPUT \#2

MUSIC INPUT \#2 can be heard only by the passengers and is never muted.

XM RADIO ENTERTAINMENT

XM Radio audio from the Data Link Receiver may be heard by the pilot and passengers simultaneously (optional: requires subscription to XM Radio Service). Refer to the Additional Features Section for more details on the Data Link Receiver.

Connecting a stereo input to either MUSIC INPUT \#1 or MUSIC INPUT \#2 jacks removes the XM Radio Audio from that input. For example, if passengers prefer their own music while the pilot listens to the XM Radio, the entertainment audio should be connected to the MUSIC INPUT \#2 jack.

4．6 AUDIO PANELS PREFLIGHT PROCEDURE

NOTE：If the pilot and／or copilot are using headsets that have a high／low switch or volume control knob， verify that the switch is in the high position and the volume control on the headsets are at maximum volume setting．On single－pilot flights，verify that all other headsets are not connected to avoid excess noise in the audio system．

NOTE：When the MAN SQ Key is pressed，the ICS squelch can be set manually by the pilot and copilot．If manual squelch is set to full open（SQ annunciated and the knobs turned counterclockwise）background noise is heard in the ICS system as well as during COM transmissions．

After powering up the System，the following steps aid in maximizing the use of the Audio Panel as well as prevent pilot and copilot induced issues．These preflight procedures should be performed each time a pilot boards the aircraft to insure awareness of all audio levels in the Audio Panel and radios．

Setting the Audio Panel during preflight：

1）Verify that the PILOT and COPLT Annunciators are extinguished．
2）Verify manual squelch is set to full open．
3）Turn the PILOT／PASS Knobs clockwise two full turns．This sets the intercom level to max volume（least amount of attenuation）．

4）Adjust radio volume levels（COM，NAV）to a suitable level．
5）Adjust the PILOT／PASS Knob volume to the desired intercom level．
6）Reset squelch to automatic，or adjust to the appropriate level manually．
Once this procedure has been completed，the pilot and copilot can change settings，keeping in mind the notes above．

4.7 ABNORMAL OPERATION

Abnormal operation of the system includes equipment failures of the system components and failure of associated equipment, including switches and external devices.

STUCK MICROPHONE

If the push-to-talk (PTT) Key becomes stuck, the COM transmitter stops transmitting after 35 seconds of continuous operation. An alert appears in the Alerts Window on the PFD to advise the crew of a stuck microphone.
The COM1 MIC or COM2 MIC Key Annunciator on the Audio Panel flashes as long as the PTT Key remains stuck.

COM TUNING FAILURE

In case of a COM system tuning failure, the emergency frequency $(121.500 \mathrm{MHz})$ is automatically tuned in the radio in which the tuning failure occurred. Depending on the failure mode, a red X may appear on the frequency display.

AUDIO PANEL FAIL-SAFE OPERATION

If there is a failure of the Audio Panel, a fail-safe circuit connects the pilot's headset and microphone directly to the COM1 transceiver. Audio is not available on the speaker during Fail-safe operation.

REVERSIONARY MODE

The red DISPLAY BACKUP Button selects the Reversionary Mode. See the System Overview Section for more information on Reversionary Mode.

SECTION 5 FLIGHT MANAGEMENT

5.1 INTRODUCTION

The system is an integrated flight, engine, communication, navigation and surveillance system. This section of the Pilot's Guide explains flight management using the system.
The most prominent part of the system are the two full color displays: one Primary Flight Display (PFD) and a Multi Function Display (MFD). The information to successfully navigate the aircraft using the GPS sensors is displayed on the PFD and the MFD. Detailed descriptions of GPS navigation functions are discussed later in this section.

A brief description of the GPS navigation data on the PFD and MFD follows.
Navigation mode indicates which sensor is providing the course data (e.g., GPS, VOR) and the flight plan phase (e.g., Departure (DPRT), Terminal (TERM), Enroute (ENR), Oceanic (OCN), RNAV Approach (LNAV, LNAV+V, LVNAV, LP, LP+V, LPV), or Missed Approach (MAPR)). L/VNAV, LP, LP+V, and LPV approach service levels are only available with SBAS.

The Inset Map is a small version of the Navigation Map and can be displayed in the lower left corner of the PFD. When the system is in reversionary mode, the Inset Map is displayed in the lower right corner. The Inset Map is displayed by pressing the Map/HSI Softkey, pressing the Layout Softkey, then pressing the Inset Map Softkey. Pressing the Map Off Softkey removes the Inset Map.

The Navigation Map displays aviation data (e.g., airports, VORs, airways, airspaces), geographic data (e.g., cities, lakes, highways, borders), topographic data (map shading indicating elevation), and hazard data (e.g., traffic, terrain, weather). The amount of displayed data for the Inset Map can be reduced by pressing the Map/ HSI Softkey on the PFD, then pressing the Detail Softkey. The amount of displayed data for the Navigation Map can be reduced by pressing the Detail Softkey on the MFD. The Navigation Map can be oriented three different ways: North Up (NORTH UP), Track Up (TRK UP), or Heading Up (HDG UP).

An aircraft icon is placed on the Navigation Map at the location corresponding to the calculated present position. The aircraft position and the flight plan legs are accurately based on GPS calculations. The basemap upon which these are placed are from a source with less resolution, therefore the relative position of the aircraft to map features is not exact. The leg of the active flight plan currently being flown is shown as a magenta line on the navigation map. The other legs are shown in white.
There are 28 different map ranges available, from 250 feet to 1000 nm . Range is indicated in the upper left quadrant of the range ring shown around the aircraft icon. This indicated range is the range from the aircraft icon to the range ring, and roughly half the range to the top edge of the displayed map. To change the map range on any map, turn the Joystick counter-clockwise to zoom in (-, decreasing), or clockwise to zoom out (+ , increasing).

The Direct-to Window, the Flight Plan Window, the Procedures Window, and the Nearest Airports Window can be displayed in the lower right corner of the PFD. Details of these windows are discussed in detail later in the section.

Figure 5-1 GPS Navigation Information on the PFD Inset Map

Figure 5-2 GPS Navigation Information on the PFD HSI Map

Figure 5-3 GPS Navigation Information on the MFD Navigation Page

NAVIGATION STATUS BOX AND DATA BAR

The Navigation Status Box located at the top of the PFD contains two fields displaying the following information:

DIGGY \Rightarrow TIFTO DIS 15.3 NM BRG 287°

Figure 5-4 PFD Navigation Status Box

- Active flight plan leg (e.g., 'D-> KICT' or 'KIXD -> KCOS') or flight plan annunciations (e.g., 'Turn right to 021° in 8 seconds')
- Distance (DIS) and Bearing (BRG) to the next waypoint or flight plan annunciations (e.g., 'TOD within 1 minute')

The symbols used in the PFD status box are:

Symbol	Description	Symbol	Description
\longrightarrow	Active Leg	$\square 2$	Left Holding Pattern
반	Direct-to	ULf	Vector to Final
Ω	Right Procedure Turn	-	Right DME Arc/Radius to Fix Leg
\checkmark	Left Procedure Turn	5	Left DME Arc/Radius to Fix Leg
\longrightarrow	Right Holding Pattern		

The Navigation Data Bar located at the top of the MFD contains four data fields, each displaying one of the following items:

BRG	Bearing
DEST	Destination Airport Identifier
DIS	Distance
DTG	Distance to Go
DTK	Desired Track
END	Endurance
ENR	ETE to Final Destination
ESA	Enroute Safe Altitude
ETA	Estimated Time of Arrival
ETE	Estimated Time Enroute
FLT	Flight Timer

FOB	Fuel on Board
FOD	Fuel over Destination
GS	Ground Speed
ISA	Temperature at Standard Pressure
LDG	ETA at Final Destination
MSA	Minimum Safe Altitude
TAS	True Airspeed
TKE	Track Angle Error
TRK	Track
VSR	Vertical Speed Required
XTK	Cross-Track Error

GS 178KT DTK $287^{\circ} \quad$ TRK $288^{\circ} \quad$ ETE 05:09
 Figure 5-5 MFD Navigation Data Bar

The navigation information displayed in the four data fields can be selected on the MFD Data Bar Fields Box on the Aux-System Setup 1 Page. The default selections (in order left to right) are GS, DTK, TRK, and ETE.

Changing a field in the MFD Navigation Data Bar:

1) Select the Aux - System Setup 1 Page.
2) Press the FMS Knob momentarily to activate the flashing cursor.
3) Turn the large FMS Knob to highlight the desired field number in the MFD Data Bar Fields Box.
4) Turn the small FMS Knob to display and scroll through the data options list to select the desired data.
5) Press the ENT Key. Selecting the Defaults Softkey returns all fields to the default setting.

5.2 USING MAP DISPLAYS

Map displays are used extensively in the system to provide situational awareness in flight. Most system maps can display the following information:

- Airports, NAVAIDs, airspaces, airways, land data (highways, cities, lakes, rivers, borders, etc.) with names
- Map range
- Wind direction and speed
- Map orientation
- Icons for enabled map features
- Aircraft icon (representing present position)
- Obstacle data
- Topography scale
- Map Pointer information (distance and bearing to pointer, location of pointer, name, and other pertinent information)
- Fuel range ring
- Flight plan legs
- User waypoints
- Track vector
- Terrain
- Topography data

The information in this section applies to the following maps unless otherwise noted:

All Map Group Pages (MAP)
All Waypoint Group Pages (WPT)
Aux - Trip Planning
All Nearest Group Pages (NRST)

Flight Plan Pages (FPL)
Direct-to Window
PFD Inset Map
Procedure Loading Pages

MAP ORIENTATION

Maps are shown in one of three different orientation options, allowing flexibility in determining aircraft position relative to other items on the map (north up) or for determining where map items are relative to where the aircraft is going (track up or heading up). The map orientation is shown in the upper left corner of the map.

Figure 5-6 Map Orientation

- North up (North up) aligns the top of the map display to north (default setting).
- Track up (Track up) aligns the top of the map display to the current ground track.
- Heading up (HDG up) aligns the top of the map display to the current aircraft heading.

NOTE：When panning or reviewing active flight plan legs in a non－North Up orientation，the map does not show the map orientation nor the wind direction and speed．

NOTE：Map orientation can only be changed on the Navigation Map Page．Any other displays that show navigation data reflect the orientation selected for the Navigation Map Page．

Changing the Navigation Map orientation：
1）With the Navigation Map Page displayed，press the MENU Key．The cursor flashes on the＇Map Settings＇option．

Figure 5－7 Navigation Map Page Menu Window
2）Press the ENT Key to display the Map Settings Window．
3）Turn the large FMS Knob，or press the ENT Key once，to select the＇Orientation＇field．

Orientation Field North Up Above Field
North Up Above Field

Figure 5－8 Map Settings Menu Window－Map Group

4）Turn the small FMS Knob to select the desired orientation．
5）Press the ENT Key to select the new orientation．
6）Press the FMS Knob to return to the base page．

The map can be configured to switch automatically to a north up orientation when the map range reaches a minimum range.

Enabling/disabling Auto North Up and selecting the minimum switching range:

1) Press the MENU Key with the Navigation Map Page displayed. The cursor flashes on the 'Map Settings' option.
2) Press the ENT Key. The Map Settings Menu is displayed.
3) Select the 'Map' group.
4) Press the ENT Key.
5) Highlight the 'North Up Above' field.
6) Select 'On' or 'Off' using the small FMS Knob.
7) Press the ENT Key to accept the selected option. The flashing cursor highlights the range field.
8) Use the small FMS Knob to select the desired range.
9) Press the ENT Key to accept the selected option.
10) Press the FMS Knob to return to the Navigation Map Page.

MAP RANGE

There are 28 different map ranges available, from 250 feet to 1000 nm . Range is indicated in the upper left quadrant of the range ring shown around the aircraft icon. This indicated range is the range from the aircraft icon to the range ring, and roughly half the range to the top edge of the displayed map. When the map range is decreased to a point that exceeds the capability of the system to accurately represent the map, a magnifying glass icon is shown to the left of the map range. To change the map range turn the Joystick counter-clockwise to decrease the range, or clockwise to increase the range.

Auto Zoom On

15 NM

Abstract

AUTO ZOOM Auto zoom allows the system to change the map display range to the smallest range clearly showing the active waypoint. Auto zoom can be overridden by adjusting the range with the Joystick, and remains until the active waypoint changes, a terrain or traffic alert occurs, the aircraft takes off, or the manual override times out (timer set on Map Settings Window). Auto zoom is suspended while the map pointer is active.

If a terrain caution or warning occurs，all navigation maps automatically adjust to the smallest map range clearly showing the potential impact areas．If a new traffic advisory alert occurs，any map page capable of displaying traffic advisory alerts automatically adjusts to the smallest map range clearly showing the traffic advisory．When terrain or traffic alerts clear，the map returns to the previous auto zoom range based on the active waypoint．

The auto zoom function can be turned on or off independently for the PFD and MFD．Control of the ranges at which the auto zoom occurs is done by setting the minimum and maximum＇look forward＇times（set on the Map Settings Window for the Map Group）．These settings determine the minimum and maximum distance to display based upon the aircraft＇s ground speed．
－Waypoints that are long distances apart cause the map range to increase to a point where many details on the map are decluttered．If this is not acceptable，lower the maximum look ahead time to a value that limits the auto zoom to an acceptable range．
－Waypoints that are very short distances apart cause the map range to decrease to a point where situational awareness may not be what is desired．Increase the minimum look ahead time to a value that limits the auto zoom to a minimum range that provides acceptable situational awareness．
－Flight plans that have a combination of long and short legs cause the range to increase and decrease as waypoints sequence．To avoid this，auto zoom can be disabled or the maximum／minimum times can be adjusted．
－The＇time out＇time（configurable on the Map Settings Page for the Map Group）determines how long auto zoom is overridden by a manual adjustment of the range knob．At the expiration of this time，the auto zoom range is restored．Setting the＇time out＇value to zero causes the manual override to never time out．
－When the maximum＇look forward＇time is set to zero，the upper limit becomes the maximum range available （ 1000 nm ）．
－When the minimum＇look forward＇time is set to zero，the lower limit becomes 1.5 nm ．

Configuring automatic zoom：

1）Press the MENU Key with the Navigation Map Page displayed．The cursor flashes on the＇Map Settings＇option．
2）Press the ENT Key．The Map Settings Menu is displayed．
3）Select the＇Map＇group．
4）Press the ENT Key．
5）Highlight the＇Auto Zoom＇on／off field，and select＇Off＇or＇On＇using the small FMS Knob．
6）Press the ENT Key to accept the selected option．The flashing cursor highlights the＇Auto Zoom＇display selection field．

7）Select＇MFD＇，＇PFD＇，or＇All＇using the small FMS Knob．
8）Press the ENT Key to accept the selected option．The flashing cursor highlights the＇Max Look FWD＇field．Times are from zero to 999 minutes．

9）Use the FMS Knobs to set the time．Press the ENT Key．
10）Repeat step 9 for＇Min Look FWD＇（zero to 99 minutes）and＇Time Out＇（zero to 99 minutes）．
11）Press the FMS Knob to return to the Navigation Map Page．

MAP PANNING

Map panning allows the pilot to:

- View parts of the map outside the displayed range without adjusting the map range
- Highlight and select locations on the map
- Review information for a selected airport, NAVAID or user waypoint
- Designate locations for use in flight planning
- View airspace and airway information

When the panning function is selected by pushing the Joystick, the Map Pointer flashes on the map display. A window also appears at the top of the map display showing the latitude/longitude position of the pointer, the bearing and distance to the pointer from the aircraft's present position, and the elevation of the land at the position of the pointer.

Panning the map:

1) Push the Joystick to display the Map Pointer.
2) Move the Joystick to move the Map Pointer around the map.
3) Push the Joystick to remove the Map Pointer and recenter the map on the aircraft's current position.

NOTE: The map is normally centered on the aircraft's position. If the map has been panned and there has been no pointer movement for about 60 seconds, the map reverts back to centered on the aircraft position and the flashing pointer is removed.

Figure 5-10 Navigation Map - Map Pointer Activated

When the Map Pointer is placed on an object, the name of the object is highlighted (even if the name was not originally displayed on the map). When any map feature or object is selected on the map display, pertinent information is displayed.

Figure 5-11 Navigation Map - Map Pointer on Point of Interest
When the Map Pointer crosses an airspace boundary, the boundary is highlighted and airspace information is shown. The information includes the name and class of airspace, the ceiling in feet above Mean Sea Level (MSL), and the floor in feet MSL.

Reviewing information for an airport, NAVAID, or user waypoint:

1) Place the Map Pointer on a waypoint.
2) Press the ENT Key to display the Waypoint Information Page for the selected waypoint.
3) Select the Go Back Softkey, the CLR Key, or the ENT Key to exit the Waypoint Information Page and return to the Navigation Map showing the selected waypoint.

Viewing airspace information for a special-use or controlled airspace:

1) Place the Map Pointer on the boundary of an airspace.
2) Push the Joystick to remove the Map Pointer and center the map on the aircraft. Or:
3) Place the Map Pointer on an open area within the boundaries of an airspace.
4) Press the ENT Key to display an options menu.
5) 'Review Airspaces' should already be highlighted, if not select it. Press the ENT Key to display the Airspace Information Page for the selected airspace.
6) Press the CLR or ENT Key to exit the Airspace Information Page.

TOPOGRAPHY

All navigation maps can display various shades of topography colors representing land elevation，similar to aviation sectional charts．Topographic data can be displayed or removed as described in the following procedures．Topographic data can also be displayed on the selectable VSD inset at the bottom of the navigation map．

Figure 5－13 Navigation Map－Topographic Data

Displaying／removing topographic data on all MFD pages displaying navigation maps：
1）Select the Map Opt Softkey．
2）Select the TER Softkey until＇Topo＇is shown on the softkey to display topographic data．
3）Select the TER Softkey until＇Off＇is shown on the softkey to remove topographic data from the navigation map． When topographic data is removed from the page，all navigation data is presented on a black background．

Displaying/removing topographic data on the PFD Inset Map:

1) Select the Map/HSI Softkey.
2) Select the Topo Softkey.
3) Select the Topo Softkey again to remove topographic data from the PFD Inset Map. When topographic data is removed from the PFD Map, all navigation data is presented on a black background.

Figure 5-14 PFD Inset Map - Absolute Terrain Data

Displaying/removing topographic data using the Navigation Map Page Menu:

1) Press the MENU Key with the Navigation Map Page displayed. The cursor flashes on the 'Map Settings' option.
2) Press the ENT Key. The Map Settings Menu is displayed.
3) Select the 'Map' group.
4) Press the ENT Key.
5) Highlight the 'Terrain Display' field.
6) Select 'Topo' or 'Off'.
7) Press the FMS Knob to return to the Navigation Map Page.

The topographic data range is the maximum map range on which topographic data is displayed.

NOTE: Since the PFD Inset Map is much smaller than the MFD navigation maps, items are removed on the PFD Inset Map two range levels smaller than the range selected in the Map Settings pages (e.g., a setting of 100 nm removes the item at ranges above 100 nm on MFD navigation maps, while the PFD Inset Map removes the same item at 50 nm).

Selecting a topographical data range (Terrain Display):

1) Press the MENU Key with the Navigation Map Page displayed. The cursor flashes on the 'Map Settings' option.
2) Press the ENT Key. The Map Settings Menu is displayed.
3) Select the 'Map' group.
4) Press the ENT Key.

5）Highlight the＇Terrain Display＇range field．Ranges are from 1 nm to 1000 nm ．
6）To change the Terrain Display range setting，turn the small FMS Knob to display the range list．
7）Select the desired range using the small FMS Knob．
8）Press the ENT Key．
9）Press the FMS Knob to return to the Navigation Map Page．
In addition，the Navigation Map can display a topographic scale（located in the lower right hand side of the map）showing a scale of the terrain elevation and minimum／maximum displayed elevations．

Figure 5－15 Navigation Map－TOPO SCALE

Displaying／removing the topographic scale（Topo Scale）：

1）Press the MENU Key with the Navigation Map Page displayed．The cursor flashes on the＇Map Settings＇option．
2）Press the ENT Key．The Map Settings Menu is displayed．
3）Select the＇Map＇group and select the ENT Key．
4）Highlight the＇Topo Scale＇field．
5）Select＇On＇or＇Off＇．
6）Press the FMS Knob to return to the Navigation Map Page．

AVIATION SYMBOLS

The following items are configured on the aviation menu:

Table 5-2 Aviation Symbol Information

Airspace Symbols	Symbol	Default Range (nm)	Maximum Range (nm)
Smart Airspace On/Off	N/A	N/A	N/A
Airspace Altitude Labels (Airspace ALT LBL) On/Off			
Class B Airspace Altitude Label (ceiling/floor)	$\frac{80}{30}$	N/A	N/A
Class C Airspace Altitude Label (ceiling/floor)	$\frac{53}{5 F C}$	N/A	N/A
Class D Airspace Altitude Label (ceiling)	[36]	N/A	N/A
Class B Airspace/TMA (CLASS B/TMA)		50	150
Class C Airspace/TCA (CLASS C/TCA)		50	100
Class D Airspace (CLASS D)		10	100
Restricted Area (RESTRICTED)		50	100
Military Operations Area [MOA(MILITARY)]		50	250
Other/Air Defense Interdiction Zone (OTHER/ADIZ)		50	250

Table 5-3 Airspace Symbol Information

SYMBOL SETUP

All navigation maps can display land, aviation and airspace symbols. Symbol types (e.g. runway extensions, railroads) can be removed individually. The range sets the maximum range at which items appear on the display. For example, enabling "Runway Extension" displays a dashed line on the map extending from each runway of an airport in the flight plan when the range is set at or below the value of the map settings option.

Setting up the＇Land＇，＇Aviation＇or＇Airspace＇group items：

1）Press the MENU Key with the Navigation Map Page displayed．The cursor flashes on the＇Map Settings＇option．
2）Press the ENT Key．The Map Settings Menu is displayed．
3）Turn the small FMS Knob to select the desired group．
4）Press the ENT Key．The cursor flashes on the first field．
5）Turn the large FMS Knob to select the desired option．
6）Turn the small FMS Knob to select the desired setting（e．g．On／Off or maximum range）．
7）Press the ENT Key to accept the selected option and move the cursor to the next item．
8）Repeat steps 5－7 as necessary．
9）Press the FMS Knob to return to the Navigation Map Page．

MAP DECLUTTER

The declutter feature allows the pilot to progressively step through four levels of removing map information． The declutter level is displayed in the Detail Softkey and next to the Declutter Menu Option．

Decluttering the map：

Select the Detail Softkey with the Navigation Map Page displayed．The current declutter level is shown．With each softkey selection，another level of map information is removed．

Or：
1）Press the MENU Key with the Navigation Map Page displayed．
2）Select＇Declutter＇．The current declutter level is shown．
3）Press the ENT Key．

Decluttering the PFD Inset Map：

1）Press the Map／HSI Softkey．
2）Select the Detail Softkey．The current declutter level is shown．With each selection，another level of map information is removed．

Table 5-4 lists the items that are decluttered at each map detail level. The ' X ' represents map items decluttered for each level of detail.

Item	Detail 3	Detail 2	Detail 1
Data Link Radar Precipitation			X
Data Link Lightning			X
Graphical METARs			X
Airports			X
Safe Taxi			X
Runway Labels			X
TFRs			X
Restricted			X
MOA (Military)			X
User Waypoints		X	X
Latitude/Longitude Grid		X	X
NAVAIDs (does not declutter if used to define airway)		X	X
Intersections (does not declutter if used to define airway)		X	X
Class B Airspaces/TMA		X	X
Class C Airspaces/TCA		X	X
Class D Airspaces		X	X
Other Airspaces/ADIZ		X	X
Obstacles		X	X
Cities	X	X	X
Roads	X	X	X
Railroads	X	X	X
State/Province Boundaries	X	X	X

Table 5-4 Navigation Map Items Decluttered for each Detail Level

AIRWAYS

This airways discussion is based upon the North American airway structure．The airway structure in places other than North America vary by location，etc．and are not discussed in this book．Low Altitude Airways （Victor Airways or T－Routes）start 1，200 feet above ground level（AGL）and extend up to 18，000 feet mean sea level（MSL）．Low Altitude Airways are designated with a＂V＂or a＂T＂before the airway number．
High Altitude Airways（Jet Routes or Q－Routes）start at 18，000 feet MSL and extend upward to 45，000 feet MSL．High Altitude Airways are designated with a＂J＂or a＂Q＂before the airway number．

Low Altitude Airways are drawn in gray（the same shade used for roads）．High Altitude Airways are drawn in green．When both types of airways are displayed，High Altitude Airways are drawn on top of Low Altitude Airways．

When airways are selected for display on the map，the airway waypoints（VORs，NDBs and Intersections）are also displayed．

Figure 5－16 Airways on MFD Navigation Page
Airways may be displayed on the map at the pilot＇s discretion using either a combination of AWY Softkey selections，or menu selections using the MENU Key from the Navigation Map Page．The Airway range can also be programmed to only display Airways on the MFD when the map range is at or below a specific number．

ADDITIONAL NAVIGATION MAP ITEMS

Navigation maps can display some additional items．These items（e．g．track vector，wind vector，fuel range ring，SVT field of view，and selected altitude intercept arc）can be displayed／removed individually．

Setting up additional＇Map＇group items：

1）Press the MENU Key with the Navigation Map Page displayed．The cursor flashes on the＇Map Settings＇option．
2）Press the ENT Key．The Map Settings Menu is displayed．
3）Turn the small FMS Knob to select the＇Map＇group．
4）Press the ENT Key．The cursor flashes on the first field．
5）Turn the large FMS Knob to select the desired option．
6）Turn the small FMS Knob to select＇On＇or＇Off＇．
Or：
If it is a data field，use the FMS Knob to select the range or time value．
7）Press the ENT Key to accept the selected option and move the cursor to the next item．
8）Repeat steps 5－7 as necessary．
9）Press the FMS Knob to return to the Navigation Map Page．

TRACK VECTOR

The Navigation Map can display a track vector that is useful in minimizing track angle error．The track vector is a solid cyan line segment extended to a predicted location．The track vector look－ahead time is selectable（ $30 \mathrm{sec}, 60 \mathrm{sec}$（default）， $2 \mathrm{~min}, 5 \mathrm{~min}, 10 \mathrm{~min}, 20 \mathrm{~min}$ ）and determines the length of the track vector．The track vector shows up to 90 degrees of a turn for the 30 and 60 second time settings．It is always a straight line for the $2 \mathrm{~min}, 5 \mathrm{~min}, 10 \mathrm{~min}$ and 20 min settings．

Figure 5－17 Navigation Map－Track Vector

NOTE: The wind vector is not displayed until the aircraft is moving. It is not displayed on the Waypoint Information pages.

FUEL RANGE RING

The map can display a fuel range ring which shows the remaining flight distance. A dashed green circle indicates the selected range to reserve fuel. A solid green circle indicates the total endurance range. If only reserve fuel remains, the range is indicated by a solid amber circle.

Figure 5-19 Navigation Map - Fuel Range Ring

FIELD OF VIEW（SVT）

The map can display the boundaries of the PFD Synthetic Vision Technology（SVT）lateral field of view．The field of view is shown as two dashed lines forming a V shape in front of the aircraft symbol on the map．This is only available if SVT is installed on the aircraft．

Figure 5－20 Navigation Map－Field of View

SELECTED ALTITUDE INTERCEPT ARC

The map can display the location along the current track where the aircraft will intercept the selected altitude．The location will be shown as a cyan arc when the aircraft is actually climbing or descending．

Figure 5－21 Navigation Map－Range to Altitude Arc

IFR/VFR CHARTS
The system can display GPS navigation information on a VFR chart, a low altitude IFR chart, or a high altitude IFR chart. The information overlaid on the IFR/VFR Charts is selected and setup on the Navigation Map, but the IFR/VFR charts will not display some of the selected items. Only the following items will be overlaid on the chart:

- Map Pointer (distance and bearing to pointer, location of pointer, name, and other pertinent information)
- Map Range (17 range choices from 1 nm to 150 nm)
- Map Orientation (always North Up for IFR/VFR Charts)
- Aircraft Icon (representing present position)
- Wind Direction and Speed
- Icons for enabled map features (Traffic only)
- Flight Plan Legs
- Track Vector
- Runway Extension
- Missed Approach Preview
- Intersections (only as part of active flight plan)
- Visual Reporting Points
- VNAV Constraints
- Selected Altitude Intercept Arc

Figure 5-22 GPS Navigation Information on the VFR Chart

Figure 5-23 GPS Navigation Information on the IFR Low Altitude Chart

Figure 5-24 GPS Navigation Information on the IFR High Altitude Chart

Map panning on the IFR/VFR Charts works the same as on the Navigation Map. Map range selected on either the Navigation Map or the IFR/VFR Charts applies to both. However, if the range selected on the Navigation Map it is not a valid chart range, the chart is shown with a range of 7.5 nm .

Modifying the chart settings:

5.3 WAYPOINTS

Waypoints are predetermined geographical positions (internal database) or pilot-entered positions, and are used for all phases of flight planning and navigation.

Communication and navigation frequencies can be tuned "automatically" from various Waypoint Information (WPT) pages, Nearest (NRST) pages, and the Nearest Airports Window (on PFD). This auto-tuning feature simplifies frequency entry over manual tuning. Refer to the Audio Panel and CNS section for details on autotuning.
Waypoints can be selected by entering the ICAO identifier, entering the name of the facility, or by entering the city name. See the System Overview section for detailed instructions on entering data in the system. As a waypoint identifier, facility name, or location is entered, the Spell'N'Find feature scrolls through the database, displaying those waypoints matching the characters which have been entered to that point. A direct-to navigation leg to the selected waypoint can be initiated by pressing the Direct-to Key on any of the waypoint pages.

Figure 5-25 Waypoint Information Window

In addition to displaying a map of the currently selected airport and surrounding area, the Airport Information Page displays airport information in three boxes labeled 'Airport', 'Runways', and 'Frequencies'. For airports with multiple runways, information for each runway is available. This information is viewed on the Airport Information Page by pressing the $\mathbf{I n f o}$ softkey until \mathbf{l} is displayed.

Figure 5-27 Airport Information Page
The following descriptions and abbreviations are used on the Airport Information Page:

- Usage type: Public, Military, Private, or Heliport
- Runway surface type: Hard, Turf, Sealed, Gravel, Dirt, Soft, Unknown, or Water
- Runway lighting type: No Lights, Part Time, Full Time, Unknown, or PCL Freq (for pilot-controlled lighting)
- COM Availability: TX (transmit only), RX (receive only), PT (part time), i (additional information available)

Figure 5-28 Airport Directory Page Example
The airport directory information is viewed on the Airport Directory Page by pressing the Info Softkey until $\mathbf{2}$ is displayed. The following are types of airport directory information shown (if available) on the Airport Directory Page:

- Airport: Identifier, Site Number, Name, City, State
- Phones: Phone/Fax Numbers
- Hours: Facility Hours, Light Hours, Tower Hours, Beacon Hours
- Location: Sectional, Magnetic Variation
- Frequencies: Type/Frequency
- Transportation: Ground Transportation Type Available
- Approach: Approach Facility Name, Frequency, Frequency Parameter
- Traffic Pattern Altitudes (TPA): Aircraft Class/Altitude
- Weather: Service Type, Frequency, Phone Number
- Flight Service Station (FSS): FSS Name, Phone Numbers
- Instrument Approaches: Published Approach, Freq.
- NAVAIDS: Type, Identifier, Frequency, Radial, Distance
- Noise: Noise Abatement Procedures
- Charts: Low Altitude Chart Number
- Runway: Headings, Length, Width, Obstructions, Surface
- Obstructions: General Airport Obstructions
- Special Operations at
Airport
- Services Available: Category, Specific Service
- Notes: Airport Notes
- Pilot Controlled Lighting: High/Med/Low Clicks/Second
- FBO: Type, Frequencies, Services, Fees, Fuel, Credit Cards, Phone/Fax Numbers

Selecting an airport for review by identifier，facility name，or location：

1）From the Airport Information Page，press the FMS Knob．
2）Use the FMS Knobs and enter an identifier，facility name，or location．
3）Press the ENT Key．
4）Press the FMS Knob to remove the cursor．

Selecting a runway：

1）With the Airport Information Page $\mathbf{1}$ displayed，press the FMS Knob to activate the cursor．
2）Turn the large FMS Knob to place the cursor in the＇Runways＇Box，on the runway designator．
3）Turn the small FMS Knob to display the desired runway（if more than one）for the selected airport．
4）To remove the flashing cursor，press the FMS Knob．

Viewing a destination airport：

From the Airport Information Page press the MENU Key．Select＇View Destination Airport＇．The Destination Airport is displayed．
The Airport Frequencies Box uses the descriptions and abbreviations listed in the following table：

Communication Frequencies			Navigation Frequencies
Approach＊	Control	Pre－Taxi	ILS
Arrival＊	CTA＊	Radar	LOC
ASOS	Departure＊	Ramp	
ATIS	Gate	Terminal＊	
AWOS	Ground	TMA＊	
Center	Helicopter	Tower	
Class B＊	Multicom	TRSA＊	
Class C＊	Other	Unicom	
Clearance			
＊May include Additional Information			

Table 5－6 Airport Frequency Abbreviations
A departure，arrival，or approach can be loaded using the softkeys on the Airport Information Page．See the Procedures section for details．METARs or TAFs applicable to the selected airport can be selected for display（see the Hazard Avoidance section for details about weather）．

The system provides a Nearest Softkey on the PFD, which gives the pilot quick access to nearest airport information (very useful if an immediate landing is required). The Nearest Airports Window displays a list of up to 25 of the nearest airports (three entries can be displayed at one time). If there are more than three they are displayed in a scrollable list. If there are no nearest airports available, "None Within 200nm" is displayed.

Pressing the ENT Key while the Nearest Airports Window is shown displays the PFD Airport Information Window for the highlighted airport. Pressing the ENT Key again returns to the Nearest Airports Window with the cursor on the next airport in the list. Continued presses of the ENT Key sequences through the information pages for all airports in the Nearest Airports list.

Figure 5-30 Airport Information Window on PFD

Viewing information for a nearest airport on the PFD:

1) Select the Nearest Softkey to display the Nearest Airports Window.
2) Highlight the airport identifier with the FMS Knob and press the ENT Key to display the Airport Information Window.
3) To return to the Nearest Airports Window press the ENT Key (with the cursor on 'BACK') or press the CLR Key. The cursor is now on the next airport in the nearest airports list. (Repeatedly pressing the ENT Key moves through the airport list, alternating between the Nearest Airports Window and the Airport Information Window.)
4) Press the CLR Key or the Nearest Softkey to close the PFD Nearest Airports Window.

Viewing information for a nearest airport on the MFD:

1) Turn the large FMS Knob to select the NRST page group.
2) Turn the small FMS Knob to select the Nearest Airports Page (it is the first page of the group, so it may already be selected). If there are no Nearest Airports available, "None Within 200nm" is displayed.
3) Select the APT Softkey; or press the FMS Knob; or press the MENU Key, highlight 'Select Airport Window' and press the ENT Key. The cursor is placed in the 'Nearest Airports' Box. The first airport in the nearest airports list is highlighted.
4) Turn the FMS Knob to highlight the desired airport. (Pressing the ENT Key also moves to the next airport.)
5) Press the FMS Knob to remove the flashing cursor.

Viewing runway information for a specific airport：

1）With the Nearest Airports Page displayed，select the RNWY Softkey；or press the MENU Key，highlight＇Select Runway Window＇；and press the ENT Key．The cursor is placed in the＇Runways＇Box．
2）Turn the small FMS Knob to select the desired runway．
3）Press the FMS Knob to remove the flashing cursor．
See the Audio Panel and CNS Section for frequency selection and the Procedures section for approaches．
The Nearest Airports Box on the System Setup Page defines the minimum runway length and surface type used when determining the 25 nearest airports to display on the MFD Nearest Airports Page．A minimum runway length and／or surface type can be entered to prevent airports with small runways or runways that are not appropriately surfaced from being displayed．Default settings are 3000 feet（or meters）for runway length and＂Hard Only＂for runway surface type．

Selecting nearest airport surface and minimum runway length matching criteria：
1）Use the FMS Knob to select the System Setup 1 Page．
2）Press the FMS Knob momentarily to activate the flashing cursor．
3）Turn the large FMS Knob to highlight the runway surface field in the Nearest Airport Box．
4）Turn the small FMS Knob to select the desired runway option（Any，Hard Only，Hard／Soft，Water）．
5）Press the ENT Key．The cursor moves to the minimum length field in the Nearest Airport Box．
6）Use the FMS Knob to enter the minimum runway length（zero to 25，000 feet）and press the ENT Key．
7）Press the FMS Knob to remove the flashing cursor．

INTERSECTIONS

NOTE: The VOR displayed on the Intersection Information Page is the nearest VOR, not necessarily the VOR used to define the intersection.

The Intersection Information Page is used to view information about intersections. In addition to displaying a map of the currently selected intersection and surrounding area, the Intersection Information Page displays intersection information in three boxes labeled 'Intersection', 'Information', and 'Nearest VOR'.

Figure 5-32 Intersection Information Page

Selecting an intersection:

1) With the Intersection Information Page displayed, enter an identifier in the Intersection Box.
2) Press the ENT Key.
3) Press the FMS Knob to remove the flashing cursor.

Or:

1) With the Nearest Intersections Page displayed, press the FMS Knob.
2) Press the ENT Key or turn either FMS Knob to select an identifier in the Nearest Intersection Box.
3) Press the FMS Knob to remove the flashing cursor.

The Nearest Intersections Page can be used to quickly find an intersection close to the flight path. In addition to displaying a map of the surrounding area, the page displays information for up to 25 nearest intersections in three boxes labeled 'Nearest INT', 'Information', and 'Reference VOR'.

The selected intersection is indicated by a white arrow．Up to 12 intersections are visible at a time．If there are more than can be shown，the list can be scrolled．If there are no items for display，text indicating that fact is displayed．

NOTE：The list only includes waypoints that are within 200 nm ．

Figure 5－33 Nearest Intersections Page

NDBs
The NDB Information Page is used to view information about NDBs. In addition to displaying a map of the currently selected NDB and surrounding area, the page displays NDB information in four boxes labeled 'NDB', 'Information', 'Frequency', and 'Nearest Airport'.

Figure 5-34 NDB Information Page
(v) NOTE: Compass locator (LOM, LMM): a low power, low or medium frequency radio beacon installed in conjunction with the instrument landing system. When LOM is used, the locator is at the Outer Marker; when LMM is used, the locator is at the Middle Marker.

Selecting an NDB:

1) With the NDB Information Page displayed, enter an identifier, the name of the NDB, or the city in which it's located in the NDB Box.
2) Press the ENT Key.
3) Press the FMS Knob to remove the flashing cursor.

Or:

1) With the Nearest NDB Page displayed, press the FMS Knob.
2) Press the ENT Key or turn either FMS Knob to select an identifier in the Nearest NDB Box.
3) Press the FMS Knob to remove the flashing cursor.

The Nearest NDB Page can be used to quickly find a NDB close to the flight path．In addition to displaying a map of the surrounding area，the page displays information for up to 25 nearest NDBs in three boxes labeled ＇Nearest NDB＇，＇Information＇，and＇Frequency＇．
A white arrow before the NDB identifier indicates the selected NDB．Up to 12 NDBs are visible at a time．If there are more than can be shown，each list can be scrolled．The list only includes waypoints that are within 200 nm ．If there are no NDBs in the list，text indicating that there are no nearest NDBs is displayed．If there are no nearest NDBs in the list，the information and frequency fields are dashed．

Figure 5－35 Nearest NDB Page

1）With the Nearest VOR Page displayed，press the FMS Knob or press the VOR Softkey．
2）Press the ENT Key or turn either FMS Knob to select an identifier in the Nearest VOR Box．
3）Press the FMS Knob to remove the flashing cursor．
Or：
1）With the Nearest VOR Page displayed，press the MENU Key．
2）Highlight＇Select VOR Window＇，and press the ENT Key．
3）Press the ENT Key or turn either FMS Knob to select an identifier in the Nearest VOR Box．
4）Press the FMS Knob to remove the flashing cursor．
The Nearest VOR Page can be used to quickly find a VOR station close to the aircraft．Also，a NAV frequency from a selected VOR station can be loaded from the Nearest VOR Page．In addition to displaying a map of the surrounding area，the Nearest VOR Page displays information for up to 25 nearest VOR stations in three boxes labeled＇Nearest VOR＇，＇Information＇，and＇Frequency＇．The list only includes waypoints that are within 200 nm ．

A white arrow before the VOR identifier indicates the selected VOR．Up to 12 VORs are visible at a time． If there are more than can be shown，each list can be scrolled．If there are no VORs in the list，text indicating that there are no nearest VORs is displayed．If there are no nearest VORs in the list，the information is dashed．

Figure 5－37 Nearest VOR Page

The Nearest VRP Page can be used to quickly find a VRP close to the aircraft. In addition to displaying a map of the surrounding area, the Nearest VRP Page displays information for up to 25 nearest VRPs in two boxes labeled 'Nearest VRP' and 'Information'. The list only includes VRPs that are within 200 nm .

A white arrow before the VRP identifier indicates the selected VRP. Up to 12 VRPs are visible at a time. If there are more than can be shown, the list can be scrolled. If there are no VRPs in the list, text indicating that there are no nearest VRPs is displayed. If there are no nearest VRPs in the list, the information is dashed.

Figure 5-39 Nearest VRP Page

Figure 5－41 Nearest User Waypoint Page

CREATING USER WAYPOINTS

User waypoints can be created from the User Waypoint Information Page in the following ways：
Creating user waypoints from the User Waypoint Information Page：
1）Select the New Softkey，or press the MENU Key and select＇Create New User Waypoint＇．
2）Enter a user waypoint name（up to six characters）．
3）Press the ENT Key．The current aircraft position is the default location of the new waypoint．
4）If desired，define the type and location of the waypoint in one of the following ways：
Select＂RAD／RAD＂using the small FMS Knob，press the ENT Key，and enter the two reference waypoint identifiers and radials into the Reference Waypoints window using the FMS Knobs．

Or：
Select＂RAD／DIS＂using the small FMS Knob，press the ENT Key，and enter the reference waypoint identifier， the radial，and the distance into the Reference Waypoints window using the FMS Knobs．

Or：
Select＂LAT／LON＂using the small FMS Knob，press the ENT Key，and enter the latitude and longitude into the Information window using the FMS Knobs．
5）Press the ENT Key to accept the new waypoint．
6）If desired，change the storage method of the waypoint to temporary by moving the cursor to＂Temporary＂and selecting the ENT Key to check the box．
7）Press the FMS Knob to remove the flashing cursor．
Or：

1) Press the FMS Knob to activate the cursor.
2) Enter a user waypoint name (up to six characters).
3) Press the ENT Key. The message 'Are you sure you want to create the new User Waypoint AAAAAA?' is displayed.
4) With 'YES' highlighted, press the ENT Key.
5) If desired, define the type and location of the waypoint in one of the following ways:

Select "RAD/RAD" using the small FMS Knob, press the ENT Key, and enter the two reference waypoint identifiers and radials into the Reference Waypoints window using the FMS Knobs.

Or:
Select "RAD/DIS" using the small FMS Knob, press the ENT Key, and enter the reference waypoint identifier, the radial, and the distance into the Reference Waypoints window using the FMS Knobs.

Or:
Select "LAT/LON" using the small FMS Knob, press the ENT Key, and enter the latitude and longitude into the Information window using the FMS Knobs.
6) Press the ENT Key to accept the new waypoint.
7) If desired, change the storage method of the waypoint to temporary by moving the cursor to "Temporary" and selecting the ENT Key to check the box.
8) Press the FMS Knob to remove the flashing cursor.

Creating user waypoints from map pages:

1) Push the Joystick to activate the panning function and pan to the map location of the desired user waypoint.
2) Press the ENT Key. The User Waypoint Information Page is displayed with the captured position.

NOTE: If the pointer has highlighted a map database feature, one of three things happens upon pressing the ENT Key: 1) information about the selected feature is displayed instead of initiating a new waypoint, 2) a menu pops up allowing a choice between 'Review Airspaces' or 'Create User Waypoint', or 3) a new waypoint is initiated with the default name being the selected map item.
3) Enter a user waypoint name (up to six characters).
4) Press the ENT Key to accept the selected name. The first reference waypoint box is highlighted.

5）If desired，define the type and location of the waypoint in one of the following ways：
Select＂RAD／RAD＂using the small FMS Knob，press the ENT Key，and enter the two reference waypoint identifiers and radials into the Reference Waypoints window using the FMS Knobs．

Or：
Select＂RAD／DIS＂using the small FMS Knob，press the ENT Key，and enter the reference waypoint identifier， the radial，and the distance into the Reference Waypoints window using the FMS Knobs．
Or：
Select＂LAT／LON＂using the small FMS Knob，press the ENT Key，and enter the latitude and longitude into the Information window using the FMS Knobs．
6）Press the ENT Key to accept the new waypoint．
7）If desired，change the storage method of the waypoint to temporary by moving the cursor to＂Temporary＂and selecting the ENT Key to check or uncheck the box．

8）Press the FMS Knob to remove the flashing cursor．
9）Press the Go Back Softkey to return to the map page．

EDITING USER WAYPOINTS

Editing a user waypoint comment or location：

1）With the User Waypoint Information Page displayed，press the FMS Knob to activate the cursor．
2）Select a user waypoint in the User Waypoint List，if required，and press the ENT Key．
3）Move the cursor to the desired field．
4）Turn the small FMS Knob to make any changes．
5）Press the ENT Key to accept the changes．
6）Press the FMS Knob to remove the flashing cursor．

Renaming user waypoints:

1) Highlight a user waypoint in the User Waypoint List. Select the Rename Softkey, or press the MENU Key and select 'Rename User Waypoint'.
2) Enter a new name.
3) Press the ENT Key. The message 'Do you want to rename the user waypoint AAAAAA to BBBBBB?' is displayed.
4) With 'YES' highlighted, press the ENT Key.
5) Press the FMS Knob to remove the flashing cursor.

Changing the location of an existing waypoint to the aircraft present position:

1) Enter a waypoint name or select the waypoint in the User Waypoint List, then press the ENT Key.
2) Press the MENU Key.
3) Select 'Use Present Position'.
4) Press the ENT Key. The new waypoint's location is saved.
5) Press the FMS Knob to remove the flashing cursor.

A system generated comment for a user waypoint incorporates the reference waypoint identifier, bearing, and distance. If a system generated comment has been edited, a new comment can be generated.

Resetting the comment field to the system generated comment:

1) Enter a waypoint name or select the waypoint in the User Waypoint List, then press the ENT Key.
2) Press the MENU Key.
3) Select 'Auto Comment'.
4) Press the ENT Key. The generated comment is based on the reference point used to define the waypoint.

The default type of user waypoint (normal or temporary) can be changed using the user waypoint information page menu. Temporary user waypoints are automatically deleted upon the next power cycle.

Changing the user waypoint storage duration default setting:

1) With the User Waypoint Information Page displayed, press the MENU Key.
2) Move the cursor to select 'Waypoint Setup', and press the ENT Key.
3) Select 'Normal' or 'Temporary' as desired, and press the ENT Key.
4) Press the FMS Knob to remove the flashing cursor and return to the User Waypoint Information Page.

DELETING USER WAYPOINTS

Deleting a single user waypoint:

1) Highlight a User Waypoint in the User Waypoint List, or enter a waypoint in the User Waypoint field.
2) Select the Delete Softkey or press the CLR Key. 'YES' is highlighted in the confirmation window.
3) Press the ENT Key.
4) Press the FMS Knob to remove the flashing cursor.

Or:

1) Highlight a User Waypoint in the User Waypoint List, or enter a waypoint in the User Waypoint field.
2) Press the MENU Key.
3) Select 'Delete User Waypoint'.
4) Press the ENT Key twice to confirm the selection.
5) Press the FMS Knob to remove the flashing cursor.

NOTE: The option to 'Delete All User Waypoints' is not available while the aircraft is in flight.

Deleting all user waypoints:

1) Highlight a User Waypoint in the User Waypoint List.
2) Press the MENU Key.
3) Select 'Delete All User Waypoints.'
4) Press the ENT Key twice to confirm the selection.
5) Press the FMS Knob to remove the flashing cursor.

5.4 AIRSPACES

The system can display the following types of airspaces: Class B/TMA, Class C/TCA, Class D, Restricted, MOA (Military), Other Airspace, Air Defense Identification Zone (ADIZ), and Temporary Flight Restriction (TFR).

Figure 5-42 Airspaces

The Nearest Airspaces Page，Airspace Alerts Window，and Airspace Alerts on the PFD provide additional information about airspaces and the location of the aircraft in relationship to them．
The Airspace Alerts Box allows the pilot to turn the controlled／special－use airspace message alerts on or off． This does not affect the alerts listed on the Nearest Airspaces Page or the airspace boundaries depicted on the Navigation Map Page．It simply turns on／off the warning provided when the aircraft is approaching or near an airspace．

An altitude buffer is also provided which＂expands＂the vertical range above or below an airspace．For example， if the buffer is set at 500 feet，and the aircraft is more than 500 feet above／below an airspace，an alert message is not generated，but if the aircraft is less than 500 feet above／below an airspace and projected to enter it，the pilot is notified with an alert message．The default setting for the altitude buffer is 200 feet．

Changing the altitude buffer distance setting：

1）Use the FMS Knob to select the Aux－System Setup 1 Page．
2）Press the FMS Knob momentarily to activate the flashing cursor．
3）Turn the large FMS Knob to highlight the altitude buffer field in the Airspace Alerts Box．
4）Use the FMS Knob to enter an altitude buffer value and press the ENT Key．
5）Press the FMS Knob to remove the flashing cursor．

Turning an airspace alert on or off：

1）Use the FMS Knob to select the Aux－System Setup 1 Page．
2）Press the FMS Knob momentarily to activate the flashing cursor．
3）Turn the large FMS Knob to highlight the desired field in the Airspace Alerts Box．
4）Turn the small FMS Knob clockwise to turn the airspace alert On or counterclockwise to turn the alert Off．
5）Press the FMS Knob to remove the flashing cursor．
Map ranges for the airspace boundaries are selected from the Airspace Group in the Map Settings Menu．See Table 5－2 for the default and maximum ranges for each type of airspace and the symbol used to define the airspace area．

The Nearest Airspaces Page can be used to quickly find airspaces close to the flight path. In addition, a selected frequency associated with the airspace can be loaded from the Nearest Airspaces Page. In addition to displaying a map of airspace boundaries and surrounding area, the Nearest Airspaces Page displays airspace information in four boxes labeled 'Airspace Alerts', 'Airspace Agency', 'Vertical Limits', and 'Frequencies'.

Figure 5-43 Nearest Airspaces Page
Airspace alerts and associated frequencies are shown in scrollable lists on the Nearest Airspaces Page. The Alerts and FREQ softkeys place the cursor in the respective list. The FREQ Softkey is enabled only if one or more frequencies exist for a selected airspace.

Selecting and viewing an airspace alert with its associated information:

1) Select the Nearest Airspaces Page.
2) Select the Alerts Softkey; or press the FMS Knob; or press the MENU Key, highlight 'Select Alerts Window', and press the ENT Key. The cursor is placed in the 'Airspace Alerts' Box.
3) Select the desired airspace.
4) Press the FMS Knob to remove the flashing cursor.

Pressing the PFD Alerts Softkey displays the Alerts window on the PFD. The following airspace alerts are displayed in the alerts window:

Message	Comments
INSIDE ARSPC - Inside airspace.	The aircraft is inside the airspace.
ARSPC AHEAD - Airspace ahead - less than 10 minutes.	Special use airspace is ahead of aircraft. The aircraft penetrates the airspace within 10 minutes.
ARSPC NEAR - Airspace near and ahead.	Special use airspace is near and ahead of the aircraft position.
ARSPC NEAR - Airspace near - less than 2 nm.	Special use airspace is within 2 nm of the aircraft position.

Table 5-7 PFD Airspace Alert Messages

The Smart Airspace function de－emphasizes airspaces above or below the current aircraft altitude．The function does not require the aircraft present position or flight path to enter the lateral boundaries of the airspace．If the current aircraft altitude is within 1100 feet of the vertical boundaries of the airspace，the airspace boundary is shown normally．If the current aircraft altitude is not within 1100 feet of the vertical boundaries of the airspace， the airspace boundary is shown subdued．

Figure 5－44 Smart Airspace

Turning smart airspace on or off：

1）Use the FMS Knob to select the Navigation Map Page．
2）Press the MENU Key，and press the ENT Key．The cursor is placed in the＇Group＇Box．
3）Turn the small FMS Knob to highlight the＇Airspace＇in the＇Group＇Box and press the ENT Key．
4）Turn the large FMS Knob to highlight the＇Smart Airspace＇field in the Aviation Map Setup Window．
5）Turn the small FMS Knob clockwise to turn smart airspace＇On＇or counterclockwise to turn smart airspace＇Off＇．
6）Press the FMS Knob to remove the flashing cursor．

5.5 DIRECT-TO-NAVIGATION

The Direct-to method of navigation, initiated by pressing the Direct-to Key on either the MFD Controller or the PFD, is quicker to use than a flight plan when the desire is to navigate to a single point such as a nearby airport.

Once a direct-to is activated, the system establishes a point-to-point course line from the present position to the selected direct-to destination. Course guidance is provided until the direct-to is replaced with a new direct-to or flight plan, or cancelled.

A vertical navigation (VNV) direct-to creates a descent path (and provides guidance to stay on the path) from the current altitude to a selected altitude at the direct-to waypoint. Vertical navigation is based on barometric altitudes, not on GPS altitude, and is used for cruise and descent phases of flight.

The Direct-to Window allows selection and activation of direct-to navigation. The Direct-to Window displays selected direct-to waypoint data on the PFD and the MFD.

Figure 5-45 Direct-to Window - MFD

Figure 5-46 Direct-to Window - PFD

Any waypoint can be entered as a direct-to destination from the Direct-to Window.
Entering a waypoint identifier, facility name, or city as a direct-to destination:

1) Press the Direct-to Key. The Direct-to Window is displayed (with the active flight plan waypoint as the default selection or a blank waypoint field if no flight plan is active).
2) Turn the small FMS Knob clockwise to begin entering a waypoint identifier (turning it counter-clockwise brings up the waypoint selection submenu - press the CLR Key to remove it), or turn the large FMS Knob to select the facility name, or city field and turn the small FMS Knob to begin entering a facility name or city. If duplicate entries exist for the entered facility or city name, additional entries can be viewed by turning the small FMS Knob during the selection process.
3) Press the ENT Key. The 'Activate?' field is highlighted.
4) Press the ENT Key to activate the direct-to.

Any waypoint contained in the active flight plan can be selected as a direct-to waypoint from the Direct-to Window, the Active Flight Plan Page, or the Active Flight Plan Window.

Figure 5-47 Waypoint Submenu

Selecting any waypoint as a direct-to destination:

1) Select the page or window containing the desired waypoint type and select the desired waypoint.
2) Press the Direct-to Key to display the Direct-to Window with the selected waypoint as the direct-to destination.
3) Press the ENT Key. The cursor is now displayed on 'Activate?'.
4) Press ENT again to activate the direct-to.

Selecting a nearby airport as a direct-to destination:

1) Select the Nearest Softkey on the PFD; or turn the FMS Knob to display the Nearest Airports Page and press the FMS Knob.
2) Select the desired airport (the nearest one is already selected).
3) Press the Direct-to Key.
4) Press the ENT Key. The cursor is now displayed on 'Activate?'.
5) Press the ENT Key again to activate the direct-to.

Direct-to destinations may also be selected by using the pointer on the navigation map pages. If no airport, NAVAID, or user waypoint exists at the desired location, a temporary waypoint named 'MAPWPT' is automatically created at the location of the map arrow.

Selecting a waypoint as a direct-to destination using the pointer:

1) From a navigation map page, push the Joystick to display the pointer.
2) Move the Joystick to place the pointer at the desired destination location.
3) If the pointer is placed on an existing airport, NAVAID, or user waypoint, the waypoint name is highlighted.
4) Press the Direct-to Key to display the Direct-to Window with the selected point entered as the direct-to destination.
5) Press the ENT Key. The cursor is now displayed on 'Activate?'.
6) Press the ENT Key again to activate the direct-to.

Cancelling a Direct-to:

1) Press the Direct-to Key to display the Direct-to Window.
2) Press the MENU Key.
3) With 'Cancel Direct-To NAV' highlighted, press the ENT Key. If a flight plan is still active, the system resumes navigating the flight plan along the closest leg.
When navigating a direct-to, the system sets a direct great circle course to the selected destination. The course to a destination can also be manually selected using the course field ('Course') on the Direct-to Window.

Selecting a manual direct-to course:

1) Press the Direct-to Key. The Direct-to Window is displayed with the destination field highlighted.
2) Highlight the course field.
3) Enter the desired course.
4) Press the ENT Key. The cursor is now displayed on 'Activate?'.
5) Press the ENT Key again to activate the direct-to.

5．6 FLIGHT PLANNING

Flight planning on the system consists of building a flight plan by entering waypoints one at a time，adding waypoints along airways，and inserting departures，airways，arrivals，or approaches as needed．The system allows flight planning information to be entered from either the MFD or PFD．The flight plan is displayed on maps using different line widths，colors，and types，based on the type of leg and the segment of the flight plan currently being flown（departure，enroute，arrival，approach，or missed approach）．

| Flight Plan Leg Type | Active Course Leg＊ |
| :--- | :--- | Symbol

Table 5－8 Flight Plan Leg Symbols

Up to 99 flight plans with up to 100 waypoints each can be created and stored in memory．One flight plan can be activated at a time and becomes the active flight plan．The active flight plan is erased when the system is turned off and overwritten when another flight plan is activated．When storing flight plans with an approach，departure， or arrival，the system uses the waypoint information from the current database to define the waypoints．If the database is changed or updated，the system automatically updates the information if the procedure has not been modified．If an approach，departure，or arrival procedure is no longer available，the procedure is deleted from the affected stored flight plan（s），and an alert is displayed（see Miscellaneous Messages in Appendix A）advising that one or more stored flight plans need to be edited．

Whenever an approach, departure, or arrival procedure is loaded into the active flight plan, a set of approach, departure, or arrival waypoints is inserted into the flight plan along with a header line describing the instrument procedure the pilot selected. The original enroute portion of the flight plan remains active (unless an instrument procedure is activated) when the procedure is loaded.

When the database is updated, the airways need to be reloaded also. Each airway segment is reloaded from the database given the entry waypoint, the airway identifier and the exit waypoint. This reloads the sequence of waypoints between the entry and exit waypoints (the sequence may change when the database is updated). The update of an airway can fail during this process. If that happens, the airway waypoints are changed to regular (non-airway) flight plan waypoints, and an alert is displayed (see Miscellaneous Messages in Appendix A).

The following could cause the airway update to fail:

- Airway identifier, entry waypoint or exit waypoint not found in the new database.
- Airway entry/exit waypoint is not an acceptable waypoint for the airway - either the waypoint is no longer on the airway, or there is a new directional restriction that prevents it being used.
- Loading the new airway sequence would exceed the capacity of the flight plan.

FLIGHT PLAN CREATION

There are three methods to create or modify a flight plan:

- Active Flight Plan Page on the MFD (create/modify the active flight plan)
- Active Flight Plan Window on the PFD (create/modify the active flight plan)
- Flight Plan Catalog Page on the MFD (create/modify a stored flight plan)

Figure 5-48 Active Flight Plan Page

Figure 5－49 Active Flight Plan Window on PFD

Figure 5－50 Flight Plan Catalog Page

Creating a stored flight plan：

1）From the MFD，press the FPL Key．
2）Turn the small FMS Knob clockwise to display the Flight Plan Catalog Page．
3）Select the New Softkey；or press the MENU Key，highlight＇Create New Flight Plan＇，and press the ENT Key to display a blank flight plan for the first empty storage location．
4）Select the origin airport and runway．
a）Highlight the origin airport identifier using the FMS Knob．
b）Use the FMS Knob or the waypoint submenu to enter the identifier，facility，or city name of the origin waypoint．
c）Press the ENT Key．The Set Runway Window is displayed with the Runway field highlighted．
d）Turn the small FMS Knob to select the runway，and press the ENT Key．
e）Press the ENT Key again to add the origin airport／runway to the flight plan．
5）Repeat step number 4 for the destination airport and runway．
6）Select the enroute waypoints．
a）Highlight the location to insert the waypoint using the FMS Knob（If the enroute header is selected，the new waypoint is placed following the header．If an enroute waypoint or the dashes are selected，the new waypoint will be placed ahead of the selected item．）
b）Use the FMS Knob or the waypoint submenu to enter the identifier，facility，or city name of the waypoint．
c）Press the ENT Key．The stored flight plan is modified as each waypoint is entered．
7）Repeat step number 6 to enter each additional enroute waypoint．
8）When all waypoints have been entered，press the FMS Knob to remove the cursor．

FLIGHT PLAN IMPORT/EXPORT

Flight plans can be imported from an SD Card or exported to an SD Card from the Stored Flight Plan Page.

Importing a Flight Plan from an SD Card

1) Insert the SD card containing the flight plan in the top card slot on the MFD.
2) Press the FPL Key to display the Active Flight Plan Page on the MFD.
3) Turn the small FMS Knob to select the Flight Plan Catalog Page.
4) Press the FMS Knob to activate the cursor.
5) Turn either FMS Knob to highlight an empty or existing flight plan.
6) Press the Import Softkey; or press the MENU Key, select "Import Flight Plan", and press the ENT Key.

If an empty slot is selected, a list of the available flight plans on the SD card will be displayed.
Or:
If an existing flight plan is selected, an "Overwrite existing flight plan? OK or CANCEL" prompt is displayed. Press the ENT Key to choose to overwrite the selected flight plan and see the list of available flight plans on the SD card. If overwriting the existing flight plan is not desired, select "CANCEL" using the FMS Knob, press the ENT Key, select another flight plan slot, and press the Import Softkey again.
7) Turn the small FMS Knob to highlight the desired flight plan for importing.
8) Press the ENT Key to initiate the import.
9) Press the ENT Key again to confirm the import.

NOTE: If the imported flight plan contains a waypoint with a name that duplicates the name of a waypoint already stored on the system, the system compares the coordinates of the imported waypoint with those of the existing waypoint. If the coordinates are different, the imported waypoint is automatically renamed by adding characters to the end of the name.

Exporting a Flight Plan to an SD Card

1) Insert the SD card into the top card slot on the MFD.
2) Press the FPL Key to display the Active Flight Plan Page on the MFD.
3) Turn the small FMS Knob to select the Flight Plan Catalog Page.
4) Press the FMS Knob to activate the cursor.
5) Turn the large FMS Knob to highlight the flight plan to be exported.
6) Press the Export Softkey; or press the MENU Key, select "Export Flight Plan".
7) If desired, change the name for the exported file by turning the large FMS Knob to the left to highlight the name, then use the small and large FMS knobs to enter the new name, and press the ENT Key.
8) Press the ENT Key to initiate the export.
9) Press the ENT Key to confirm the export.

NOTE: The exported flight plan will not contain any procedures or airways.

Flight plans can be transferred to or from a mobile device via the Flight Stream 510 Bluetooth wireless connection．Transfer of a flight plan to a mobile device is controlled by the mobile device．

Previewing a pending flight plan transfer from a wireless connection：

1）When a flight plan transfer has been initiated from a mobile device，a Pending Flight Plan pop－up alert appears in the lower right corner of the MFD，and an Connext annunciation appears to the right of the MFD page name．
2）Press the ENT Key to display the Preview Flight Plan Page on the MFD．
Or：
Select the Preview Softkey to display the Preview Flight Plan Page on the MFD．
Or：
a）Press the MENU Key，
b）Turn the FMS Knob to highlight＇Preview Flight Plan＇．
c）Press the ENT Key to display the Preview Flight Plan Page on the MFD．

Ignoring a pending flight plan transfer from a wireless connection：

1）When a flight plan transfer has been initiated from a mobile device，a Pending Flight Plan pop－up alert appears in the lower right corner of the MFD，and an Connext annunciation appears to the right of the MFD page name．
2）Press the CLR Key to remove the pop－up alert and ignore the pending flight plan．The pending flight plan will still be available on the Flight Plan Catalog page．
Or：
Select the Ignore Softkey to remove the pop－up alert and ignore the pending flight plan．The pending flight plan will still be available on the Flight Plan Catalog page．

Figure 5－51 Preview Flight Plan Page

Figure 5-52 Pending Flight Plan Transfer

Storing a pending flight plan:

1) Press the FPL Key.
2) Turn the small FMS Knob to display the Flight Plan Catalog Page.
3) Press the FMS Knob to activate the cursor, and
4) Turn the FMS Knob to highlight the pending flight plan.
5) Press the ENT Key to display the Preview Flight Plan Page on the MFD.
6) Select the Store Softkey to store the flight plan. The pending flight plan is stored and the pending annunciation is removed.

Or:
a) Press the FMS Knob to activate the cursor.
b) Turn the FMS Knob to highlight 'Store?'.
c) Press the ENT Key to store the flight plan. The pending flight plan is stored and the pending annunciation is removed.

Or:
a) Press the MENU Key,
b) Turn the FMS Knob to highlight 'Store Flight Plan'.
c) Press the ENT Key to store the flight plan. The pending flight plan is stored and the pending annunciation is removed.

Activating a pending flight plan:

1) Press the FPL Key and turn the small FMS Knob to display the Flight Plan Catalog Page.
2) Press the FMS Knob to activate the cursor, and turn the FMS Knob to highlight the pending flight plan.
3) Press the ENT Key to display the Preview Flight Plan Page on the MFD.
4) Select the Activate Softkey. The 'Activate Flight Plan?' window is displayed.

Or:
a) Press the FMS Knob to activate the cursor.
b) Turn the FMS Knob to highlight 'Activate?'.
c) Press the ENT Key. The 'Activate Flight Plan?' window is displayed.

Or:
a) Press the MENU Key.
b) Turn the FMS Knob to highlight 'Activate Flight Plan'.
c) Press the ENT Key. The 'Activate Flight Plan?' window is displayed.
5) With 'OK' highlighted, press the ENT Key to activate the pending flight plan. The pending flight plan becomes the active flight plan and is removed from the Flight Plan Catalog Page. To cancel the request, press the CLR Key, or highlight 'CANCEL' and press the ENT Key.

Deleting a pending flight plan:

1) Press the FPL Key.
2) Turn the small FMS Knob to display the Flight Plan Catalog Page.
3) Press the FMS Knob to activate the cursor.
4) Turn the FMS Knob to highlight the desired pending flight plan.
5) Select the Delete Softkey. The 'Delete Flight Plan XX?' window is displayed.

Or:
Press the CLR Key. The 'Delete Flight Plan XX?' window is displayed.
Or:
a) Press the MENU Key.
b) Turn the FMS Knob to highlight 'Delete Flight Plan'.
c) Press the ENT Key. The 'Delete Flight Plan XX?' window is displayed.
6) With 'OK' highlighted, press the ENT Key to delete the pending flight plan. The pending flight plan is removed from the Flight Plan Catalog Page. To cancel the request, press the CLR Key, or highlight 'CANCEL' and press the ENT Key.

Deleting all pending flight plans:

1) Press the FPL Key.
2) Turn the small FMS Knob to display the Flight Plan Catalog Page.
3) Press the MENU Key.
4) Turn the FMS Knob to highlight 'Delete All Pending'.
5) Press the ENT Key. A 'Delete all pending flight plans?' confirmation window is displayed.
6) With 'OK' highlighted, press the ENT Key to delete all pending flight plans. To cancel the request, press the CLR Key, or highlight 'CANCEL' and press the ENT Key.

FLIGHT PLAN IMPORT/EXPORT MESSAGES

Under certain conditions, some messages may appear in conjunction with others.

Flight Plan Import/Export Results	Description
'Flight plan successfully imported.'	A flight plan file stored on the SD card was succesfully imported as a stored flight plan.
'File contained user waypoints only. User waypoints imported successfully. No stored flight plan data was modified.'	The file stored on the SD card did not contain a flight plan, only user waypoints. These waypoints have been saved to the system user waypoints. No flight plans stored in the system have been modified.
'No flight plan files found to import.'	The SD card contains no flight plan data.
'Flight plan import failed.'	Flight plan data was not successfully imported from the SD card.
'Flight plan partially imported.'	Some flight plan waypoints were successfully imported from the SD card, however others had errors and were not imported. A partial stored flight plan now exists in the system.
'File contained user waypoints only.'	The file stored on the SD card did not contain a flight plan, only user waypoints. One or more of these waypoints did not import successfully.
'Too many points. Flight plan truncated.'	The flight plan on the SD card contains more waypoints than the system can support. The flight plan was imported with as many waypoints as possible.
'Some waypoints not loaded. Waypoints locked.'	The flight plan on the SD card contains one or more waypoints that the system cannot find in the navigation database. The flight plan has been imported, but must be edited within the system before it can be activated for use.
'User waypoint database full. Not all loaded.'	The flight plan file on the SD card contains user waypoints. The quantity of stored user waypoints has exceeded system capacity, therefore not all the user waypoints on the SD card have been imported. Any flight plan user waypoints that were not imported are locked in the flight plan. The flight plan must be edited within the system before it can be activated for use.
'One or more user waypoints renamed.'	One or more imported user waypoints were renamed when imported due to naming conflicts with waypoints already existing in the system.
'Flight plan successfully exported.'	The stored flight plan was successfully exported to the SD card.
'Flight plan export failed.'	The stored flight plan was not successully exported to the SD card. The SD card may not have sufficient available memory or the card may have been removed prematurely.

Table 5-9 Flight Plan Import/Export Messages

ADDING WAYPOINTS TO AN EXISTING FLIGHT PLAN

Waypoints can be added to the active flight plan or any stored flight plan. Choose the flight plan, select the desired point of insertion, enter the waypoint, and it is added in front of the selected waypoint. Flight plans are limited to 100 waypoints (including waypoints within airways and procedures). If the number of waypoints in the flight plan exceeds 100 , the message "Flight plan is full. Remove unnecessary waypoints." appears and the new waypoint(s) are not added to the flight plan.

Figure 5-53 Stored Flight Plan Page
Adding a waypoint to a stored flight plan:

1) On the Flight Plan Catalog Page, press the FMS Knob to activate the cursor.
2) Highlight the desired flight plan.
3) Select the Edit Softkey; or press the ENT Key, turn the large FMS Knob clockwise to select "EDIT" and press the ENT Key. The Stored Flight Plan Page is displayed.
4) Select the point in the flight plan to add the new waypoint. The new waypoint is placed directly in front of the highlighted waypoint.
5) Turn the small FMS Knob to display the Waypoint Information Window. (Turning it clockwise displays a blank Waypoint Information Window, turning it counter-clockwise displays the Waypoint Information Window with a waypoint selection submenu allowing selection of active flight plan, nearest, recent, user, or airway waypoints).
6) Enter the identifier, facility, or city name of the waypoint or select a waypoint from the submenu of waypoints and press the ENT Key. The new waypoint now exists in the flight plan.

NOTE: If the identifier entered in the Waypoint Information Window has duplicates, a Duplicate Waypoint Window is displayed. Use the FMS Knob to select the correct waypoint.

Adding a waypoint to the active flight plan：
1）Press the FPL Key．
2）Press the FMS Knob to activate the cursor（not required on the PFD）．
3）Select the point in the flight plan to add the new waypoint．The new waypoint is placed prior to the highlighted waypoint．

4）Turn the small FMS Knob to display the Waypoint Information Window．（Turning it clockwise displays a blank Waypoint Information Window，turning it counter－clockwise displays the Waypoint Information Window with a waypoint selection submenu allowing selection of active flight plan，nearest，recent，user，or airway waypoints）．
5）Enter the identifier，facility，or city name of the waypoint or select a waypoint from the submenu of waypoints and press the ENT Key．The active flight plan is modified as each waypoint is entered．

Creating and adding user waypoints to the active flight plan：
1）Push the Joystick to activate the panning function on the Active Flight Plan Page and pan to the map location of the desired user waypoint．
2）Select the LD WPT Softkey；or press the MENU Key，select＇Load Waypoint＇，and press the ENT Key．The user waypoint is created with a name of USRxxx（using the next available in sequence）and is added to the active flight plan．

ADDING AIRWAYS TO A FLIGHT PLAN

Airways can be added to the active flight plan or any stored flight plan．Choose a flight plan（add the desired airway entry point if not already in the flight plan），select the waypoint after the desired airway entry point， select the airway，and it is added in front of the selected waypoint．An airway can only be loaded if there is a waypoint in the flight plan that is part of the desired airway and is not part of an arrival or approach procedure． The system also anticipates the desired airway and exit point based on loaded flight plan waypoints．

Figure 5－54 Select Airway Page－Selecting Airway

Adding an airway to a flight plan:

1) Press the FPL Key.
2) Press the FMS Knob to activate the cursor (not required on the PFD).
3) Turn the large FMS Knob to highlight the waypoint after the desired airway entry point. If this waypoint is not a valid airway entry point, a valid entry point should be entered at this time.
4) Turn the small FMS Knob one click clockwise and select the LD AIRWY Softkey, or press the MENU Key and select "Load Airway". The Select Airway Page is displayed. The LD AIRWY Softkey or the "Load Airway" menu item is available only when a valid airway entry waypoint has been chosen (the waypoint ahead of the cursor position).
5) Turn the FMS Knob to select the desired airway from the list, and press the ENT Key. Low altitude airways are shown first in the list, followed by "all" altitude airways, and then high altitude airways.
6) Turn the FMS Knob to select the desired airway exit point from the list, and press the ENT Key. 'Load?' is highlighted.
7) Press the ENT Key. The system returns to editing the flight plan with the new airway inserted.

Figure 5-55 Select Airway Page - Selecting Exit Point

RESTRICTIONS ON ADDING AIRWAYS

Some airways have directional restrictions on all or part of the route. Airway "A2" in Europe has a directional restriction over the whole route such that it can be flown only one direction. For example, airway "UR975" in North Africa has more complicated directional restrictions within the list of airway waypoints. That is, each waypoint may have its own conditional route in relation to another waypoint.
In the US, airways that are "one-way" for specified hours of operation are not uncommon. These airways are always bidirectional in the system database.
The system only allows correct airway sequences to be inserted. If the pilot subsequently inverts the flight plan, the system inverts the airway waypoint sequence and removes the airway header.

ADDING PROCEDURES TO A STORED FLIGHT PLAN

The system allows the pilot to insert pre-defined instrument procedures from the navigation database into a flight plan. The procedures are designed to facilitate routing of traffic leaving an airport (departure), arriving at an airport (arrival), and landing at an airport (approach). See the procedures section for more details.

Figure 5-56 Stored Flight Plan Page

DEPARTURE (DP)

A Departure Procedure (DP) is loaded at the departure airport in the flight plan. Only one departure can be loaded at a time in a flight plan. The route is defined by selection of a departure, the transition waypoints, and a runway.

Figure 5-57 Departure Loading Page - Selecting the Departure

Loading a departure procedure into a stored flight plan：

1）Select a stored flight plan from the Flight Plan Catalog Page．
2）Select the Edit Softkey；or press the MENU Key，select＇Edit Flight Plan＇，and press the ENT Key．The Stored Flight Plan Page is displayed．
3）Select the LD DP Softkey；or press the MENU Key，select＂Load Departure＂，and press the ENT Key．The Departure Loading Page is displayed．

4）Select a departure．Press the ENT Key．
5）Select a runway served by the selected departure，if required．Press the ENT Key．
6）Select a transition for the selected departure．Press the ENT Key．
7）Press the ENT Key to load the selected departure procedure．

Figure 5－58 Departure Loading Page－Selecting Transition

ARRIVAL (STAR)

A Standard Terminal Arrival (STAR) is loaded at the destination airport in the flight plan. Only one arrival can be loaded at a time in a flight plan. The route is defined by selection of an arrival, the transition waypoints, and a runway.

Figure 5-59 Arrival Loading Page - Selecting the Arrival

Loading an arrival procedure into a stored flight plan:

1) Select a stored flight plan from the Flight Plan Catalog Page.
2) Select the Edit Softkey; or press the MENU Key, select 'Edit Flight Plan', and press the ENT Key. The Stored Flight Plan Page is displayed.
3) Select the LD STAR Softkey; or press the MENU Key, select "Load Arrival", and press the ENT Key. The Arrival Loading Page is displayed.
4) Select an arrival. Press the ENT Key.
5) Select a transition for the selected arrival. Press the ENT Key.
6) Select a runway served by the selected arrival, if required. Press the ENT Key.
7) Press the ENT Key to load the selected arrival procedure.

Figure 5－60 Arrival Loading Page－Selecting the Transition
a）If necessary，push the FMS Knob to exit the approach list，and use the large FMS Knob to move the cursor to the Approach Channel field．
b）Use the FMS Knob to enter the approach channel number，and press the ENT Key to accept the approach channel number．The airport and approach are selected．
5）Select a transition for the selected approach．Press the ENT Key．
6）Press the ENT Key to load the selected approach procedure．

Figure 5－62 Approach Loading Page－Selecting the Transition

FLIGHT PLAN STORAGE

The system can store up to 99 flight plans, numbered 1 through 99. The active flight plan is erased when the system is powered off or when another flight plan is activated. Details about each stored flight plan can be viewed on the Flight Plan Catalog Page and on the Stored Flight Plan Page.

Viewing information about a stored flight plan:

1) Press the FPL Key on the MFD to display the Active Flight Plan Page.
2) Turn the small FMS Knob clockwise one click to display the Flight Plan Catalog Page.
3) Press the FMS Knob to activate the cursor and turn the FMS Knob to highlight the desired flight plan.
4) The Flight Plan Information is displayed showing departure, destination, total distance, and enroute safe altitude information for the selected Flight Plan.
5) Select the Edit Softkey to open the Stored Flight Plan Page and view the waypoints in the flight plan.
6) Press the FMS Knob to exit the Stored Flight Plan Page.

Figure 5-63 Stored Flight Plan Information
Storing an active flight plan from the Active Flight Plan Page or the Active Flight Plan Window:

1) Press the MENU Key.
2) Highlight 'Store Flight Plan'.
3) Press the ENT Key.
4) With 'OK' highlighted, press the ENT Key. The flight plan is stored in the next available position in the flight plan list on the Flight Plan Catalog Page.

ACTIVATE A FLIGHT PLAN

Activating a stored flight plan erases the active flight plan and replaces it with the flight plan being activated． Inverting a stored flight plan reverses the waypoint order，erases the active flight plan，and replaces it with the flight plan being activated（the stored flight plan is not changed）．

Activating a stored flight plan on the MFD：
1）Press the FPL Key and turn the small FMS Knob to display the Flight Plan Catalog Page．
2）Press the FMS Knob to activate the cursor，and turn the FMS Knob to highlight the desired flight plan．
3）Select the Activate Softkey；or press the ENT Key twice；or press the MENU Key，highlight＇Activate Flight Plan＇， and press the ENT Key．The＇activate stored flight plan？＇window is displayed．
4）With＇OK＇highlighted，press the ENT Key．To cancel the request，press the CLR Key，or highlight＇CANCEL＇and press the ENT Key．

Inverting and activating a stored flight plan on the MFD：

1）Press the FPL Key and turn the small FMS Knob to display the Flight Plan Catalog Page．
2）Press the FMS Knob to activate the cursor，and turn the FMS Knob to highlight the desired flight plan．
3）Select the Invert Softkey；or press the MENU Key，highlight＇Invert \＆Activate FPL？＇，and press the ENT Key． The＇Invert and activate stored flight plan？＇window is displayed．
4）With＇OK＇highlighted，press the ENT Key．To cancel the request，press the CLR Key，or highlight＇CANCEL＇and press the ENT Key．

COPY A FLIGHT PLAN

The system allows copying a flight plan into a new flight plan memory slot，allowing editing，etc．，without affecting the original flight plan．This can be used to duplicate an existing stored flight plan for use in creating a modified version of the original stored flight plan．

Copying a stored flight plan on the MFD：

1）Press the FPL Key and turn the small FMS Knob to display the Flight Plan Catalog Page．
2）Press the FMS Knob to activate the cursor，and turn the FMS Knob to highlight the desired flight plan．
3）Select the Copy Softkey；or press the MENU Key，highlight＇Copy Flight Plan＇，and press the ENT Key．The＇Copy to flight plan XX ？＇window is displayed．
4）With＇OK＇highlighted，press the ENT Key to copy the flight plan．To cancel the request，press the CLR Key，or highlight＇CANCEL＇and press the ENT Key．

DELETE A STORED FLIGHT PLAN

Individual or all stored flight plans can be deleted from the system memory.

Deleting a stored flight plan:

1) Press the FPL Key and turn the small FMS Knob to display the Flight Plan Catalog Page.
2) Press the FMS Knob to activate the cursor, and turn the FMS Knob to highlight the desired flight plan.
3) Select the Delete Softkey; press the CLR Key; or press the MENU Key, highlight 'Delete Flight Plan', and press the ENT Key. The 'Delete flight plan XX?' window is displayed.

DELETING FLIGHT PLAN ITEMS

Individual waypoints，entire airways，and entire procedures can be deleted from a flight plan．Some waypoints in the final approach segment（such as the FAF or MAP）can not be deleted individually．Attempting to delete a waypoint that is not allowed results in a window displaying＇Invalid flight plan modification．＇

Deleting an individual waypoint from the active flight plan：

1）Press the FPL Key to display the Active Flight Plan Page（MFD）or the Active Flight Plan Window（PFD）．
2）Press the FMS Knob to activate the cursor（not required on the PFD）and turn the large FMS Knob to highlight the waypoint to be deleted．
3）Press the CLR Key．The＇Remove XXXXX？＇window is displayed．
4）With＇OK＇highlighted，press the ENT Key．To cancel the request，press the CLR Key，or highlight＇CANCEL＇and press the ENT Key．

5）Press the FMS Knob to remove the flashing cursor．

Deleting an entire airway from the active flight plan：

1）Press the FPL Key to display the Active Flight Plan Page（MFD）or the Active Flight Plan Window（PFD）．
2）Press the FMS Knob to activate the cursor（not required on the PFD）and turn the large FMS Knob to highlight the header of the airway to be deleted．

3）Press the CLR Key．The＇Remove＜airway name＞from flight plan？＇window is displayed．
4）With＇OK＇highlighted，press the ENT Key．To cancel the request，press the CLR Key，or highlight＇CANCEL＇and press the ENT Key．
5）Press the FMS Knob to remove the flashing cursor．

Deleting an entire procedure from the active flight plan：

1）Press the FPL Key to display the Active Flight Plan Page（MFD）or the Active Flight Plan Window（PFD）．
2）Press the FMS Knob to activate the cursor（not required on the PFD）and turn the large FMS Knob to highlight the header of the procedure to be deleted．
3）Press the CLR Key．The＇Remove＜procedure name＞from flight plan？＇window is displayed．
4）With＇OK＇highlighted，press the ENT Key．To cancel the request，press the CLR Key，or highlight＇CANCEL＇and press the ENT Key．
5）Press the FMS Knob to remove the flashing cursor．
Or：
1）Press the FPL Key to display the Active Flight Plan Page（MFD）or the Active Flight Plan Window（PFD）．
2）Press the MENU Key to display the Page Menu and turn the FMS Knob to highlight＇Remove＜procedure＞＇．
3）Press the ENT Key．The＇Remove＜procedure name＞from flight plan？＇window is displayed．
4）With＇OK＇highlighted，press the ENT Key．To cancel the request，press the CLR Key，or highlight＇CANCEL＇and press the ENT Key．

Deleting an individual waypoint from a stored flight plan:

1) Press the FPL Key to display the Active Flight Plan Page.
2) Turn the small FMS Knob clockwise one click to display the Flight Plan Catalog Page.
3) Press the FMS Knob to activate the cursor and turn the FMS Knob to highlight the flight plan to be edited.
4) Select the Edit Softkey; or press the MENU Key, select 'Edit Flight Plan' and press the ENT Key. The Stored Flight Plan Page is displayed.
5) Turn the large FMS Knob to highlight the waypoint to be deleted.
6) Press the CLR Key. The 'Remove XXXXX?' window is displayed.
7) With 'OK' highlighted, press the ENT Key. To cancel the request, press the CLR Key, or highlight 'CANCEL' and press the ENT Key.
8) Press the FMS Knob to remove the flashing cursor.

Deleting an entire airway from a stored flight plan:

1) Press the FPL Key to display the Active Flight Plan Page.
2) Turn the small FMS Knob clockwise one click to display the Flight Plan Catalog Page.
3) Press the FMS Knob to activate the cursor and turn the FMS Knob to highlight the flight plan to be edited.
4) Select the Edit Softkey; or press the MENU Key, select 'Edit Flight Plan' and press the ENT Key. The Stored Flight Plan Page is displayed.
5) Turn the large FMS Knob to highlight the header of the airway to be deleted.
6) Press the CLR Key. The 'Remove <airway name> from flight plan?' window is displayed.
7) With 'OK' highlighted, press the ENT Key. To cancel the request, press the CLR Key, or highlight 'CANCEL' and press the ENT Key.
8) Press the FMS Knob to remove the flashing cursor.

Deleting an entire procedure from a stored flight plan:

1) Press the FPL Key to display the Active Flight Plan Page.
2) Turn the small FMS Knob clockwise one click to display the Flight Plan Catalog Page.
3) Press the FMS Knob to activate the cursor and turn the FMS Knob to highlight the flight plan to be edited.
4) Select the EDIT Softkey; or press the MENU Key, select 'Edit Flight Plan' and press the ENT Key. The Stored Flight Plan Page is displayed.
5) Turn the large FMS Knob to highlight the header of the procedure to be deleted.
6) Press the CLR Key. The 'Remove <procedure name> from flight plan?' window is displayed.
7) With 'OK' highlighted, press the ENT Key. To cancel the request, press the CLR Key, or highlight 'CANCEL' and press the ENT Key.
8) Press the FMS Knob to remove the flashing cursor.

Or:

1) Press the FPL Key to display the Active Flight Plan Page.
2) Turn the small FMS Knob clockwise one click to display the Flight Plan Catalog Page.
3) Press the FMS Knob to activate the cursor and turn the FMS Knob to highlight the flight plan to be edited.
4) Select the Edit Softkey; or press the MENU Key, select 'Edit Flight Plan' and press the ENT Key. The Stored Flight Plan Page is displayed.
5) Press the MENU Key to display the Page Menu and turn the FMS Knob to highlight 'Remove <procedure>'.
6) Press the ENT Key. The 'Remove <procedure name> from flight plan?' window is displayed.
7) With 'OK' highlighted, press the ENT Key. To cancel the request, press the CLR Key, or highlight 'CANCEL' and press the ENT Key.
8) Press the FMS Knob to remove the flashing cursor.

CHANGING FLIGHT PLAN COMMENTS (NAMES)

The comment field (or name) of each flight plan can be changed to something that is useful for identification and sorting.

Changing the active flight plan comment:

1) Press the FPL Key to display the Active Flight Plan Page.
2) Press the FMS Knob to activate the cursor and turn the large FMS Knob to highlight the comment field.
3) Use the FMS Knobs to edit the comment.
4) Press the ENT Key to accept the changes.
5) Press the FMS Knob to remove the flashing cursor.

Changing a stored flight plan comment:

1) Press the FPL Key to display the Active Flight Plan Page.
2) Turn the small FMS Knob clockwise one click to display the Flight Plan Catalog Page.
3) Press the FMS Knob to activate the cursor and turn the FMS Knob to highlight the flight plan to be edited.
4) Select the Edit Softkey; or press the MENU Key, select 'Edit Flight Plan' and press the ENT Key. The Stored Flight Plan Page is displayed.
5) Turn the large FMS Knob to highlight the comment field.
6) Use the FMS Knobs to edit the comment.
7) Press the ENT Key to accept the changes.
8) Press the FMS Knob to remove the flashing cursor.

ALONG TRACK OFFSETS

A waypoint having an "along track offset" distance from an existing waypoint can be entered into a flight plan. Along track offset waypoints lie along the path of the existing flight plan, and can be used to make the system reach a specified altitude before or after reaching the specified flight plan waypoint. Offset distances can be entered from 1 to 999 nm in increments of 1 nm . Entering a negative offset distance results in an along track offset waypoint inserted before the selected waypoint, whereas entering a positive offset distance results in an along track offset waypoint inserted after the selected waypoint. Multiple offset waypoints are allowed.

A waypoint must be adjacent to its parent waypoint in the flight plan, so the system limits the along-track distance to less than the length of the leg before or after the selected waypoint. If the selected waypoint is the active waypoint, the distance is limited to less than the distance to go to the active waypoint. Assigning an along track offset to a leg with indeterminate length is not permitted. An along track offset is not allowed at or after the final approach fix of an approach.
An along track offset distance cannot be modified once entered. If the along track offset distance must be changed, the existing along track offset waypoint must be deleted and a new one created with the new offset distance.

Figure 5-64 Along Track Offset

Entering an along track offset distance:

1) Press the FPL Key to display the Active Flight Plan Page (MFD) or the Active Flight Plan Window (PFD).
2) Press the FMS Knob to activate the cursor (not required on the PFD) and turn the large FMS Knob to highlight the waypoint for the along track offset.
3) Select the ATK OFS Softkey (MFD only); or press the MENU Key, highlight 'Create ATK Offset Waypoint', and press the ENT Key.
4) Enter a positive or negative offset distance in the range of $+/-1$ to 999 nm (limited by leg distances).
5) Press the ENT Key to create the offset waypoint.
6) Press the FMS Knob to remove the flashing cursor.

PARALLEL TRACK

The Parallel Track（PTK）feature allows creation of a parallel course offset of 1 to 50 nm left or right of the current flight plan．When Parallel Track is activated，the course line drawn on the map pages shows the parallel course，and waypoint names have a lower case＂ p ＂placed after the identifier．

While flying a parallel track：
－Initiating a direct－to will cancel the parallel track and fly direct－to the selected waypoint．
－Initiating a hold at the present position will cancel the parallel track and fly the holding pattern．
－Initiating a hold at a waypoint will result in the aircraft flying the parallel track until a turn is required to fly to the hold waypoint．If the hold is removed prior to reaching the hold waypoint，the parallel track will be resumed．Once the holding pattern is active，the parallel track will not be resumed upon exiting the hold．
Parallel Track is also cancelled if a course change occurs greater than 120° or the parallel tracks overlap as a result of the course change．

NOTE：Vertical navigation is unavailable while the Parallel Track feature is active．

Activating parallel track：

1）Press the FPL Key to display the Active Flight Plan Page（MFD）or the Active Flight Plan Window（PFD）．
2）Press the MENU Key，highlight＇Parallel Track＇，and press the ENT Key．The Parallel Track Window is displayed with the＇Direction＇field highlighted．
3）Turn the small FMS Knob to select＇LEFT＇or＇RIGHT＇and press the ENT Key．The＇Distance＇field is highlighted．
4）Turn the small FMS Knob to enter a distance from 1－99 nm and press the ENT Key．＇Activate Parallel Track＇is highlighted．

5）Press the ENT Key to activate parallel track．Press the FMS Knob or the CLR Key to cancel the parallel track activation．

Figure 5－65 Parallel Track Window

ACTIVATING A FLIGHT PLAN LEG

The system allows selection of a highlighted leg as the＂active leg＂（the flight plan leg which is currently used for navigation guidance）．

Activating a flight plan leg：

1）Press the FPL Key to display the Active Flight Plan Page（MFD）or the Active Flight Plan Window（PFD）．
2）Press the FMS Knob to activate the cursor（not required on the PFD）and turn the large FMS Knob to highlight the destination waypoint for the desired leg．
3）Select the ACT Leg Softkey（MFD only）；or press the MENU Key，highlight＇Activate Leg＇，and press the ENT Key． A confirmation window is displayed with＇Activate＇highlighted．
4）Press the ENT Key to activate the flight plan leg．To cancel，press the CLR Key，or highlight＇Cancel＇and press the ENT Key．
5）Press the FMS Knob to remove the flashing cursor．

INVERTING A FLIGHT PLAN

Any flight plan may be inverted（reversed）for navigation back to the original departure point．

Inverting the active flight plan：

1）Press the FPL Key to display the Active Flight Plan Page（MFD）or the Active Flight Plan Window（PFD）．
2）Press the MENU Key，highlight＇Invert Flight Plan＇，and press the ENT Key．An＇Invert active flight plan？＇ confirmation window is displayed．

3）Select＇OK＇．
4）Press the ENT Key to invert and activate the active flight plan．To cancel，press the CLR Key，or highlight ＇CANCEL＇and press the ENT Key．

FLIGHT PLAN VIEWS

Information about flight plans can be viewed in more than one way. The active flight plan can be configured to show cumulative distance over the length of the flight plan or the distance for each leg of the flight plan; and the active flight plan can be viewed in a narrow or wide view. In the wide view, additional information is displayed: Fuel Remaining (FUEL REM), Estimated Time Enroute (ETE), Estimated Time of Arrival (ETA), and Bearing to the waypoint (BRG).

Switching between leg-to-leg waypoint distance and cumulative waypoint distance:

1) Press the FPL Key on the MFD to display the Active Flight Plan Page.
2) Select the View Softkey to display the CUM and Leg-Leg Softkeys.
3) Select the CUM Softkey to view cumulative waypoint distance, or select the Leg-Leg Softkey to view leg-to-leg waypoint distance.
4) Select the Back Softkey to return to the top level active flight plan softkeys.

Switching between wide and narrow view:

1) Press the FPL Key on the MFD to display the Active Flight Plan Page.
2) Select the View Softkey to display the Wide and Narrow Softkeys.
3) Select the Wide Softkey to display the wide view, or select the Narrow Softkey to display the narrow view.
4) Select the Back Softkey to return to the top level active flight plan softkeys.

COLLAPSING AIRWAYS

The system allows airways on the active flight plan to be collapsed or expanded from the Stored or Active Flight Plan Page/Window. When airways have been collapsed, it is indicated on the airway heading.

When airways are collapsed, leg-to-leg computed values such as DIS or ETE shown for the exit waypoint reflect the total of all the legs on the airway that have been hidden in the collapsed display. The DTK value is inhibited because it is not usable in this context.

The Active Flight Plan Page always keeps the following three waypoints visible: "From" waypoint, "To" waypoint, and "Next" waypoint. To prevent one or more of these waypoints from being hidden in a collapsed airway segment, the airway segment that contains either the "To" or the "Next" waypoint is automatically expanded. When an airway is loaded, airways are automatically expanded to facilitate flight plan review.

Figure 5－67 Expanded／Collapsed Airways

Collapsing／expanding the airways in the active flight plan：
1）Press the FPL Key to display the Active Flight Plan Page（MFD）or the Active Flight Plan Window（PFD）．
2）Press the MENU Key，highlight＇Collapse Airways＇or＇Expand Airways＇，and press the ENT Key．The airways are collapsed／expanded．

CLOSEST POINT OF FPL

＇Closest Point of FPL＇calculates the bearing and closest distance at which a flight plan passes a reference waypoint，and creates a new user waypoint along the flight plan at the location closest to a chosen reference waypoint．

Determining the closest point along the active flight plan to a selected waypoint：
1）Press the FPL Key to display the Active Flight Plan Page（MFD）or the Active Flight Plan Window（PFD）．
2）Press the MENU Key，highlight＇Closest Point Of FPL＇，and press the ENT Key．A window appears with the reference waypoint field highlighted．
3）Enter the identifier of the reference waypoint．The system displays the bearing（BRG）and distance（DIS）to the closest point along the flight plan to the selected reference waypoint and creates a user waypoint at this location．Press the ENT Key．The name for the new user waypoint is derived from the identifier of the reference waypoint．

USER-DEFINED HOLDING PATTERNS

A holding pattern can be defined at any active flight plan waypoint, at the aircraft present position, or at a direct-to waypoint.

Creating a user-defined hold at an active flight plan waypoint:

1) Press the FPL Key to display the Active Flight Plan Page (MFD) or the Active Flight Plan Window (PFD).
2) Press the FMS Knob to activate the cursor (not required on the PFD) and turn the large FMS Knob to highlight the waypoint for the hold.
3) Press the MENU Key, highlight 'Hold At Waypoint', and press the ENT Key. The 'Hold at' window appears with the course field highlighted.
4) Use the FMS Knobs to edit the entry course, and press the ENT Key.
5) Use the small FMS Knob to select 'Inbound' or 'Outbound' course direction, and press the ENT Key.
6) Use the small FMS Knob to select 'Time' or 'Distance' length mode, and press the ENT Key.
7) Use the FMS Knobs to edit the length, and press the ENT Key.
8) Use the small FMS Knob to select 'Right' or 'Left' turn direction, and press the ENT Key.
9) Use the FMS Knobs to edit the Expect Further Clearance Time (EFC Time), and press the ENT Key.
10) Press the ENT Key while 'Load?' is highlighted to insert the hold into the flight plan.

Creating a user-defined hold at the aircraft present position:

1) Press the FPL Key to display the Active Flight Plan Page (MFD) or the Active Flight Plan Window (PFD).
2) Press the MENU Key, highlight 'Hold At Present Position', and press the ENT Key. The 'Hold at' window appears with the course field highlighted.
3) If desired, use the FMS Knobs to edit the entry course, and press the ENT Key.
4) Use the small FMS Knob to select 'Inbound' or 'Outbound' course direction, and press the ENT Key.
5) Use the small FMS Knob to select 'Time' or 'Distance' length mode, and press the ENT Key.
6) Use the FMS Knobs to edit the length, and press the ENT Key.
7) Use the small FMS Knob to select 'Right' or 'Left' turn direction, and press the ENT Key.
8) Use the FMS Knobs to edit the Expect Further Clearance Time (EFC Time), and press the ENT Key.
9) Press the ENT Key while 'Activate?' is highlighted to create an Offroute Direct-to hold waypoint at the aircraft present position and activate the hold.

Figure 5-68 Creating a User Defined Holding Pattern at an Active Flight Plan Waypoint

Figure 5-69 Creating a User Defined Holding Pattern at a Direct To Waypoint

Creating a user-defined hold at a direct-to waypoint:

1) Press a Direct-to Key and set up the direct-to waypoint as desired, but select 'Hold?' instead of 'Activate?' when finished (MFD or PFD).
2) Use the FMS Knobs to edit the entry course, and press the ENT Key.
3) Use the small FMS Knob to select 'Inbound' or 'Outbound' course direction, and press the ENT Key.
4) Use the small FMS Knob to select 'Time' or 'Distance' length mode, and press the ENT Key.
5) Use the FMS Knobs to edit the length, and press the ENT Key.
6) Use the small FMS Knob to select 'Right' or 'Left' turn direction, and press the ENT Key.
7) Use the FMS Knobs to edit the Expect Further Clearance Time (EFC TIME), and press the ENT Key.
8) Press the ENT Key while 'Activate?' is highlighted to activate the direct-to with the user-defined hold defined at the direct-to waypoint. (If the direct-to waypoint is part of the active flight plan, the HOLD is inserted into the active flight plan. If the direct-to waypoint is not part of the active flight plan, an off-route direct-to hold is created.)

Exiting a user-defined hold inserted into the active flight plan:

Press the SUSP Softkey. The system will provide guidance to follow the holding pattern to the inbound course and resume automatic waypoint sequencing.

Removing a user-defined hold inserted into the active flight plan:

1) Press the FPL Key to display the Active Flight Plan Page (MFD) or the Active Flight Plan Window (PFD).
2) Press the FMS Knob to activate the cursor (not required on the PFD) and turn the large FMS Knob to highlight the HOLD waypoint.
3) Press the CLR Key. A 'Remove Holding Pattern?' confirmation window is displayed.
4) Select 'OK' and press the ENT Key. The holding pattern is removed from the active flight plan. Select 'CANCEL' and press the ENT Key to cancel the removal of the holding pattern.

Removing a user-defined hold at an off-route direct-to:

1) Press a Direct To Key to display the Direct To Window (PFD or MFD).
2) Press the MENU Key to display the Page Menu with the cursor on the 'Cancel Direct-To NAV' selection.
3) Press the ENT Key. The holding pattern is removed.

5.7 VERTICAL NAVIGATION

NOTE: The system supports vertical path guidance and altitude constraints for the following leg types: $A F$, $C D, C F, C l, C R, D F, F C, F D, P I, R F$, and TF. Altitude constraints are not retained in stored flight plans.

The system Vertical Navigation (VNV) feature provides vertical profile guidance during the enroute and terminal phases of flight. Guidance based on specified altitudes at waypoints in the active flight plan or to a direct-to waypoint is provided. It includes vertical path guidance to a descending path, which is provided as a linear deviation from the desired path. The desired path is defined by a line joining two waypoints with specified altitudes or as a vertical angle from a specified waypoint/altitude. The vertical waypoints are integrated into the active flight plan. Both manual and autopilot-coupled guidance are supported.

Figure 5-70 Enabling/Disabling Vertical Navigation

Enabling VNV guidance:

1) Press the FPL Key to display the Active Flight Plan Page on the MFD.
2) Select the ENBL VNV Softkey; or press the MENU Key, highlight 'Enable VNV', and press the ENT Key. Vertical navigation is enabled, and vertical guidance begins with the waypoint shown in the Active VNV Profile box (defaults first waypoint in the active flight plan with an altitude enabled for vertical navigation (e.g., FALUR)).

Disabling VNV guidance：

1）Press the FPL Key to display the Active Flight Plan Page on the MFD．
2）Select the Cncl VNV Softkey；or press the MENU Key，highlight＇Cancel VNV＇，and press the ENT Key．Vertical navigation is disabled．
Canceling vertical navigation results in vertical deviation（V DEV），vertical speed required（VS REQ），and time to top of descent／bottom of descent（TOD／BOD）going invalid．The Vertical Deviation Indicator（VDI）and Required Vertical Speed Indicator（RVSI）on the PFD are removed，and the V DEV，VS REQ，and TOD items displayed in the Active VNV Profile box are dashed．VNV remains disabled until manually enabled．Vertical guidance in reversionary mode can only be enabled for a direct－to waypoint．

The system allows a vertical navigation direct－to for any waypoint in the active flight plan with an altitude constraint＂designated＂for vertical guidance．Selecting the VNV Direct－to Softkey on the Active Flight Plan Page allows the flight plan to be flown，while vertical guidance based on the altitude constraint at the VNV direct－to waypoint is provided．The altitude change begins immediately and is spread along the flight plan from current position to the vertical direct－to waypoint，not just along the leg for the direct－to waypoint．A direct－to with altitude constraint activated by pressing the Direct－to Key also provides vertical guidance，but would bypass flight plan waypoints between the current position in the flight plan and the direct－to waypoint．A top of descent （TOD）point is computed based on the default flight path angle；descent begins once the TOD is reached．

Activating a vertical navigation direct－to：

1）Press the FPL Key to display the Active Flight Plan Page on the MFD．
2）Press the FMS Knob to activate the cursor and turn the FMS Knob to highlight the desired waypoint．
NOTE：The selected waypoint must have a designated altitude constraint（cyan number）to be used．If not， the first waypoint in the flight plan with a designated altitude constraint is selected．

3）Select the VNV Direct－To Softkey；or press the MENU Key，highlight＇VNV Direct－To＇，and press the ENT Key． An＇Activate vertical Direct－to to：NNNNNFT at XXXXXX？＇confirmation window is displayed．
4）Press the ENT Key．Vertical guidance begins to the altitude constraint for the selected waypoint．
5）Press the FMS Knob to remove the flashing cursor．
The vertical navigation profile can be modified by directly entering a vertical speed target（VS TGT）and／or flight path angle（FPA）in the Active VNV Profile box．

Modifying the VS TGT and FPA：

1）Press the FPL Key to display the Active Flight Plan Page on the MFD．
2）Select the VNV Prof Softkey；or press the MENU Key，highlight＇Select VNV Profile Window＇，and press the ENT Key．The cursor is now located in the Active VNV Profile box．

3）Turn the FMS Knobs as needed to edit the values．
4）Press the FMS Knob to remove the flashing cursor．

ALTITUDE CONSTRAINTS

The system can use altitude constraints associated with lateral waypoints to give guidance for vertical navigation. These altitudes are, depending on the specific instance, manually entered or retrieved from the published altitudes in the navigation database.

Altitude Constraint Examples
500DFT
Cross AT or ABOVE 5,000 ft
2300FT
Cross AT 2,300 ft
300DFT
Cross AT or BELOW $3,000 \mathrm{ft}$

Figure 5-71 Waypoint Altitude Constraints

White Text	Cyan Text
5000FT	5000FT
Altitude calculated by the system estimating the altitude of the aircraft as it passes over the navigation point. No white line above or below to indicate a potential constraint.	Altitude is designated for use in determining vertical guidance. A pencil icon indicates manual designation or manual data entry.
Altitude retrieved from the navigation database. White line above or below indicates the type of constraint, as shown in the preceding figure. These altitudes are provided as a reference, and are not designated to be used in determining vertical guidance.	The system cannot use this altitude in determining vertical guidance because of an invalid constraint condition.

Table 5-10 Altitude Constraint Color Coding

Altitudes associated with arrival and approach procedures are "auto-designated". This means the system automatically uses the altitudes loaded with the arrival or approach for giving vertical speed and deviation guidance. Note that these altitudes are displayed as cyan text up to, but not including, the FAF. The FAF is always a "reference only" altitude and cannot be designated, unless the selected approach does not provide vertical guidance. In this case, the FAF altitude can be designated.
Altitudes that have been designated for use in vertical guidance can be "un-designated" using the CLR Key. The altitude is now displayed only as a reference. It is not used to give vertical guidance. Other displayed altitudes may change due to re-calculations or be rendered invalid as a result of manually changing an altitude to a non-designated altitude.

Designating a waypoint altitude to be used for vertical guidance:

1) Press the FPL Key to display the Active Flight Plan Page on the MFD.
2) Press the FMS Knob, and turn to highlight the desired waypoint altitude.
3) Turn the small FMS Knob to enter editing mode.
4) Press the ENT Key. The altitude is now shown in cyan, indicating it is usable for vertical guidance.

Designating a procedure waypoint altitude to be used for vertical guidance:

1) Press the FPL Key to display the Active Flight Plan Page on the MFD.
2) Press the FMS Knob, and highlight the desired waypoint altitude. Turn the small FMS Knob to enter editing mode. .
3) Press the ENT Key. The altitude is now shown in cyan, indicating it is usable for vertical guidance.

Altitude constraints are displayed and entered in feet mean sea level (MSL) values to the nearest hundred. An altitude constraint in feet above ground level (AGL) format is supported for airports. When a database altitude restriction is displayed, the system allows entry of a different altitude when creating a waypoint, effectively overriding the database restriction (only before the FAF). When a database altitude restriction of type "AT or ABOVE" or "AT or BELOW" is activated, the system uses the "AT" portion of the restriction to define the vertical profile.
An altitude constraint is invalid if:

- Meeting the constraint requires the aircraft to climb
- Meeting the constraint requires the maximum flight path angle or maximum vertical speed to be exceeded
- The altitude constraint results in a TOD behind the aircraft present position
- The constraint is within a leg type for which altitude constraints are not supported
- The altitude constraint is added to the FAF of an approach that provides vertical guidance (i.e., ILS or GPS SBAS approach)
- The altitude constraint is added to a waypoint past the FAF

Entering/modifying an altitude constraint:

1) Press the FPL Key to display the Active Flight Plan Page on the MFD.
2) Press the FMS Knob, and turn to highlight the desired waypoint altitude constraint.
3) Enter an altitude constraint value using the FMS Knobs. To enter altitudes as a flight level, turn the small FMS Knob counter-clockwise past zero or clockwise past 9 on the first character, and the system automatically changes to show units of Flight Level. Turn the large FMS Knob clockwise to highlight the first zero and enter the three digit flight level.
4) Press the ENT Key to accept the altitude constraint; if the selected waypoint is an airport, an additional choice is displayed. Turn the small FMS Knob to choose 'MSL' or 'AGL', and press the ENT Key to accept the altitude.

Altitude constraints can be modified or deleted after having been added to the flight plan. In the event an altitude constraint is deleted and the navigation database contains an altitude restriction for the lateral waypoint, the system displays the altitude restriction from the database provided no predicted altitude can be provided. The system also provides a way to reinstate a published altitude constraint that has been edited.

Deleting an altitude constraint provided by the navigation database:

1) Press the FPL Key to display the Active Flight Plan Page on the MFD.
2) Press the FMS Knob, and turn to highlight the desired waypoint altitude constraint.
3) Press the CLR Key. A 'Remove VNV altitude?' confirmation window is displayed.
4) Select 'OK' and press the ENT Key.

Deleting an altitude constraint that has been manually entered:

1) Press the FPL Key to display the Active Flight Plan Page on the MFD.
2) Press the FMS Knob, and turn to highlight the desired waypoint altitude constraint.
3) Press the CLR Key. A 'Remove or Revert to published VNV altitude of nnnnnFT?' confirmation window is displayed.
4) Select 'REMOVE' and press the ENT Key. The manually entered altitude is deleted (it is replaced by a system calculated altitude, if available).

Reverting a manually entered altitude constraint back to the navigation database value:

1) Press the FPL Key to display the Active Flight Plan Page on the MFD.
2) Press the FMS Knob, and turn to highlight the desired waypoint altitude constraint.
3) Press the CLR Key. A 'Remove or Revert to published VNV altitude of nnnnnFT?' confirmation window is displayed.
4) Select 'REVERT' and press the ENT Key. The altitude is changed to the navigation database value.
5) Press the FMS Knob to remove the flashing cursor.

Modifying a system calculated altitude constraint:

1) Press the FPL Key to display the Active Flight Plan Page on the MFD.
2) Press the FMS Knob, and turn to highlight the desired waypoint altitude constraint.
3) Press the CLR Key. An 'Edit or Revert to published VNV altitude of nnnnnFT?' confirmation window is displayed.
4) Select 'EDIT' and press the ENT Key.
5) Edit the value using the FMS Knobs, and press the ENT Key.
6) Press the FMS Knob to remove the flashing cursor.

VERTICAL SITUATION DISPLAY（VSD）

A Vertical Situation Display（VSD）can be shown on the bottom of the Navigation Map Page．The terrain， obstacles，vertical track vector，selected altitude，and active flight plan information（active flight plan information consists of waypoints，associated altitude constraints，current VNAV profile，BOC／TOC，TOD／BOD，and destination runway）can be displayed on the VSD，depending on the selected mode．See the Hazard Avoidance section for information about winds aloft，obstacles，and relative terrain on the VSD．

NOTE：Certain leg types（e．g．holds，heading legs）do not support VNAV PATH descents because the lateral distance of those legs in unknown．The VSD will not show a VNAV profile for any legs that have no vertical path guidance．

The VSD horizontal range is equal to the navigation map indicated range when the VSD is in Track mode． When the VSD is in Flight Plan mode，the horizontal range is the lower of twice the navigation map indicated range or the lowest range the displays all of the remaining active flight plan．The VSD altitude range automatically changes when the navigation map range is changed to keep a constant ratio of altitude range to horizontal range，until both minimum and maximum display limits have been met．At ranges above the maximum，the altitude range remains constant at the maximum．

The aircraft symbol is displayed on the left side of the VSD．The position of the aircraft symbol on the vertical scale is close to the top for a descent phase，at the bottom for on－ground or a climb phase，and in the middle for a cruise phase or if the phase is unknown．
If two waypoints are close together，and their labels or constraint values overlap enough to obscure any text， one waypoint label／constraint value is removed and the vertical dashed line for that waypoint is displayed as darker gray．The priority for which waypoint remains displayed is：（1）the current TO waypoint，（2）waypoint with an altitude constraint，and（3）waypoint closer to the aircraft．

Enabling the Vertical Situation Display

1）Select the Map－Navigation Map Page．
2）Press the Map Opt Softkey．
3）Press the Inset Softkey．
4）Press the VSD Softkey to enable the Vertical Situation Display．
5）Press the VSD Mode softkey to choose between Auto，FPL，or TRK．
Or：
1）Select the Map－Navigation Map Page．
2）Press the MENU Key．
3）Turn the FMS Knob to highlight＇Show VSD＇and press the ENT Key．
4）Press the VSD Mode softkey to choose between Auto，FPL，or TRK．

Disabling the Vertical Situation Display

1) Select the Map - Navigation Map Page.
2) Press the Map Opt Softkey.
3) Press the Off Softkey.

Or:

1) Select the Map - Navigation Map Page.
2) Press the MENU Key.
3) Turn the FMS Knob to highlight 'Hide VSD' and press the ENT Key.

VSD Mode Button	Displayed Mode	FPL Criteria	Items available on VSD
Auto	AUTO FPL	Available active FPL \& aircraft within FPL swath	Terrain/obstacles along the active flight plan route, vertical track vector, selected altitude, and active flight plan information
	AUTO TRK	 aircraft not within FPL swath, or (2) Active FPL not available	Terrain/obstacles along the current track, vertical track vector, and selected altitude
	FPL	Active FPL available	Terrain/obstacles along the active flight plan route, vertical track vector, selected altitude, and active flight plan information
Track		Active FPL not available	Only shows message 'Flight Plan Not Available'
NA	Terrain/obstacles along the current track, vertical track vector, and selected altitude		

5.8 PROCEDURES

The system can access the whole range of instrument procedures available. Departures (DPs), arrivals (STARs), and non-precision and precision approaches (APRs) are stored within the database and can be loaded using any Procedures (PROC) Key.

The selected procedure for the departure or arrival airport is added to the active flight plan. No waypoints are required to be in the active flight plan to load procedures; however, if the origin and destination airport are already loaded, the procedure loading window defaults to the appropriate airport, saving some time selecting the correct airport on the Procedure Loading Page. Whenever an approach is selected, the choice to either "load" or "activate" is given. "Loading" adds the approach to the end of the flight plan without immediately using it for navigation guidance. This allows continued navigation via the intermediate waypoints in the original flight plan, but keeps the procedure available on the Active Flight Plan Page for quick activation when needed. "Activating" also adds the procedure to the end of the flight plan but immediately begins to provide guidance to the first waypoint in the approach.

The system adds terminal procedures to the flight plan based on leg types coded within that procedure in the navigation database. If the terminal procedure in the flight plan contains an identifier like ' 6368 FF ', that indicates a leg that terminates when the specified altitude (6368 feet) has been exceeded. A heading leg in the flight plan displays 'hdg' preceding the DTK (e.g. 'hdg 008°). A flight plan leg requiring the pilot to manually initiate sequencing to the next leg displays 'MANSEQ' as the identifier.

Figure 5-73 Procedure Leg Identifiers

Viewing available procedures at an airport:

1) From the Airport Information Page (first page in the WPT group):

Select the DP Softkey. The Departure Information Page is displayed, defaulting to the airport displayed on the Airport information Page.

Or.

Select the STAR Softkey. The Arrival Information Page is displayed, defaulting to the airport displayed on the Airport information Page.
Or.

Select the APR Softkey. The Approach Information Page is displayed, defaulting to the airport displayed on the Airport information Page.
2) To select another airport, press the FMS Knob to activate the cursor, enter an identifier/facility name/city, and press the ENT Key.
3) Turn the large FMS Knob to highlight the procedure. The procedure is previewed on the map.
4) Turn the small FMS Knob to view the available procedures. Press the ENT Key to select the procedure. The cursor moves to the next box (runway or transition). The procedure is previewed on the map.
5) Turn the small FMS Knob to view the available runway or transition. Press the ENT Key to select the runway or transition. The cursor moves to the next box (if available). The procedure is previewed on the map.
6) Turn the small FMS Knob to view the available runway or transition. Press the ENT Key to select the runway or transition. The cursor moves to the Sequence box or the Minimums box. The procedure is previewed on the map.
7) Press the Info $\mathbf{1}$ Softkey or the Info 2 Softkey to return to the Airport Information Page.

Loading a procedure into the active flight plan from the <Procedure> Information Page:

1) From the Airport Information Page (first page in the WPT group):

Select the DP Softkey. The Departure Information Page is displayed, defaulting to the airport displayed on the Airport information Page.

Or.
Select the STAR Softkey. The Arrival Information Page is displayed, defaulting to the airport displayed on the Airport information Page.

Or.
Select the APR Softkey. The Approach Information Page is displayed, defaulting to the airport displayed on the Airport information Page.
2) To select another airport, press the FMS Knob to activate the cursor, enter an identifier/facility name/city, and press the ENT Key.
3) Select a different procedure, if desired.
a) Turn the large FMS Knob to highlight the procedure. The procedure is previewed on the map.
b) Turn the small FMS Knob to view the available procedures. Press the ENT Key to select the procedure. The cursor moves to the next box (runway or transition). The procedure is previewed on the map.
c) Turn the small FMS Knob to view the available runway or transition. Press the ENT Key to select the runway or transition. The cursor moves to the next box (if available). The procedure is previewed on the map.
d) Turn the small FMS Knob to view the available transitions. Press the ENT Key to select the transition. The cursor moves to the Sequence box or the Minimums box. The procedure is previewed on the map.
4) Press the MENU Key to display the <Procedure> Information Page Menu.
5) Turn the FMS Knob to highlight 'Load <procedure>'.
6) Press the ENT Key to load the procedure into the active flight plan.

DEPARTURES

A Departure Procedure (DP) is loaded at the departure airport in the flight plan. Only one departure can be loaded at a time in a flight plan. If a departure is loaded when another departure is already in the active flight plan, the new departure replaces the previous departure. The route is defined by selection of a departure, the transition waypoints, and a runway.

LOADING A DEPARTURE INTO THE ACTIVE FLIGHT PLAN

Loading a departure into the active flight plan using the PROC Key:

1) Press the PROC Key. The Procedures Window is displayed.
2) Highlight 'Select Departure'.
3) Press the ENT Key. The Departure Loading Page is displayed.
4) Use the FMS Knob to select an airport, if necessary, and press the ENT Key.
5) Select a departure from the list and press the ENT Key.
6) Select a runway (if required) and press the ENT Key.
7) Select a transition (if required) and press the ENT Key. 'Load?' is highlighted.
8) Press the ENT Key to load the departure procedure.

Figure 5-74 Departure Selection

Procedure Loading Page Selection Softkeys
Figure 5－75 Departure Loading

REMOVING A DEPARTURE FROM THE ACTIVE FLIGHT PLAN

When plans change while flying IFR，departures can be easily removed from the Active Flight Plan．
Removing a departure procedure from the active flight plan：
1）Press the FPL Key to display the Active Flight Plan Page（MFD）or the Active Flight Plan Window（PFD）．
2）Press the MENU Key，and highlight＇Remove Departure＇．
3）Press the ENT Key．A confirmation window is displayed listing the departure procedure．
4）With＇OK＇highlighted，press the ENT Key．To cancel the removal request，highlight＇CANCEL＇and press the ENT Key．

Or：
1）Press the FPL Key to display the Active Flight Plan Page（MFD）or the Active Flight Plan Window（PFD）．
2）Press the FMS Knob，and turn to highlight the departure header in the active flight plan．
3）Press the CLR Key．A confirmation window is displayed listing the departure procedure．
4）With＇OK＇highlighted，press the ENT Key．To cancel the removal request，highlight＇CANCEL＇and press the ENT Key．
5）Press the FMS Knob to remove the flashing cursor．

ARRIVALS

A Standard Terminal Arrival (STAR) can be loaded at any airport that has one available. Only one arrival can be loaded at a time in a flight plan. If an arrival is loaded when another arrival is already in the active flight plan, the new arrival replaces the previous arrival. The route is defined by selection of an arrival, the transition waypoints, and a runway.

LOADING AN ARRIVAL INTO THE ACTIVE FLIGHT PLAN

Loading an arrival into the active flight plan using the PROC Key:

1) Press the PROC Key. The Procedures Window is displayed.
2) Highlight 'Select Arrival'.
3) Press the ENT Key. The Arrival Loading Page is displayed.
4) Use the FMS Knob to select an airport, if necessary, and press the ENT Key.
5) Select an arrival from the list and press the ENT Key.
6) Select a transition (if required) and press the ENT Key.
7) Select a runway (if required) and press the ENT Key. 'Load?' is highlighted.
8) Press the ENT Key to load the arrival procedure.

Figure 5-76 Arrival Selection

Procedure Loading Page Selection Softkeys
Figure 5－77 Arrival Loading

REMOVING AN ARRIVAL FROM THE ACTIVE FLIGHT PLAN

When plans change while flying IFR，arrivals can be easily removed from the Active Flight Plan．

Removing an arrival from the active flight plan：

1）Press the FPL Key to display the Active Flight Plan Page（MFD）or the Active Flight Plan Window（PFD）．
2）Press the MENU Key，and highlight＇Remove Arrival＇．
3）Press the ENT Key．A confirmation window is displayed listing the arrival procedure．
4）With＇OK＇highlighted，press the ENT Key．To cancel the removal request，highlight＇CANCEL＇and press the ENT Key．
Or：
1）Press the FPL Key to display the Active Flight Plan Page（MFD）or the Active Flight Plan Window（PFD）．
2）Press the FMS Knob，and turn to highlight the arrival header in the active flight plan．
3）Press the CLR Key．A confirmation window is displayed listing the arrival procedure．
4）With＇OK＇highlighted，press the ENT Key．To cancel the removal request，highlight＇CANCEL＇and press the ENT Key．
5）Press the FMS Knob to remove the flashing cursor．

APPROACHES

NOTE: If certain GPS parameters (SBAS, RAIM, etc.) are not available, some published approach procedures for the desired airport may not be displayed in the list of available approaches.

An Approach Procedure (APR) can be loaded at any airport that has one available, and provides guidance for non-precision and precision approaches to airports with published instrument approach procedures. Only one approach can be loaded at a time in a flight plan. If an approach is loaded when another approach is already in the active flight plan, the new approach replaces the previous approach. The route is defined by selection of an approach and the transition waypoints.

Whenever an approach is selected, the choice to either "Load" or "Load and Activate" is given ("Load and Activate" is only available for the active flight plan). "Loading" adds the approach to the end of the flight plan without immediately using it for navigation guidance. This allows continued navigation via the intermediate waypoints in the original flight plan, but keeps the procedure available for quick activation when needed. "Activating" also adds the procedure to the end of the flight plan but immediately begins to provide guidance to the first waypoint in the approach.

When selecting an approach, a "GPS" designation to the right of the procedure name indicates the procedure can be flown using the GPS receiver. Some procedures do not have this designation, meaning the GPS receiver can be used for supplemental navigation guidance only. If the GPS receiver cannot be used for primary guidance, the appropriate navigation receiver must be used for the selected approach (e.g., VOR or ILS). The final course segment of ILS approaches, for example, must be flown by tuning the NAV receiver to the proper frequency and selecting that NAV receiver on the CDI.

The SBAS GPS allows for flying LNAV, LNAV+V, LNAV/VNAV, LP, LP+V, and LPV approach service levels according to the published chart. LNAV+V is an LNAV with advisory vertical guidance provided for assistance in maintaining a constant vertical glidepath similar to an ILS glideslope on approach. This guidance is displayed on the system PFD in the same location as the ILS glideslope using a magenta diamond. In all cases where $\mathrm{LNAV}+\mathrm{V}$ is indicated by the system during an approach, LNAV minima are used. The active approach service level is annunciated on the HSI as shown in the following table:

HSI Annunciation	Description	Example on HSI
LNAV	RNAV GPS approach using published LNAV minima	Approach Service Level
LNAV+V	RNAV GPS approach using published LNAV minima. Advisory vertical guidance is provided	
L/VNAV (available only if SBAS available)	RNAV GPS approach using published LNAV/VNAV minima (downgrades to LNAV if SBAS unavailable)	
LP (available only if SBAS available)	RNAV GPS approach using published LP minima (downgrades to LNAV if SBAS unavailable)	
$L P+V$ (available only if SBAS available)	RNAV GPS approach using published LP minima Advisory vertical guidance is provided (downgrades to LNAV if SBAS unavailable)	
LPV (available only if SBAS available)	RNAV GPS approach using published LPV minima (downgrades to LNAV if SBAS unavailable)	

Table 5-11 Approach Service Levels

LOADING AN APPROACH INTO THE ACTIVE FLIGHT PLAN

Loading an approach into the active flight plan using the PROC Key：

1）Press the PROC Key．The Procedures Window is displayed．
2）Highlight＇Select Approach＇，and press the ENT Key．The Approach Loading Page is displayed．
3）Select the airport and approach：
a）Use the FMS Knob to select an airport，if necessary，and press the ENT Key．
b）Select an approach from the list and press the ENT Key．
Or：
a）If necessary，push the FMS Knob to exit the approach list，and use the large FMS Knob to move the cursor to the Approach Channel field．
b）Use the FMS Knob to enter the approach channel number，and press the ENT Key to accept the approach channel number．The airport and approach are selected．
4）Select a transition（if required）and press the ENT Key．
5）Minimums
a）To set＇Minimums＇，turn the small FMS Knob to select＇BARO＇or＇TEMP COMP＇，and press the ENT Key． Turn the small FMS Knob to select the altitude，and press the ENT Key．
b）If＇TEMP COMP＇was selected，the cursor moves to the temperature field．Turn the small FMS Knob to select the temperature，and press the ENT Key．
Or：
To skip setting minimums，press the ENT Key．
6）Press the ENT Key with＇Load？＇highlighted to load the approach procedure；or turn the large FMS Knob to highlight＇Activate＇and press the ENT Key to load and activate the approach procedure．

NOTE：When GPS is not approved for the selected final approach course，the message＇NOT APPROVED FOR GPS＇is displayed．GPS provides guidance to the approach，but the HSI must to be switched to a NAV receiver to fly the final course of the approach．

Figure 5-78 Approach Selection

Figure 5-79 Approach Loading

Loading an approach into the active flight plan from the Nearest Airport Page：

1）Select the Nearest Airports Page．
2）Press the FMS Knob，then turn the large FMS Knob to highlight the desired nearest airport．The airport is previewed on the map．

3）Press the APR Softkey；or press the MENU Key，highlight＇Select Approach Window＇，and press the ENT Key．
4）Turn the FMS Knob to highlight the desired approach．
5）Press the LD APR Softkey；or press the MENU Key，highlight＇Load Approach＇，and press the ENT Key．The Approach Loading Page is displayed with the transitions field highlighted．

6）Turn the FMS Knob to highlight the desired transition，and press the ENT Key．
7）Minimums
a）To set＇Minimums＇，turn the small FMS Knob to select＇BARO＇or＇TEMP COMP＇，and press the ENT Key． Turn the small FMS Knob to select the altitude，and press the ENT Key．
b）If＇TEMP COMP＇was selected，the cursor moves to the temperature field．Turn the small FMS Knob to select the temperature，and press the ENT Key．
Or：
To skip setting minimums，press the ENT Key．The＇LOAD？＇field is highlighted．
8）Press the ENT Key with＇LOAD？＇highlighted to load the approach procedure；or turn the large FMS Knob to highlight＇ACTIVATE＇and press the ENT Key to load and activate the approach procedure．The system continues navigating the current flight plan until the approach is activated．When GPS is not approved for the selected final approach course，the message＇NOT APPROVED FOR GPS＇is displayed．GPS provides guidance to the approach，but the HSI must to be switched to a NAV receiver to fly the final course of the approach．

ACTIVATING AN APPROACH

A previously loaded approach can be activated from the Procedures Window．

Activating a previously loaded approach：

1）Press the PROC Key．The Procedures Window is displayed with＇Activate Approach＇highlighted．
2）Press the ENT Key to activate the approach．
In many cases，it may be easiest to＂load＂the full approach while still some distance away，enroute to the destination airport．Later，if vectored to final，use the steps below to select＇Activate Vector－To－Final＇－which makes the inbound course to the FAF waypoint active．

Activating a previously loaded approach with vectors to final：
1）Press the PROC Key to display the Procedures Window．
2）Highlight＇Activate Vector－to－Final＇and press the ENT Key．

Loading and activating an approach using the MENU Key:

1) From the Approach Loading Page, press the MENU Key. The page menu is displayed with 'Load \& Activate Approach' highlighted.
2) Press the ENT Key. When GPS is not approved for the selected final approach course, the message 'NOT APPROVED FOR GPS' is displayed. GPS provides guidance to the approach, but the HSI must to be switched to a NAV receiver to fly the final course of the approach.

REMOVING AN APPROACH FROM THE ACTIVE FLIGHT PLAN

When plans change while flying IFR, approaches can be easily removed from the Active Flight Plan.

Removing an approach from the active flight plan:

1) Press the FPL Key to display the Active Flight Plan Page (MFD) or the Active Flight Plan Window (PFD).
2) Press the MENU Key, and highlight 'Remove Approach'.
3) Press the ENT Key. A confirmation window is displayed listing the approach procedure.
4) With 'OK' highlighted, press the ENT Key. To cancel the removal, highlight 'CANCEL' and press the ENT Key.

Or:

1) Press the FPL Key to display the Active Flight Plan Page (MFD) or the Active Flight Plan Window (PFD).
2) Press the FMS Knob, and turn to highlight the approach header in the active flight plan.
3) Press the CLR Key. A confirmation window is displayed listing the approach procedure.
4) With 'OK' highlighted, press the ENT Key. To cancel the removal, highlight 'CANCEL' and press the ENT Key.
5) Press the FMS Knob to remove the flashing cursor.

MISSED APPROACH

Activating a missed approach in the active flight plan:

1) Press the PROC Key.
2) Turn the FMS Knob to highlight 'Activate Missed Approach'.
3) Press the ENT Key. The aircraft automatically sequences to the MAHP.

Or:
Fly past the MAP, and press the SUSP Softkey on the PFD.
Or:
Press the Go-Around Button.

In this missed approach procedure，the altitude immediately following the MAP（in this case＇ 6600 FT ＇）is not part of the published procedure．It is simply a Course to Altitude（CA）leg which guides the aircraft along the runway centerline until the altitude required to safely make the first turn toward the MAHP is exceeded． This altitude is provided by the navigation database，and may be below，equal to，or above the published minimums for this approach．In this case，if the aircraft altitude is below the specified altitude（ 6,600 feet） after crossing the MAP，a direct－to is established to provide a course on runway heading until an altitude of 6，600 feet is reached．After reaching 6，600 feet，a direct－to is established to the published MAHP（in this case ADANE）．If the aircraft altitude is above the specified altitude after crossing the MAP，a direct－to is established to the published fix（ADANE）to begin the missed approach procedure．

Figure 5－80 Course to Altitude

In some missed approach procedures this Course to Altitude leg may be part of the published procedure． For example，a procedure may dictate a climb to 5，500 feet，then turn left and proceed to the Missed Approach Hold Point（MAHP）．In this case，the altitude would appear in the list of waypoints as＇5500FT＇．Again，if the aircraft altitude is lower than the prescribed altitude，a direct－to is established on a Course to Altitude leg when the missed approach procedure is activated．

VISUAL APPROACH

The system provides a visual approach feature. Unlike instrument approaches, visual approaches are not defined in the navigation database and do not follow a precise prescribed path. Instead, the system calculates the lateral and vertical path for the chosen runway and creates visual approach waypoints based on runway position and course as specified in the navigation database.

Each visual approach will have two transitions, the straight in transition (STRAIGHT) and the Vectors-toFinal transition (VECTORS). The visual approach waypoints (fixes) consist of the initial fix (STRGHT), the final approach fix (FINAL), and the missed approach point (RWxx). A 3 degree glide path is calculated from the missed approach point up to each waypoint along the extended straight-in path.
For visual approaches, the pilot is responsible for avoiding terrain, obstacles and traffic. Therefore, when a visual approach is selected, the message "Obstacle clearance is not provided for visual approaches" is displayed on the approach selection page and must be acknowledged before the visual approach is loaded into the flight plan.

Loading and Activating a visual approach using the PROC Key:

1) Press the PROC Key. The Procedures Window is displayed.
2) Highlight 'Select Approach', and press the ENT Key. The Approach Loading Page is displayed.
3) Select the airport and approach:
a) Use the FMS Knob to select an airport, if necessary, and press the ENT Key.
b) Select a visual approach from the list and press the ENT Key.
4) Select a transition and press the ENT Key.
5) Minimums
a) To set 'Minimums', turn the small FMS Knob to select 'BARO' or 'TEMP COMP', and press the ENT Key. Turn the small FMS Knob to select the altitude, and press the ENT Key.
b) If 'TEMP COMP' was selected, the cursor moves to the temperature field. Turn the small FMS Knob to select the temperature, and press the ENT Key.

Or:
To skip setting minimums, press the ENT Key.
6) Press the ENT Key with 'Load?' highlighted to load the approach procedure ('Load' is only available if there is no previous approach already loaded in flight plan); or turn the large FMS Knob to highlight 'Activate' and press the ENT Key to load and activate the approach procedure.
7) The message 'Obstacle clearance is not provided for visual approaches' is displayed. Press ENT to continue.

Figure 5-81 Loading Visual Approach

NOTE: The temperature at the destination can be entered in the Temperature Compensation Window on the MFD, or in the References Window on the PFD. There is only one compensation temperature for the system, therefore, changing the temperature will affect both the loaded approach altitudes and the minimums. Refer to the Flight Instruments section for information about applying temperature compensation to the MDA/DH.
5) Press the ENT Key. 'Activate Compensation?' is highlighted.
6) Press the ENT Key. The compensated altitudes for the approach are shown in the flight plan.
 Selected

Figure 5-82 Temperature Compensation

Figure 5-83 Temperature Compensation in the Active Flight Plan

Cancelling temperature compensated altitude:

1) From the Active Flight Plan Page, press the MENU Key. The Page Menu is displayed.
2) Turn the FMS Knob to highlight 'Temperature Compensation'.
3) Press the ENT Key. The Temperature Compensation Window is displayed.
4) Press the ENT Key. 'Cancel Compensation?' is highlighted.
5) Press the ENT Key. The temperature compensated altitude at the FAF is cancelled.

NOTE: Activating/cancelling temperature compensation for the loaded approach altitudes does not select/ deselect temperature compensated minimums (MDA/DH), nor does selecting/deselecting temperature compensated minimums activate/cancel temperature compensated approach altitudes.

5.9 TRIP PLANNING

The system allows the pilot to view trip planning information, fuel information, and other information for a specified flight plan or flight plan leg based on automatic data, or based on manually entered data. Weight planning is also available, based on manually entered fuel data and the active flight plan (to estimate remaining fuel).

TRIP PLANNING

All of the input of data needed for calculation and viewing of the statistics is done on the Trip Planning Page located in the Aux Page Group.
 Fuel Required Total Range -

Figure 5-84 Trip Planning Page
The trip planning inputs are based on sensor inputs (automatic page mode) or on pilot inputs (manual page mode). Some additional explanation of the sources for some of the inputs is as follows:

- Departure Time - This defaults to the current time in automatic page mode. The computations are from the aircraft present position, so the aircraft is always just departing.
- Calibrated Airspeed - The primary source is from the air data system, and the secondary source of information is GPS ground speed.
- Indicated Altitude - The primary source is the barometric altitude, and the secondary source of information is GPS altitude.

TRIP STATISTICS

The trip statistics are calculated based on the selected starting and ending waypoints and the trip planning inputs．
In flight plan mode（FPL）with a stored flight plan selected（NN），and the entire flight plan（CUM）selected， the waypoints are the starting and ending waypoints of the selected flight plan．
In flight plan mode（FPL）with a stored flight plan selected（NN），and a specific leg（NN）selected，the waypoints are the endpoints of the selected leg．
In flight plan mode（FPL）with the active flight plan selected（00），and the remaining flight plan（REM） selected，the＇from＇waypoint is the present position of the aircraft and the＇to＇waypoint is the endpoint of the active flight plan．
In flight plan mode（FPL）with the active flight plan selected（00），and a specific leg（NN）selected，the ＇from＇waypoint is the current aircraft position and the＇to＇waypoint is the endpoint of the selected leg．
In waypoint（WPTs）mode these are manually selected waypoints（if there is an active flight plan，these default to the endpoints of the active leg）．
Some of the calculated trip statistics are dashed when the selected leg of the active flight plan has already been flown．
－Desired Track－Desired Track is shown as $n n n^{\circ}$ and is the desired track between the selected waypoints． It is dashed unless only a single leg is selected．
－Distance－The distance is shown in tenths of units up to 99．9，and in whole units up to 9999.
－Estimated time enroute（ETE）－ETE is shown as hours：minutes until less than an hour，then it is shown as minutes：seconds．
－Estimated time of arrival（ETA）－ETA is shown as hours：minutes and is the local time at the destination．
－If in waypoint mode then the ETA is the ETE added to the departure time．
－If a flight plan other than the active flight plan is selected it shows the ETA by adding to the departure time all of the ETEs of the legs up to and including the selected leg．If the entire flight plan is selected， then the ETA is calculated as if the last leg of the flight plan was selected．
－If the active flight plan is selected the ETA reflects the current position of the aircraft and the current leg being flown．The ETA is calculated by adding to the current time the ETEs of the current leg up to and including the selected leg．If the entire flight plan is selected，then the ETA is calculated as if the last leg of the flight plan was selected．
－Enroute safe altitude（ESA）－The ESA is shown as nnnnnFT
－Destination sunrise and sunset times（SUNRISE，SUNSET）－These times are shown as hours：minutes of the time at the destination．

FUEL STATISTICS

The fuel statistics are calculated based on the selected starting and ending waypoints and the trip planning inputs. Some of the calculated trip statistics are dashed when the selected leg of the active flight plan has already been flown.

- Fuel efficiency (Efficiency) - This value is calculated by dividing the current ground speed by the current fuel flow.
- Time of fuel endurance (Total Endurance) - This time is shown as hours:minutes. This value is obtained by dividing the amount of fuel on board by the current fuel flow.
- Fuel on board upon reaching end of selected leg (Remaining Fuel) - This value is calculated by taking the amount of fuel onboard and subtracting the fuel required to reach the end of the selected leg.
- Fuel endurance remaining at end of selected leg (Remaining Endurance) - This value is calculated by taking the time of fuel endurance and subtracting the estimated time enroute to the end of the selected leg.
- Fuel required for trip (Fuel Required) - This value is calculated by multiplying the time to go by the fuel flow.
- Total range at entered fuel flow (Total Range) - This value is calculated by multiplying the time of fuel endurance by the ground speed.

OTHER STATISTICS

These statistics are calculated based on the system sensor inputs or the manual trip planning inputs.

- Density Altitude
- True Airspeed

The pilot may select Automatic or Manual page mode, and flight plan (FPL) or waypoint (WPTs) mode. In automatic page mode, only the FPL, LEG, or waypoint IDs are editable (based on FPL/WPTs selection).

Figure 5-85 Trip Planning Page - Flight Plan Mode

Figure 5-86 Trip Planning Page - Waypoint Mode

Selecting automatic or manual page mode：

Press the Auto Softkey or the Manual Softkey；or press the MENU Key，highlight＇Auto Mode＇or＇Manual Mode＇，and press the ENT Key．

Selecting flight plan or waypoint mode：

Press the FPL Softkey or the WPTs Softkey；or press the MENU Key，highlight＇Flight Plan Mode＇or＇Waypoints Mode＇，and press the ENT Key．

Selecting a flight plan and leg for trip statistics：

1）Press the FMS Knob to activate the cursor in the flight plan number field．
2）Turn the small FMS Knob to select the desired flight plan number．
3）Turn the large FMS Knob to highlight＇CUM＇or＇REM＇．The statistics for each leg can be viewed by turning the small FMS Knob to select the desired leg．The Inset Map also displays the selected data．

Selecting waypoints for waypoint mode：

1）Select the WPTs Softkey；or press the MENU Key，highlight＇Waypoints Mode＇，and press the ENT Key．The cursor is positioned in the waypoint field directly below the FPL field．

2）Turn the FMS knobs to select the desired waypoint（or select from the Page Menu＇Set WPT to Present Position＇ if that is what is desired），and press the ENT Key．The cursor moves to the second waypoint field．
3）Turn the FMS knobs to select the desired waypoint，and press the ENT Key．The statistics for the selected leg are displayed．

In manual page mode，the other eight trip input data fields must be entered by the pilot，in addition to flight plan and leg selection．

Entering manual data for trip statistics calculations：

1）Select the Manual Softkey or select＇Manual Mode＇from the Page Menu，and press the ENT Key．The cursor may now be positioned in any field in the top right two boxes．
2）Turn the FMS Knobs to move the cursor onto the Departure Time field and enter the desired value．Press the ENT Key．The statistics are calculated using the new value and the cursor moves to the next entry field．Repeat until all desired values have been entered．

5.10 ABNORMAL OPERATION

NOTE: The Inset Map is removed from the PFD any time aircraft pitch is greater than $+30^{\circ}$ or less than -20°,
or when a 65° bank angle is reached.
This section discusses the Dead Reckoning mode of operation and the subsequent indications.
NOTE: Dead Reckoning Mode only functions in Enroute (ENR) or Oceanic (OCN) phase of flight. In all other phases, an invalid GPS solution produces a "NO GPS POSITION" annunciation on the map and the system stops using GPS.

While in Enroute or Oceanic phase of flight, if the system detects an invalid GPS solution or is unable to

Figure 5－87 Dead Reckoning Mode－GPS Derived Data Shown in Amber

Blank Page

SECTION 6 HAZARD AVOIDANCE

Hazard avoidance features available for the system are designed to aid situational awareness and provide advisory information with regard to potential hazards to flight safety associated with weather, terrain, and air traffic.

Weather

- GDL 69/69A or 69/69A SXM SiriusXM Weather (Subscription Optional)
- Flight Information Services-Broadcast (FIS-B) (Optional)
- L-3 WX-500 Stormscope ${ }^{\circledR}$ Lightning Detection System

Terrain Avoidance

- Terrain Awareness and Warning System Class-B (TAWS-B)

Traffic

- Traffic Information Service (TIS)
- Garmin GTS 800/820 or L-3 SkyWatch ${ }^{\text {™ }}$ Traffic Advisory System (TAS) (Optional)
- Garmin GTX 345 Automatic Dependent Surveillance-Broadcast (ADS-B) Traffic (Optional)

6.1 DATA LINK WEATHER

(1) WARNING: Do not use data link weather information for maneuvering in, near, or around areas of hazardous weather. Information contained within data link weather products may not accurately depict current weather conditions.

WARNING: Do not use the indicated data link weather product age to determine the age of the weather information shown by the data link weather product. Due to time delays inherent in gathering and processing weather data for data link transmission, the weather information shown by the data link weather product may be older than the indicated weather product age.

The Data Link Weather feature enables the system to receive weather information from a variety of weather sources, depending on the equipment installed in the aircraft. These sources may include SiriusXM Weather and Flight Information Services-Broadcast (FIS-B). For each source, a ground-based system processes the weather information collected from a network of sensors and weather data providers.

The SiriusXM Weather service, available with the Garmin GDL 69A and 69A SXM data link receiver and an active service subscription, updates its weather data periodically and automatically, and transmits this information to the aircraft's receiver via satellite on the S-Band frequency. This service provides continuous reception capabilities at any altitude throughout North America. Differences in performance between the GDL 69A and 69A SXM data link receiver models, where relevant, are discussed where applicable in this section.

The FIS-B Weather service, available when equipped with a capable transponder or data link receiver which can receive 978 MHz Universal Access Transceiver (UAT) data, delivers subscription-free weather information periodically and automatically to the aircraft. FIS-B uses a network of FAA-operated Ground-Based Transceivers (GBTs) to transmit the information to the aircraft's receiver. Reception is limited to line-of-sight, and is available below 24,000 feet MSL in the United States. FIS-B broadcasts provide weather data in a repeating cycle which may take approximately ten minutes to transmit all available weather data. Therefore, not all weather data may be present immediately upon initial FIS-B signal acquisition. FIS-B is a component of the Automatic Dependent Surveillance (ADS-B) system, which offers both weather and traffic data; refer to the ADS-B Traffic discussion later in this section for a more detailed discussion of the ADS-B system and its capabilities.

ACTIVATING DATA LINK WEATHER SERVICES

NOTE: Service activation is not applicable to the FIS-B Weather service.

ACTIVATING THE SIRIUSXM WEATHER SERVICE

Before SiriusXM Weather can be used, the service must be activated by providing SiriusXM's customer service the coded $\operatorname{ID}(\mathrm{s})$ unique to the installed data link receiver. The Data Radio ID must be provided to activate the weather service. A separate Audio Radio ID, if present, enables the receiver to provide SiriusXM Radio entertainment. To view this information, refer to the following locations:

- The Aux - XM Information Page on the MFD
- The SiriusXM Activation Instructions included with the Data Link Receiver
- The label on the back of the Data Link Receiver

SiriusXM uses the coded IDs to send an activation signal that allows the system to display weather data and/ or provide audio entertainment programming through the data link receiver.

Establishing an account for SiriusXM services:

1) Select the XM Radio Page in the Auxiliary Page Group.
2) If necessary, press the Info Softkey to display the Aux - XM Information Page.
3) Note the Data Radio ID (for SiriusXM Weather data) and/or the Audio Radio ID (for SiriusXM Satellite Radio).
4) Contact SiriusXM customer service through the phone number listed on its website, www.siriusxm.com.
5) Provide Sirius X M customer service the Data Radio ID and/or Audio Radio ID, in addition to payment information, and the desired weather product subscription package.
After SiriusXM has been contacted, it may take approximately 15 minutes until the activation occurs.

Verifying the SiriusXM Weather service activation:

1) Once a SiriusXM Weather account has been established, select the XM Radio Page in the Auxiliary Page Group.
2) If necessary, press the Info Softkey to display the Aux - XM Information Page.
3) View the list of supported Weather Products. A white empty box appears next to an unavailable weather product; a green filled box appears next to an available weather product. During activation, it may take several minutes for weather products in the selected subscription package to become available.

NOTE: Not all weather products offered by SiriusXM are supported for display on this system. This pilot's guide only discusses supported weather products.

Figure 6-1 XM Information Page

WEATHER PRODUCT AGE

Unlike real-time weather information collected directly from weather sensors on-board an aircraft, such as an airborne weather radar or a lightning detection system, data link weather by contrast relies on service providers to collect, process, and transmit weather information to the aircraft. This information can come from a variety of sources such as government agencies. Due to the time it takes to collect, process, and distribute data link weather information, it is imperative for pilots to understand that data link weather information is not real-time information and may not accurately depict the current conditions.

For each data link weather product which can be displayed as a map overlay, such as radar precipitation, the system can also show a weather product age. This age represents the elapsed time, in minutes, since the weather service provider compiled the weather product and the current time. It does not represent the age of the information contained within the weather product itself. For example, a single mosaic of radar precipitation is comprised data from multiple radar sites providing data at differing scan rates or intervals. The weather service provider periodically compiles this data to create a single composite image, and assigns one time to this image which becomes the basis of the product age. The service provider then makes this weather product available for data link transmission at the next scheduled update time. The actual age of the weather data contained within the mosaic is therefore older than its weather product age and should never be considered current.
SiriusXM and FIS-B weather products are broadcast automatically on a repeating cycle without pilot intervention.

Each data link weather product age has an expiration time. The weather product age is shown in white if it is less than half of this expiration time, otherwise it is shown in amber until reaching its expiration time. After a weather product has expired, the system removes the expired weather product from the displays, and shows white dashes instead of the age. If the data link receiver has not yet received a weather product ' N / A ' appears instead of the age to show the product is currently not available for display. This may occur, for example, after powering on the system but before the data link receiver has received a complete weather data transmission. It could also indicate a possible outage of a weather product.

The weather product age is shown automatically for weather products displayed on MFD maps. For PFD maps, the pilot can manually enable/disable the age information.

Enabling/disabling the weather product age for PFD Maps:

1) Press the Map/HSI Softkey.
2) Press the Layout Softkey.
3) Press the WX LGND to show/remove the weather product age information for PFD maps.
4) Press the Back Softkey twice to return to the top-level softkeys.

Tables 6-1 and 6-2 show the weather product symbols, the expiration times and the broadcast rates for SiriusXM Weather and FIS-B Weather, respectively. The broadcast rate represents the interval at which the SiriusXM Weather service transmits new signals that may or may not contain updated weather product information. It does not represent the rate at which the weather information is updated or when the Data Link Receiver receives new data. The service provider and its weather data suppliers define and control the data update intervals, which are subject to change.

SiriusXM Weather Product	Symbol	Expiration Time (Minutes)	Broadcast Rate (Minutes)
NEXRAD	12	30	$\begin{gathered} 5 \text { (U.S.) } \\ 10 \text { (Canada) } \end{gathered}$
Cloud Top (CLD TOP)		60	15 (69/69A)
			30 (69/69A SXM)
Echo Top (ECHO TOP)	5	30	7.5
SiriusXM Lightning (LTNG)		30	5
Cell Movement		30	1.25
SIGMETs/AIRMETs	$\begin{aligned} & \hline \text { SIGM } \\ & \text { AIRM } \end{aligned}$	60	12
METARs		90	12
City Forecast		90	12
Surface Analysis		60	12
Freezing Levels		120	12
Winds Aloft		90	12
County Warnings		60	5
Cyclone Warnings		60	12
Icing Potential (CIP and SLD)		90	22
Pilot Weather Report (PIREP)	\square	90	12
Air Report(AIREP)	\square	90	12
Turbulence	A	180	12
Radar Coverage Not Available	No product image	30	5
Temporary Flight Restriction (TFR)	No product image	60	12
Terminal Aerodrome Forecast (TAF)	No product image	60	12

Table 6-1 SiriusXM Weather Product Symbols and Data Timing

FIS-B Weather Product	Symbol	Expiration Time (Minutes)	Broadcast Rate (Minutes)
NEXRAD Composite (US)		30	15
NEXRAD Composite (Regional)		30	2.5
METARs	4	90	5
Pilot Weather Report (PIREP)	\downarrow	90	10
Winds Aloft		90	10
SIGMETs/AIRMETs	$\begin{aligned} & \text { SIGM } \\ & \text { AIRM } \end{aligned}$	60	5
No Radar Coverage	no product image	30	2.5
Terminal Aerodrome Forecast (TAF)	no product image	60	10
Temporary Flight Restriction (TFR)	no product image		10

Table 6-2 FIS-B Weather Product Symbols and Data Timing

DISPLAYING DATA LINK WEATHER PRODUCTS

WEATHER DATA LINK PAGE

The Map - Weather Data Link (XM/FIS-B) Page is the principal map page for viewing data link weather information. This page provides the capability for displaying the most data link weather products of any map on the system. The Weather Data Link Page also provides system-wide controls for selecting the data link weather source, if more than one source has been installed. The page title indicates the selected data link weather source (e.g., "XM", "FIS-B").

NEXRAD
Weather Product Selected for Display

Viewing the Weather Data Link Page and changing the data link weather source，if applicable：
1）Turn the large FMS Knob to select the Map Page Group．
2）Turn the small FMS Knob to select the Weather Data Link（XM or FIS－B）Page．The currently selected data link weather source appears in the page title．
3）If the page title does not contain the desired weather source，press the MENU Key．
a）Turn the FMS Knob to highlight＇Display XM Weather＇，or＇Display FIS－B Weather＇（choices may vary depending on the installed equipment）．
b）Press the ENT Key．

Figure 6－3 Changing the Data Link Weather Source

The system presents the softkeys for the selected source on the Weather Data Link Page，and for map overlays used throughout the system．The following figures show the softkeys for the Weather Data Link Page based on the selected source．

HAZARD AVOIDANCE

GARMIN.

WEATHER DATA LINK (XM) PAGE SOFTKEYS

Figure 6-4 Weather Data Link (XM) Page Weather Product Softkeys

WEATHER DATA LINK（FIS－B）PAGE SOFTKEYS

Figure 6－5 Weather Data Link（FIS－B）Weather Product Softkeys

The Weather Data Link Page can display a legend for each enabled weather product．
Viewing legends for displayed weather products on the Weather Data Link Page：
1）Select the Weather Data Link Page．
2）Press the Legend Softkey to display the legends for the displayed weather products．
Or：
a）Press the MENU Key．
b）Select＇Weather Legend＇and press the ENT Key．
3）Turn the FMS Knob to scroll through the legends if more are available than fit in the window．
4）To remove the Weather Legends Window，press the Legend Softkey，the ENT or the CLR Key，or press the FMS Knob．

Additional information about the following weather products can be displayed by panning the Map Pointer over the following products on the Weather Data Link Page:

- Echo Tops
- METARs
- Cloud Tops
- County Warnings
- Cell Movement
- TFRs
- SIGMETs
- AIREPs
- AIRMETs
- PIREPs

The map panning feature is enabled by pressing the Joystick. The map range is adjusted by turning the Joystick. If the map range is adjusted while panning is enabled, the map is re-centered on the Map Pointer.

Figure 6-6 Panning on the Weather Data Link (XM) Page
Certain weather products, such as METARs or TFRs have associated full text. When a weather product is selected with the Map Pointer, press the ENT Key. The system displays the full text for the selected weather product in a window. To remove the window, press the FMS Knob or the CLR Key.
The Weather Data Link Page also has a page menu that can be accessed by pressing the MENU Key. It has controls for enabling/disabling the weather products as an alternative to using the softkeys.

Customizing the Weather Data Link Page

The Weather Data Link Page includes controls for selecting the maximum map range to display each weather product on the page. If the pilot increases the map range beyond this selected maximum range, the system removes the weather product from the map. If more than one data link weather source has been
installed，the system uses the same maximum map range for the comparable weather product of another source．

Setting up and customizing the Weather Data Link Page：

1）Select the Weather Data Link Page．
2）Press the MENU Key．
3）Turn the FMS Knob to highlight＇Weather Setup＇，then press the ENT Key．
4）Turn the small FMS Knob to select＇Product Group 1＇or＇Product Group 2＇，and press the ENT Key．
nOTE：＇Product Group 2＇is not applicable to FIS－B Weather．
5）Turn the large FMS Knob or press the ENT Key to scroll through product selections．
6）Turn the small FMS Knob to scroll through options for each product（ON／OFF，range settings，etc．）．
7）Press the ENT Key to select an option．
8）Press the FMS Knob or CLR Key to return to the Weather Data Link（XM）Page with the changed settings．

Restoring default Weather Data Link Page settings：

1）Select the Weather Data Link Page．
2）Press the MENU Key．
3）Turn the FMS Knob to highlight＇Weather Setup＇，then press the ENT Key．
4）Press the MENU Key．
5）Highlight the desired default（s）to restore（all or for selection）and press ENT Key．
6）When finished，press the FMS Knob or press the CLR Key．

WEATHER PRODUCT MAP OVERLAYS

Other PFD and MFD maps and pages can display a smaller set of data link weather products. The following table shows which data link weather products can be displayed on specific maps, indicated with a '+' symbol.

Data Link Weather Product	$\begin{aligned} & \text { 음 } \\ & \sum_{0}^{0} \\ & \text { 몽 } \end{aligned}$				Aux - Trip Planning Page		
NEXRAD	+	+	+		+	+	+
Cloud Top			+				
Echo Top			+				
Data Link Lightning	+	+	+		+	+	+
Cell Movement		+	+		+		
SIGMETs/AIRMETs			+				
METARs	+	+	+	+	+	+	+
Surface Analysis \& City Forecast			+				
Freezing Levels			+				
Winds Aloft		+*	+				
County Warnings			+				
Cyclone Warnings			+				
Icing Potential			+				
PIREPS			+	+			
AIREPS			+	+			
Turbulence (TURB)			+				
No Radar Coverage	+	+	+		+	+	+
TFRs	+	+	+	+	+	+	+
TAFs			+	+			

* Winds Aloft data is available inside the VSD when VSD is enabled on the Navigation Map Page.

Table 6-3 Weather Product Display Maps
Displaying Data Link Weather Products on the Navigation Map Page:

1) Select the Navigation Map Page.
2) Press the Map Opt Softkey.
3) Press the softkey to enable/disable the desired weather product.

The Navigation Map Page also can display legends for weather products enabled on this map with the Legend Softkey. This softkey is subdued if no weather products are enabled.

Showing/removing the weather legend on the Navigation Map Page:

1) Select the Navigation Map Page.
2) Press the Map Opt Softkey.
3) Press the Legend Softkey to show the weather legends window.
4) When finished, press the Legend Softkey again, or press the FMS Knob or the CLR Key to remove the window.

The Navigation Map Page also allows the pilot to select the maximum map range to display weather products. If the pilot increases the map range beyond this selected maximum range, the system removes the weather product from the map. The system uses this setting for all navigation maps, including those displayed on the PFD.

Setting up and customizing weather data for the navigation maps:

1) Select the Navigation Map Page.
2) Press the MENU Key.
3) With 'Map Settings' highlighted, press the ENT Key.
4) Turn the small FMS Knob to select the 'Weather' Group and press the ENT Key.
5) Turn the large FMS Knob or press the ENT Key to scroll through product selections.
6) Turn the small FMS Knob to scroll through options for each product (ON/OFF, range settings).
7) Press the ENT Key to select an option.
8) Press the FMS Knob or CLR Key to return to the Navigation Map Page with the changed settings.

The system can also display data link weather information on the PFD navigation maps.

Displaying Data Link Weather products on the PFD:

1) On the PFD, press the Map/HSI Softkey.
2) Press the desired weather product softkey(s) to enable/disable the display of data link products on the PFD map.

On the MFD maps, the weather product icon and age appear automatically when a weather is enabled and the range is within the maximum display limits. On PFD maps, this information is available using the PFD softkeys.

Enabling/disabling the weather product icon and age display (PFD maps):

1) On the PFD, press the Map/HSI Softkey.
2) Press the Layout Softkey.
3) Press the WX LGND Softkey to enable/disable the weather product age, source, and icon box display on PFD Maps.
The setup menus for the Navigation Map Page and the Weather Data Link Page control the map range settings above which weather products data are decluttered from the display. If a map range larger than the weather product map range setting is selected, the weather product data is removed from the map. The page menus also provide an alternative to using the softkeys to enable/disable data link weather product overlays on maps.

WEATHER PRODUCT OVERVIEW

The following is an overview of data link weather products the system can display.

NEXRAD (SIRIUSXM)

NOTE: Datalink weather radar information cannot be displayed at the same time as terrain, echo tops, icing, or turbulence data.

The National Weather Service (NWS) operates the WSR-88D, or NEXRAD (NEXt-generation RADar) system, an extensive network of 156 high-resolution Doppler radar systems. The NEXRAD network provides centralized meteorological information for the continental United States and selected overseas locations. The maximum range of a single NEXRAD site is 250 nm .

Individual NEXRAD sites supply the network with radar images, and the images from each radar site may arrive at the network at different rates and times. Periodically, the weather data provider compiles the available individual site images from the network to form a composite image, and assigns a single time to indicate when it created the image. This image becomes the NEXRAD weather product. Individual images--gathered from each NEXRAD site--differ in age, and are always older than the displayed NEXRAD weather product age. The data provider then sends the NEXRAD data to the SiriusXM Weather service, whose satellites transmit this information during the next designated broadcast time for the NEXRAD weather product.

Because of the time required to detect, assemble, and distribute the NEXRAD weather product, the displayed weather information contained within the product may be significantly older than the current radar synopsis and may not depict the current weather conditions. The NEXRAD weather product should never be used as a basis for maneuvering in, near, or around areas of hazardous weather regardless of the information it contains.

Figure 6-7 NEXRAD Weather Product on the Weather Data Link (XM) Page

For radar sites in the United States，the NEXRAD weather product shows a composite reflectivity image． This shows the highest radar energy received from multiple antenna tilt angles at various altitudes．For radar sites based in Canada，the NEXRAD weather product shows radar returns from the lowest antenna tilt angle， known as base reflectivity．The display of the information is color－coded to indicate the intensity of the echoes and the type of precipitation，if known．

Displaying the NEXRAD weather product on the Weather Data Link（XM）Page：

1）Select the Weather Data Link（XM）Page．
2）Press the NEXRAD Softkey．
A mosaic of data from all the available NEXRAD radar sites is shown．

Figure 6－8 NEXRAD Weather Product Legend

Displaying the NEXRAD weather product on the Navigation Map Page：

1）Press the Map Opt Softkey．
2）Press the NEXRAD Softkey．

Displaying the NEXRAD weather product on PFD maps：

1）Press the Map／HSI Softkey．
2）Press the NEXRAD Softkey to enable／disable the display of NEXRAD information．
The display of No Radar Coverage is always active when either NEXRAD or Echo Tops is selected．Areas where NEXRAD radar coverage and Echo Tops information is not currently available or is not being collected are indicated in gray shade of purple．
The system can animate a loop of NEXRAD information on the Weather Data Link（XM）Page．Animation begins after the system has received at least two recent NEXRAD images since the avoinics power cycle． When animation is enabled，a timeline appears to the left of the NEXRAD weather product age display．The large square on the timeline indicates the relative position of the displayed frame of animation，from oldest to newest．The NEXRAD weather product age corresponds to the displayed frame．The system can show up to six frames of NEXRAD animation when the USA coverage option is selected，and up to three frames of animation when Canada is selected．

Displaying Time-Lapse NEXRAD Animation on the Weather Data Link (XM) Page:

1) Press the MENU Key.
2) Turn the FMS Knob to select 'Weather Setup' and press the ENT Key.
3) With Product Group 1 selected, turn the large FMS Knob to highlight the NEXRAD Animation On/Off field.
4) Turn the small FMS Knob to select 'On' or 'Off', then press the ENT Key.
5) To remove the menu, push the FMS Knob or the CLR Key.

The pilot can select either the United States or Canada region for the desired NEXRAD coverage area on the Weather Data Link (XM) Page. NEXRAD information is shown for the selected region, while a gray shade of purple is shown for the region which is not selected.

Selecting the NEXRAD Coverage Region on the Weather Data Link (XM) Page:

1) Press the MENU Key.
2) Turn the FMS Knob to select 'Weather Setup' and press the ENT Key.
3) With Product Group 1 selected, turn the large FMS Knob to highlight the NEXRAD Region field.
4) Turn the small FMS Knob to select 'US' or 'CNDA', then press the ENT Key.
5) To remove the menu, push the FMS Knob or the CLR Key.

The NEXRAD weather product age display indicates either 'US' or ' CN ' for the selected coverage region.

Reflectivity

Reflectivity is the amount of transmitted power returned to the radar receiver. Colors on the NEXRAD display are directly correlative to the level of detected reflectivity. Reflectivity as it relates to hazardous weather can be very complex.

The role of radar is essentially to detect moisture in the atmosphere. Simply put, certain types of weather reflect radar better than others. The intensity of a radar reflection is not necessarily an indication of the weather hazard level. For instance, wet hail returns a strong radar reflection, while dry hail does not. Both wet and dry hail can be extremely hazardous.

The different NEXRAD echo intensities are measured in decibels (dB) relative to reflectivity (Z). NEXRAD measures the radar reflectivity ratio, or the energy reflected back to the radar receiver (designated by the letter Z). The value of Z increases as the returned signal strength increases.

NEXRAD LImitations

NEXRAD radar images may have certain limitations:

- Undetermined precipitation types may be displayed as mixed.
- An individual NEXRAD site cannot depict high altitude storms at close ranges. It has no information about storms directly over the site.
- Precipitation may be occurring below the lowest antenna tilt angle $\left(0.5^{\circ}\right)$, and therefore the radar beam overshoots the precipitation. For example, at a distance of 124 miles from the radar site, the radar beam is approximately 18,000 feet above the radar site. The radar cannot detect any precipitation occurring below the beam at this distance and altitude.
－At smaller map ranges，the smallest square block on the display represents an area of approximately four square kilometers．The intensity level reflected by each square represents the highest level of radar reflectivity sampled within the area．
－Unknown precipitation below $52^{\circ} \mathrm{N}$ is displayed as rain regardless of actual precipitation type．

The following may cause abnormalities in displayed NEXRAD radar images：
－Ground clutter
－Strobes and spurious radar data
－Sun strobes（when the radar antenna points directly at the sun）
－Interference from buildings or mountains，which may cause shadows
－Metallic dust（chaff）from military aircraft，which can cause alterations in radar scans

NEXRAD Limitations（Canada）

－Radar coverage extends to $55^{\circ} \mathrm{N}$ ．
－Any precipitation displayed between $52^{\circ} \mathrm{N}$ and $55^{\circ} \mathrm{N}$ is displayed as mixed precipitation regardless of actual precipitation type．
－If the precipitation type is unknown，the system displays the precipitation as rain，regardless of actual precipitation type．

Figure 6-10 NEXRAD Weather Product - Canada

NEXRAD (FIS-B)

NOTE: The NEXRAD weather product cannot be displayed at the same time as terrain.

The National Weather Service (NWS) operates the WSR-88D, or NEXRAD (NEXt-generation RADar) system, an extensive network of 156 high-resolution Doppler radar systems. The NEXRAD network provides centralized meteorological information for the continental United States and selected overseas locations. The maximum range of a single NEXRAD site is 250 nm .

Individual NEXRAD sites supply the network with radar images, and the images from each radar site may arrive at the network at different rates and times. Periodically, the weather data provider to FIS-B compiles the available individual site images from the network to form a composite image, and assigns a single time to indicate when it created the image. This image becomes the NEXRAD weather product. Individual images--gathered from each NEXRAD site--differ in age, and are always older than the displayed NEXRAD weather product age. The data provider then sends the NEXRAD data to the FIS-B GBTs, which transmit this information during the next designated broadcast time for the NEXRAD weather product.

Because of the time required to detect, assemble, and distribute the NEXRAD weather product, the displayed weather information contained within the product may be older than the current radar synopsis and may not depict the current weather conditions. NEXRAD information should never be used as a basis for maneuvering in, near, or around areas of hazardous weather regardless of the information it contains.

Figure 6-11 Regional NEXRAD Weather Product on the Weather Data Link (FIS-B) Page

The FIS-B NEXRAD weather product may be displayed for a region around the GBT (higher resolution, updated more frequently) or for across the continental United States (lower resolution, updated less frequently). A combined version of both weather products is also available for display on the same map. When the combined NEXRAD is selected, regional NEXRAD takes display precedence where data is available, and continental US NEXRAD is displayed outside of the regional NEXRAD coverage area.

Displaying the NEXRAD weather product on the Weather Data Link (FIS-B) Page:

1) Select the Weather Data Link (FIS-B) Page.
2) Select the NEXRAD Softkey. Each selection cycles though a coverage option as the softkey name changes (US, RGNL, or US/RGNL.

Or:

1) Press the MENU Key.
2) Turn the FMS Knob to highlight 'Weather Setup' and press the ENT Key.
3) To enable/disable the display of NEXRAD information for the continental United States, turn the small FMS Knob to highlight the NEXRAD On/Off field.
a) Turn the small FMS Knob to highlight 'On' to enable the display of NEXRAD for the continental United States or 'Off' to disable.
b) Press the ENT Key.
4) To enable/disable the display of Regional NEXRAD information, turn the small FMS Knob to highlight the Regional On/Off field.
a) Turn the small FMS Knob to highlight 'On' to enable the display of Regional NEXRAD or 'Off' to disable.
b) Press the ENT Key.
5) When finished, push the FMS Knob.

Figure 6-12 Continental US (CONUS) NEXRAD Weather Product on the Weather Data Link (FIS-B) Page

NOTE: When both NEXRAD options are enabled on the Weather Data Link (FIS-B) Page menu, a combined version is displayed.

Figure 6－13 Weather Data Link （FIS－B）Page Menu

Press the FMS CRSR knob to return to base page

Figure 6－14 Weather Data Link（FIS－B）Page Setup Menu

Displaying the NEXRAD weather product on the Navigation Map Page：
1）Select the Map Opt Softkey．
2）Select the NEXRAD Softkey．
3）To change the type of NEXRAD displayed，press the MENU Key．
4）With＇Map Settings＇highlighted，press the ENT Key．
5）Turn the small FMS Knob to select the＇Weather＇Group，then press the ENT Key．
6）Turn the large FMS Knob to highlight the NEXRAD Data Region field．
7）Turn the small FMS Knob to highlight＇CONUS＇（continental United States），＇RGNL＇（regional），or＇Combined＇， then press the ENT Key．This selection also affects display of NEXRAD on the PFD Maps．

8）When finished，press the FMS Knob or press the CLR Key．

Displaying the NEXRAD weather product on PFD maps：

1）Press the Map／HSI Softkey（in TCAS II installations，press the Map Opt Softkey）．
2）Press the NEXRAD Softkey to enable／disable the display of NEXRAD information．
The regional NEXRAD weather product coverage area varies，as it is determined by the data received from ground－based sources．When the regional NEXRAD weather product is enabled，a white spiked boundary encloses this area to indicate the geographic limits of the regional NEXRAD coverage being displayed．The system shows composite radar data from all available NEXRAD sites inside of this boundary area．

If the continental United States version of the NEXRAD weather product is shown (US Softkey enabled), the coverage boundary is not shown on the map.

Figure 6-15 Continental US (CONUS) NEXRAD Weather Product on the Weather Data Link (FIS-B) Page
This data is composed of the maximum reflectivity from the individual radar sweeps. The display of the information is color-coded to indicate the weather severity level. All weather product legends can be viewed on the Weather Data Link (FIS-B) Page. For the NEXRAD legend, select the Legend Softkey when the NEXRAD weather product is enabled.

Figure 6-16 NEXRAD Weather Product Legend

The display of no radar coverage is enabled when NEXRAD is selected for display. Areas where radar data is not currently available, has not yet been received, or is not being collected are indicated in gray shade of purple.

NOTE：If the system has not received all available NEXRAD weather data（such as during initial FIS－B signal acquisition or in areas of marginal or poor signal reception），the system may display areas of no radar coverage which are subsequently removed as radar data is received．It may take up to approximately ten minutes to receive all FIS－B data，when adequate reception is available．

Reflectivity

Reflectivity is the amount of transmitted power returned to the radar receiver．Colors on the NEXRAD display are directly correlative to the level of detected reflectivity．Reflectivity as it relates to hazardous weather can be very complex．
The role of radar is essentially to detect moisture in the atmosphere．Simply put，certain types of weather reflect radar better than others．The intensity of a radar reflection is not necessarily an indication of the weather hazard level．For instance，wet hail returns a strong radar reflection，while dry hail does not．Both wet and dry hail can be extremely hazardous．
The different NEXRAD echo intensities are measured in decibels（ dB ）relative to reflectivity（ Z ）．NEXRAD measures the radar reflectivity ratio，or the energy reflected back to the radar receiver（designated by the letter Z）．The value of Z increases as the returned signal strength increases．

NEXRAD Limitations

NEXRAD radar images may have certain limitations：
－At smaller map ranges，individual blocks of NEXRAD weather data are viewable．For the regional version of the NEXRAD weather product，the smallest block represents 1.5 nm wide by 1 nm tall．For the continental United States version of the NEXRAD weather product，each block is 7.5 nm wide by 5 nm wide．The color of each block represents the highest radar reflectivity detected within that area．
－The continental US version of the NEXRAD weather product is not available above 60° of latitude．
The following may cause abnormalities in displayed NEXRAD radar images：
－Ground clutter
－Strobes and spurious radar data
－Sun strobes（when the radar antenna points directly at the sun）
－Interference from buildings or mountains，which may cause shadows
－Metallic dust（chaff）from military aircraft，which can cause alterations in radar scans

ECHO TOPS (SIRISUXM)

NOTE: Echo Tops cannot be displayed at the same time as Cloud Tops or NEXRAD data is displayed.

The Echo Tops weather product shows the location, elevation, and direction of the highest radar echo. The highest radar echo does not indicate the top of a storm or clouds; rather it indicates the highest altitude at which precipitation is detected. Information is derived from NEXRAD data.

Figure 6-17 Echo Tops Weather Product

Displaying Echo Tops information:

1) Select the Weather Data Link (XM) Page.
2) Press the Echo Top Softkey.

Since Echo Tops and Cloud Tops use the same color scaling to represent altitude, display of these weather products is mutually exclusive. When Echo Tops is activated, NEXRAD and Cloud Tops data are removed.

Figure 6-18 Echo Tops Legend

CLOUD TOPS (SIRIUSXM)

NOTE: Cloud Tops and Echo Tops cannot be displayed at the same time.

NOTE: If a GDL 69/69A SXM receiver is installed, the broadcast rate for Cloud Tops is 30 minutes. As with all SiriusXM Weather products, the product age becomes amber when it reaches half of the expiration time, which is 60 minutes for Cloud Tops. Therefore, this weather product age may be amber during routine operation.

The Cloud Tops weather product depicts cloud top altitudes as determined from satellite imagery.

Displaying Cloud Tops information:

1) Select the Weather Data Link (XM) Page with the FMS Knob.
2) Select the CLD Top Softkey.

Since Cloud Tops and Echo Tops use the same color scaling to represent altitude, display of these weather products is mutually exclusive. When Cloud Tops is activated, Echo Tops data is removed.

Figure 6-20 Cloud Tops Legend

DATA LINK LIGHTNING (SIRIUSXM)

Displaying Data Link Lightning information on PFD maps：
1）On the PFD，press the Map／HSI Softkey．
2）Press the Lightning Softkey．
3）Press the Datalink Softkey．
4）When finished，press the Back Softkey．

CELL MOVEMENT（SIRIUSXM）

The Cell Movement weather product shows the location and movement of storm cells as identified by the ground－based system．Cells are represented by yellow squares，with direction of movement indicated with short，orange arrows．

Figure 6－23 Cell Movement Weather Product
On the Weather Data Link（XM）Page，the Cell Movement weather product has a dedicated CEL MOV softkey for enabling／disabling this weather product on this page．

NOTE：The Storm Cell base height is not available if a GDL 69 SXM or 69A SXM data link receiver is installed． In this case，the Storm Cell base height is displayed as 0 feet when the map pointer selects a storm cell．

Displaying Cell Movement information on the Weather Data Link（XM）Page：
1）Select the Weather Data Link（XM）Page using the FMS Knob．
2）Select the Cell MOV Softkey．

NEXRAD Cell Movement
Direction
Figure 6－24 Cell Movement Legend

For navigation maps, the pilot can enable/disable the Cell Movement weather product using the NEXRAD Softkey. For this to occur, the pilot must first enable the 'Cell Movement' option in the Map Settings menu of the Navigation Map Page.

Setting up the system to display Cell Movement with NEXRAD on navigation maps:

1) Use the FMS Knob to select the Navigation Map Page.
2) Press the MENU Key.
3) With 'Map Settings' highlighted, press the ENT Key.
4) Turn the small FMS Knob to highlight 'Weather' and press the ENT Key.
5) Turn the large FMS Knob to 'On' or 'Off' for the Cell Movement menu option. When set to 'On', Cell Movement is enabled/disabled with the NEXRAD weather product on navigation maps. When set to 'Off', Cell Movement is not displayed on navigation maps.
6) When finished, push the FMS Knob or CLR Key to remove the menu.

After the 'Cell Movement' option is set to 'On', refer to the previous procedures for enabling/disabling the NEXRAD weather product to control both products simultaneously on navigation maps using the NEXRAD Softkey.

SIGMETS AND AIRMETS

SIGMET (SIGnificant METeorological Information) and AIRMET (AIRmen's METeorological Information) are issued for potentially hazardous weather. A Convective SIGMET is issued for hazardous convective weather such as severe or widespread thunderstorms. A localized SIGMET is a significant weather condition occurring at a localized geographical position.

NOTE: If SiriusXM Weather is the active data link weather source and a GDL 69/69A SXM receiver installed, the SIGMET and AIRMET weather products are not available unless at least one SIGMET or AIRMET has been received. The weather product age indicates 'N/A' when no SIGMET or AIRMET is available.

Figure 6－25 SIGMET／AIRMET Data

Displaying SIGMETs and AIRMETs：

1）Select the Weather Data Link Page．
2）Press the SIG／AIR Softkey．
3）To view the text of the SIGMET or AIRMET，press the Joystick and move the Map Pointer over the icon．
4）Press the ENT key．The following figure shows sample SIGMET text．

SIGMET／AIRMET Legend

NOTE: METAR information is only displayed within the installed navigation database service area.
METARs (METeorological Aerodrome Reports) typically contain information about the temperature, dewpoint, wind, precipitation, cloud cover, cloud heights, visibility, and barometric pressure at an airport or observation station. They can also contain information on precipitation amounts, lightning, and other critical data. METARs reflect hourly observations; non-routine updates include the code "SPECI" in the report. METARs are shown as colored flags at airports that provide them.

Figure 6-27 METAR Flags on the Weather Data Link Page
TAFs (Terminal Aerodrome Forecasts) are weather predictions for specific airports within a 24-hour period, and may span up to 36 hours. TAFs typically include forecast wind, visibility, weather phenomena, and sky conditions using METAR codes.

METAR and TAF text are displayed on the Weather Information Page. METAR data is displayed first in a decoded fashion, followed by the original text. Note the original text may contain additional information not found in the decoded version. TAF information is displayed only in its original form when TAFs are available.

Displaying METAR and TAF text on the MFD:

1) On the Weather Data Link Page, press the METAR Softkey.
2) Press the Joystick and pan to the desired airport.
3) Press the ENT Key. The Weather Information Page is shown with METAR and TAF text.
4) Use the FMS Knob or the ENT Key to scroll through the METAR and TAF text. METAR text must be completely scrolled through before scrolling through the TAF text.
5) Press the FMS Knob or the CLR Key to return to the Weather Data Link Page. Or:
6) Select the Weather Information Page.
a) Turn the large FMS Knob to select the Waypoint Page Group.
b) Select the WX Softkey to select the Weather Information Page.
7) Press the FMS Knob to display the cursor.
8) Use the FMS Knob to enter the desired airport and press the ENT Key.
9) Use the FMS Knob or the ENT Key to scroll through the METAR and TAF text. Note that the METAR text must be completely scrolled through before scrolling through the TAF text.

Figure 6-28 METAR and TAF Text on the Weather Information Page

To display the METAR legend on the Weather Data Link (XM) Page, select the Legend Softkey when METARs are enabled for display.

The METAR flag color is determined by the information in the METAR text. The system displays a gray METAR flag when the system cannot determine the METAR category based on the information available.

Figure 6-29 METAR Legend

The system also shows METAR flags and their associated text on the Active Flight Plan Page on the MF.D. The system shows a METAR flag next to waypoints in the flight plan with an available METAR.

Displaying original METAR text on the Active Flight Plan Page:

1) Select the Active Flight Plan Page on the MFD.
2) Press the FMS Knob to activate the cursor.
3) Turn the large FMS Knob to highlight a waypoint with an available METAR (indicated with a METAR flag next to it). The METAR text will appear in the 'Selected Waypoint Weather' Window below.
4) When finished, press the FMS Knob to remove the cursor or press the FPL Key to exit the Active Flight Plan Page.

Original METAR text is also accessible on navigation maps displaying METAR flags. When the map pointer is panned over a METAR flag, the METAR text is shown in a box near the flag.

Displaying original METAR text information on the PFD Inset Map:

1) On the PFD, press the Map/HSI Softkey.
2) Press the METAR Softkey.
3) Press the Joystick and pan to the desired METAR flag. Original METAR text appears on the map.
4) When finished, press the Joystick to remove the Map Pointer.

SURFACE ANALYSIS AND CITY FORECAST (SIRIUSXM)

Surface Analysis and City Forecast information is available for current and forecast weather conditions. Forecasts are available for intervals of $12,24,36$, and 48 hours.

Figure 6-30 Current Surface Analysis Data

Displaying Surface Analysis and City Forecast information：

1）Select the Weather Data Link（XM）Page．
2）Select the More WX Softkey．
3）Select the SFC Softkey．
4）Press the softkey for the desired forecast time：Current， 12 HR， 24 HR， 36 HR，or 48 HR．The SFC Softkey label changes to show the forecast time selected．

Or：
Press the Off Softkey to disable the display of the weather product．

Figure 6－31 Surface Analysis Legend

FREEZING LEVEL (SIRIUSXM)

The Freezing Level weather product shows the color-coded contour lines for the altitude and location at which the first isotherm is found. When no data is displayed for a given altitude, the data for that altitude has not been received, or is out of date and has been removed from the display. New data appears when it becomes available.

Figure 6-32 Freezing Level Data

Displaying Freezing Level information:

1) Select the Weather Data Link (XM) Page.
2) Select the More WX Softkey.
3) Select the FRZ LVL Softkey.

Freezing Levels (FT)
2000
4000
6000

Figure 6-33 Freezing Levels Legend

WINDS ALOFT

The Winds Aloft weather product shows the forecast wind speed and direction at the surface and at selected altitudes. Altitude can be displayed in 3000 -foot increments beginning at the surface up to 42,000 feet MSL.
If the FIS-B option is installed and FIS-B is the active data link weather source, the Winds Aloft weather product also displays temperatures aloft next to the winds aloft arrows on the Weather Data Link (FIS-B) Page.

Displaying the Winds Aloft weather product:

1) Select the Weather Data Link Page with the FMS Knob.
2) Select the More WX Softkey.
3) Select the Wind Softkey.
4) Select a softkey for the desired altitude level: SFC (surface) up to 42,000 feet. Select the Next or Prev Softkey to cycle through the altitude softkeys. The Wind Softkey label changes to reflect the altitude selected.

Figure 6-34 Winds Aloft Data at 12,000 Feet

Figure 6-35 Winds Aloft Data with Legend

Headwind and tailwind components aloft are available inside the Vertical Situation Display (VSD) on the Navigation Map Page. The displayed components are relative to current aircraft altitude and track, but not to aircraft speed.

Figure 6-36 Navigation Map Page with Winds Aloft Data on the VSD

Arrows pointing to the left indicate headwind components; tailwind component arrows point to the right, as shown in Table 6-4.

Headwind Symbol	Tailwind Symbol	Headwind/Tailwind Component
None	None	Less than 5 knots
		5

Table 6-4 VSD Headwind/Tailwind Component Symbols

Enabling/disabling the Vertical Situation Display (containing winds aloft data):

1) Select the Navigation Map Page.
2) Press the Map Opt Softkey.
3) Press the Inset Softkey.
4) Press the VSD Softkey to enable/disable the Vertical Situation Display.

Or:

1) Select the Navigation Map Page.
2) Press the MENU Key.
3) Turn the FMS Knob to highlight 'Show VSD' or 'Hide VSD' and press the ENT Key.

Winds Aloft data inside the VSD is enabled by default when the VSD is displayed on the Navigation Map Page. This behavior can be changed on the Navigation Map Page.

Enabling/disabling winds aloft data display for the VSD:

1) Select the Navigation Map Page.
2) Press the MENU Key.
3) With 'Map Settings' highlighted, press the ENT Key.
4) Turn the small FMS Knob to select 'VSD' and press the ENT Key.
5) Turn the large FMS Knob to highlight the Winds on/off field.
6) Turn the small FMS Knob to select 'On' or 'Off'.
7) Press the FMS Knob or CLR Key to return to the Navigation Map Page with the changed settings.

COUNTY WARNINGS (SIRIUSXM)

The County warning weather product provides specific public awareness and protection weather warnings from the National Weather Service (NWS). This can include information on tornadoes, severe thunderstorms, and flood conditions.

Figure 6-37 County Flood Warning

Displaying County Warning information:

1) Select the Weather Data Link (XM) Page with the FMS Knob.
2) Press the More WX Softkey.
3) Press the County Softkey.

Displaying cyclone（hurricane）track information：

1）Select the Weather Data Link（XM）Page with the FMS Knob．
2）Select the More WX Softkey．
3）Select the Cyclone Softkey．

Figure 6－40 Cyclone Legend

NOTE：If a GDL 69／69A SXM receiver is installed，the Cyclone weather product is not available unless at least one cyclone or tropical storm has been received．The weather product age indicates＇N / A^{\prime} when no cyclone or tropical storm has been received．

ICING（CIP \＆SLD）（SIRIUSXM）

The Current Icing Product（CIP）weather product shows a graphical view of the current icing environment． Icing severity is displayed in four categories：light，moderate，severe，and extreme（not specific to aircraft type）．The CIP product is not a forecast，but a presentation of the current conditions at the time of the analysis．

Supercooled Large Droplet（SLD）icing conditions are characterized by the presence of relatively large， super cooled water droplets indicative of freezing drizzle and freezing rain aloft．SLD threat areas are depicted as magenta dots over the CIP colors．

Displaying Icing data：

1）Select the Weather Data Link（XM）Page．
2）Select the More WX Softkey．
3）Select the ICNG Softkey．
4）Select a softkey for the desired altitude level： 1,000 feet up to 30,000 feet．Select the Next or PREV Softkey to cycle through the altitude softkeys．The ICNG Softkey label changes to indicate the altitude selected．

TURBULENCE (SIRIUSXM)

The Turbulence weather product identifies the potential for erratic movement of high-altitude air mass associated winds. Turbulence is classified as light, moderate, severe or extreme, at altitudes between 21,000 and 45,000 feet. Turbulence information is intended to supplement AIRMETs, SIGMETs, and PIREPs.

Displaying Turbulence data:

1) Select the Weather Data Link (XM) Page.
2) Select the More WX Softkey.
3) Select the TURB Softkey.
4) Select a softkey for the desired altitude: 21,000 feet up to 45,000 feet. Press the Next or PREV Softkey to cycle through the altitude softkeys. The TURB Softkey label changes to indicate the altitude selection.

Figure 6-43 Turbulence Weather Product at 21,000 Feet

Figure 6-44 Turbulence Legend

PIREPS AND AIREPS

NOTE: AIREPs are only available with the SiriusXM Weather service.
Pilot Weather Reports (PIREPs) are in-flight weather observations collected from pilots. When significant weather conditions are reported or forecast, Air Traffic Control (ATC) facilities are required to solicit PIREPs. A PIREP may contain adverse weather conditions, such as low in-flight visibility, icing conditions, wind shear, and turbulence. PIREPs are issued as either Routine (UA) or Urgent (UUA).

Another type of PIREP is an Air Report (AIREP). Commercial airlines typically generate AIREPs.

Figure 6-45 PIREPs and AIREPS on the Weather Data Link (XM) Page

Displaying PIREP and AIREP text:

1) Select the Weather Data Link Page.
2) Select the More WX Softkey.
3) Select the PIREPS or AIREPS Softkey. (Note the AIREPS Softkey is only available with the SiriusXM Weather service.)
4) Press the Joystick and pan to the desired weather report. A gray circle will appear around the weather report when it is selected.
5) Press the ENT Key. The Weather Information Page is shown with PIREP or AIREP text. The data is first displayed in a decoded fashion, followed by the original text. Note the original text may contain additional information not present in the decoded version.
6) Use the FMS Knob or the ENT Key to scroll through the PIREP or AIREP text.
7) Press the FMS Knob or the CLR Key to return to the Weather Data Link (XM) Page.

Figure 6－47 AIREPs \＆PIREPs Legend

TFRS

NOTE：Do not rely solely upon data link services to provide Temporary Flight Restriction（TFR）information． Always confirm TFR information through official sources such as Flight Service Stations or Air Traffic Control．
In the United States，the FAA issues Temporary Flight Restrictions（TFRs）to designate areas where flight is restricted．TFRs are issued to restrict flight for a variety of reasons including national security，law enforcement， natural disasters，and large sporting events．TFRs may be issued at any time，and TFR data displayed on the system is only intended to supplement official TFR information obtained from Flight Service Stations（FSS）， and air traffic control．

The age of TFR data is not shown；however，if TFR data is not available or has expired，the system displays ＇TFR N／A＇in the upper－left corner of maps on which TFRs can be displayed．
TFR ID: 9/5151
TFR ID: 9/5151
Location: Unspecified
Active: Now
Expire: Until further notice
NOTAM-TFR 9/5151 $261634 Z$ PART 1 OF 2
.. SPECIAL NOTICE .. SPORTING EVENTS.
EFFECTIVE IMMEDIATELY UNTIL FURTHER
NOTICE. THIS NOTICE REPLACES FDC
NOTAM 3/1862 DUE TO THE WAIVER
WEBSITE CHANGE AND LANGUAGE
CLARIFICATION. THIS NOTICE MODIFIES
FLIGHT RESTRICTIONS PREVIOUSLY ISSUED
IN FDC NOTAM 3/1862 TO COMPLY WITH
STATUTORY MANDATES DETAILED IN
SECTION 352 OF PUBLIC LAW 108-7 AND
AS AMENDED BY SECTION 521 OF PUBLIC
LAW 108-199. PURSUANT TO 49 USC
40103(B), THE FEDERAL AVIATION
Press the FMS CRSR knob to return to base
page

Figure 6-49 Full Text for Selected TFR
The setup menus for the Navigation Map Page control the map range settings above which TFR data is decluttered from the display. If a map range larger than the TFR product map range setting is selected, the TFR product data is removed from the map.

Maps other than the Navigation Map Page use settings based on those selected for the Navigation Map Page.

Setting up and customizing TFR data for maps on which TFR data can be displayed:

1) Select the Navigation Map Page.
2) Press the MENU Key.
3) With 'Map Settings' highlighted, press the ENT Key.
4) Turn the small FMS Knob to select the 'Aviation' Group and press the ENT Key.
5) Turn the large FMS Knob to scroll to the TFR product range setting.
6) Turn the small FMS Knob to scroll through options (Off, range settings).
7) Press the ENT Key to select an option.
8) Press the FMS Knob or CLR Key to return to the Navigation Map Page with the changed settings.

FIS-B WEATHER STATUS

Additional information about the status of FIS-B weather products is available on the Aux - ADS-B Status Page.

Viewing FIS-B status:

1) Turn the large FMS Knob to select the Aux Page Group.
2) Turn the small FMS Knob to select the Aux - ADS-B Status Page.

On the Weather Data Link (FIS-B) page, the pilot can enable/disable the FIS-B weather feature, which includes all FIS-B weather products and related softkeys on various maps.

Enabling/disabling the FIS-B weather feature:

1) Select the Weather Data Link (FIS-B) Page.
2) Press the MENU Key.
3) Turn the small FMS Knob to highlight 'Enable FIS-B Weather' or 'Disable FIS-B Weather', and press the ENT Key.

Figure 6-50 Viewing FIS-B Weather Status on the ADS-B Status Page

ADS-B Status Page Item	Status Message	Description
FIS-B Weather Status: FIS-B Processing	ENABLED	The FIS-B weather feature is enabled to process and display FIS-B weather products.
	DISABLED	The FIS-B weather feature is disabled.
	---------------	No FIS-B weather data received.
Weather Products: AIRMET CONUS NEXRAD METAR METAR GRAPHICAL NOTAM/TFR PIREP REGIONAL NEXRAD SIGMET TAF WINDS/TEMPS ALOFT	AVAILABLE	FIS-B weather data is available for display for the weather product.
	NOT AVAILABLE	FIS-B weather data is not available for the weather product, and/or the system is not receiving the FIS-B weather service.
	AWAITING DATA	The system is receiving the FIS-B weather service, and is waiting to receive the weather product from the FIS-B data broadcast.

6.2 STORMSCOPE LIGHTNING DETECTION SYSTEM

(4. WARNING: Do not rely on information from the lightning detection system display as the sole basis for hazardous weather avoidance. Range limitations and interference may cause the system to display inaccurate or incomplete information. Refer to documentation from the lightning detection system manufacturer for detailed information about the system.

NOTE: Stormscope lightning information cannot be displayed simultaneously on the same map as lightning information from data link lightning sources.

The system can display L-3 WX-500 Stormscope lightning detection system information on the Stormscope Page, and as an overlay on navigation maps. The system uses the symbols shown in the following table to depict lightning strikes and cells based on the age of the information.

Lightning Age	Symbol
Strike is less than 6 seconds old	4
Strike is between 6 and 60 seconds old	4
Strike is between 1 and 2 minutes old	ζ
Strike is between 2 and 3 minutes old	ఛ

Table 6-6 Lightning Age and Symbols

USING THE STORMSCOPE PAGE

On the Stormscope Page, lightning information can be displayed at the ranges of $25 \mathrm{~nm}, 50 \mathrm{~nm}, 100 \mathrm{~nm}$, and 200 nm .

Adjusting the Stormscope Map Range:

1) Turn the large FMS Knob to select the Map Page Group.
2) Turn the small FMS Knob to select the Stormscope Page.
3) Turn the Joystick clockwise to increase the map range or counter-clockwise to decrease the map range.

Figure 6-51 Stormscope Page with Cell Mode Selected

Selecting 'cell' or 'strike' mode:

1) Select the Stormscope Page.
2) Select the Mode Softkey. The Cell and Strike softkeys are displayed.
3) Select the Cell Softkey to display 'CELL' data or select the Strike Softkey to display 'STRIKE' data. 'CELL' or 'STRIKE' is displayed in the mode box in the upper right corner of the Stormscope Page.
4) Press the Back Softkey to return to the top level softkeys for the Stormscope Page. Or:
5) Select the Stormscope Page.
6) Press the MENU Key to display the Stormscope Page Menu. Either 'Cell Mode' or 'Strike Mode' is highlighted in cyan to indicate the mode to be selected.
7) Press the ENT Key to select the highlighted mode and remove the menu. To remove the menu without changing modes, press the MENU Key or the CLR Key, or push the FMS Knob.
If heading input is lost, strikes and/or cells must be cleared manually after the execution of each turn. This is to ensure that the strike and/or cell positions are depicted accurately in relation to the nose of the aircraft. Clearing Stormscope lightning on any map clears this information from all displays on the system.

Manually clearing Stormscope cell or strike information:

1) Select the Stormscope Page.
2) Select the Clear Softkey.

Or:
a) Press the MENU Key.
b) Turn the FMS Knob to highlight 'Clear Lightning Data', then press the ENT Key.

Or:

1) Select the Navigation Map Page.
2) Press the MENU Key.
3) Turn the FMS Knob to highlight 'Clear Stormscope ${ }^{\otimes}$ Lightning', then press the ENT Key.

Displaying Stormscope information on MFD navigation maps:

1) Select the Map Opt Softkey.
2) Select the STRMSCP Softkey.

Displaying Stormscope information on PFD maps:

1) On the PFD, press the Map/HSI Softkey.
2) Press the Lightning Softkey.
3) Press the STRMSCP Softkey.

SETTING UP STORMSCOPE ON THE NAVIGATION MAP

Setting up Stormscope options on the Navigation Map:

1) On the Navigation Map Page, press the MENU Key.
2) With 'Map Settings' selected, press the ENT Key.
3) Turn the small FMS Knob to display the group selection window. Turn the small FMS Knob to select 'Weather', and press the ENT Key.
4) Turn the large FMS Knob to highlight and move between the product selections.
5) When an item is highlighted, turn the small FMS Knob to select the option.
6) Press the ENT Key.
7) Press the FMS Knob to return to the Navigation Map Page.

The following options are available:

- Stormscope On/Off field - Enables/disables the display of Stormscope lightning symbols.
- Stormscope maximum display range - Selects the maximum map range to display Stormscope symbols. Stormscope data is removed when a map range greater than the STRMSCP SMBL value is selected.
- Stormscope Mode - Selects the Cell or Strike mode of lightning activity. Cell mode identifies clusters or cells of electrical activity. Strike mode indicates the approximate location of lightning strikes.

Figure 6－52 Navigation Map Page with Stormscope Lightning Data

ZOOM RANGE ON THE NAVIGATION MAP

Stormscope lightning data can be displayed up to 800 nm zoom range（in North Up orientation）on the Navigation Map Page．However，in Track Up orientation at the 500 nm range，a portion of Stormscope lightning data can be behind the aircraft and therefore not visible on the Navigation Map．Since the range for Stormscope data is 400 nm diameter total（ 200 nm in front and 200 nm behind），the 500 nm range in North Up orientation shows all the data．

At a map range of less than 25 nm ，Stormscope lightning data is not displayed，but can still be present．

Selecting a Stormscope range on the Navigation Map：

1）Press the MENU Key．
2）With＇Map Settings＇highlighted，press the ENT Key．
3）Turn the FMS Knob to highlight the select the＇Weather＇group，and press the ENT Key．
4）Turn the large FMS Knob to highlight the Stormscope maximum map display range distance．
5）Turn the small FMS Knob to select the Stormscope maximum map display range distance．
6）Press the ENT Key．
7）Press the FMS Knob to return to the Navigation Map Page．
To change the display range on the Navigation Map Page，turn the Joystick clockwise to increase the map range or counter－clockwise to decrease the map range．

6.3 TERRAIN DISPLAYS

Abstract

4. WARNING: Do not use terrain avoidance displays as the sole source of information for maintaining separation from terrain and obstacles. Garmin obtains terrain and obstacle data from third party sources and cannot independently verify the accuracy of the information.

NOTE: Terrain data is not displayed when the aircraft is outside of the installed terrain database coverage area.

Abstract

(v)

NOTE: Terrain and obstacle alerting is not available north of 89° North latitude and south of 89° South latitude. This is due to limitations present within the Terrain database and the system's ability to process the data representing the affected areas.

The Terrain Awareness and Warning System-Class B (TAWS-B-) increases situational awareness and aids in reducing controlled flight into terrain (CFIT) and obstacles.

The installed terrain system provides color indications on map displays when terrain or obstacles are within a certain altitude threshold from the aircraft. TAWS-B furthermore provide advisory visual annunciations and voice alerts to indicate the presence of threatening terrain or obstacles relevant to the projected flight path.

The terrain system requires the following for proper operation:

- Valid 3-D GPS position
- Valid terrain and obstacle databases

The terrain system uses terrain and obstacle information supplied by government sources. Terrain information is based on terrain elevation information in a database that may contain inaccuracies. Individual obstructions may be shown if available in the database. Garmin verifies the data to confirm accuracy of the content. However, the displayed information should never be understood as being all-inclusive and data may still contain inaccuracies or omissions.

The terrain system uses information provided from the GPS receiver to provide a horizontal position and altitude. GPS altitude is derived from satellite measurements. GPS altitude is then converted to the height above geodetic sea level (GSL), which is the height above mean sea level (MSL) calculated geometrically. The system uses GSL altitude to determine TAWS-B alerts. GSL altitude accuracy is affected by satellite geometry, but is not subject to variations in pressure and temperature that normally affect pressure altitude sensors. GSL altitude does not require local altimeter settings to determine MSL altitude. It is a widely-used MSL altitude source. Therefore, GSL altitude provides a highly accurate and reliable MSL altitude source to calculate terrain and obstacle alerts.
The terrain and obstacle databases used by the terrain system are referenced to MSL. Using the GPS position and GSL altitude, terrain system displays a 2-D picture of the surrounding terrain and obstacles relative to the position and altitude of the aircraft. Furthermore, the GPS position and GSL altitude are used to calculate and "predict" the aircraft's flight path in relation to the surrounding terrain and obstacles. In this manner, the TAWS-B system can provide advanced alerts of predicted dangerous terrain conditions.

Baro-corrected altitude (or indicated altitude) is derived by adjusting the altimeter setting for local atmospheric conditions. The most accurate baro-corrected altitude can be achieved by frequently updating the altimeter
setting to the nearest reporting station along the flight path．However，because actual atmospheric conditions seldom match the standard conditions defined by the International Standard Atmosphere（ISA）model（where pressure，temperature，and lapse rates have fixed values），it is common for the baro－corrected altitude（as read from the altimeter）to differ from the GSL altitude．This variation results in the aircraft＇s GSL altitude differing from the baro－corrected altitude．

RELATIVE TERRAIN SYMBOLOGY

The terrain system uses colors and symbols to represent terrain and obstacles（with heights greater than 200 feet above ground level，AGL）present in the databases relative to aircraft altitude．The system dynamically adjusts these colors as the aircraft altitude changes，and after takeoff and landing．

While the aircraft is on the ground，the system displays relative terrain 400 feet or more above the aircraft altitude using red，and terrain at less than 400 feet above aircraft altitude using black，as shown on the On－ Ground Legend．When the aircraft is in the air，the system displays relative terrain information using red， yellow，green，and black，as shown on the In－Air Legend．As the aircraft transitions from on－ground to in－air，or from in－air to on－ground，the display of relative terrain momentarily fades into the corresponding colors．If an alert occurs，the relative terrain colors transition to the In－Air Legend if in the On－Ground Legend was shown in order to provide the flight crew with the most information possible．

Figure 6－53 Relative Terrain Legend

The following figure shows relative terrain coloring for the TAWS－B system．

The following tables show the relative obstacle coloring used by the terrain systems.

Unlighted Obstacle		Lighted Obstacle		Obstacle Location
< 1000' AGL	> 1000 ${ }^{\text {AGL }}$	< 1000 ${ }^{\prime}$ AGL	> 1000 ${ }^{\prime}$ AGL	
-		A	-	Red obstacle is above or within 100 ft below the aircraft altitude
A		*		Yellow obstacle is between 100 ft and 1000 ft below the aircraft altitude
A		*		White obstacle is more than 1000 ft below aircraft altitude

Table 6-7 Relative Obstacle Symbols and Colors

Unlighted Wind Turbine Obstacle	Lighted Wind Turbine Obstacle	Wind Turbine Obstacle Location
	Red obstacle is above or within 100 ft below the aircraft altitude	
	Yellow obstacle is between 100 ft and 1000 ft below the aircraft altitude	
		White obstacle is more than 1000 ft below aircraft altitude

Table 6-8 Wind Turbine Obstacles and Colors

The TAWS-B system shows potential impact areas for terrain and obstacles using yellow and red as shown in the following table.

Potential Impact Area Examples	Alert Type	Example Annunciation
Warning		
	PULL UP	

Table 6－9 TAWS－B Potential Impact Area with Annunciations

The Map－TAWS－B Page is the principal map page for viewing terrain information．Terrain and obstacle information can be displayed on the following maps and pages：
－PFD Maps
－Navigation Map Page
－TAWS－B Page

Displaying terrain and obstacle information（MFD maps other than the terrain page）：

1）Press the Map Opt Softkey（for the PFD Inset Map，press the Map／HSI Softkey）．
2）Press the TER Softkey until REL is shown to display terrain and obstacle data．
When relative terrain is selected on maps other than the terrain page，an icon to indicate the feature is enabled for display and a legend for the relative terrain colors are shown．
The Navigation Map Page Setup Menu provides a means in addition to the softkey for enabling／disabling display of terrain and obstacles．The setup menu also controls the map range settings above which terrain and obstacle data are decluttered from the display．If a map range larger than the map range setting is selected，the data is removed from the map．
Terrain information can be selected for display independently of obstacle data；however，obstacles recognized by Terrain Proximity as yellow or red are shown when terrain is selected for display and the map range is within the setting limit．

Maps besides the Terrain Proximity Page use settings based on those selected for the Navigation Map Page． The maximum display ranges for obstacles on each map are dependent on the range setting made for the Navigation Map．If the maximum range for obstacle display on the Navigation Map is adjusted to below 20 nm ，the highest obstacle display range settings on the other applicable maps are also adjusted proportionally．

Customizing terrain and obstacle display on the Navigation Map Page：

1）Select the Navigation Map Page．
2）Press the MENU Key．
3）With＇Map Settings＇highlighted，press the ENT Key．
4）Turn the small FMS Knob to select the＇Map＇Group and press the ENT Key．
5）Turn the large FMS Knob or press the ENT Key to scroll through product selections．

Aircraft orientation on this map is always heading up unless there is no valid heading，in which case the orientation is track up．Map range is adjustable with the Joystick from 1 to 200 nm ，as indicated by the map range arc．

Displaying the terrain page：

1）Turn the large FMS Knob to select the Map Page Group．
2）Turn the small FMS Knob to select the TAWS－B Page．

Showing／hiding aviation information on the terrain page：

1）Press the MENU Key．
2）Select＇Show Aviation Data＇or＇Hide Aviation Data＇（choice dependent on current state）and press the ENT Key．

Figure 6－56 TAWS－B Page

TAWS－B ALERTING DISPLAYS

Alerts are issued when flight conditions meet parameters that are set within the TAWS－B software algorithms． Terrain alerts typically employ a CAUTION or a WARNING alert severity level，or both．When an alert is issued，visual annunciations are displayed and voice alerts are simultaneously issued．
When an alert is issued，annunciations appear on the PFD and MFD．The terrain alert annunciation appears to the left of the Selected Altitude box on the PFD，and bottom left on the MFD．If the terrain page is not displayed at the time，a pop－up alert appears on the MFD．To acknowledge the pop－up alert：
－Press the CLR Key（returns to the currently viewed page），or
－Press the ENT Key（accesses the TAWS－B Page）

GARMIN

The following table lists the TAWS－B alerts．

Alert Type	PFD／MFD＊＊ Alert Annunciation	MFD Pop－Up Alert （except TAWS－B Page）	Voice Alert

＊Alerts with multiple messages are configurable at installation and are installation－dependent．Alerts for the default configuration when more than one option is available are indicated with asterisks．
＊＊Annunciation is displayed on the MFD when terrain display is enabled．
Table 6－10 TAWS－B Alerts Summary

FORWARD LOOKING TERRAIN AVOIDANCE

The Forward Looking Terrain Avoidance (FLTA) feature of TAWS-B compares the projected flight path as derived from GPS data with terrain features and obstacles from the terrain and obstacle databases. The system issues FLTA alerts when the projected flight path conflicts with terrain or obstacles.

The projected flight path is a calculated area ahead of, to the sides, and below the aircraft. The size of the projected flight path varies based on factors including ground speed (the path ahead is larger when the ground speed is higher), whether the aircraft is level, turning, or descending, and the proximity to the nearest runway along the current track. As the aircraft approaches the runway, the projected flight path becomes narrower until the system automatically disables FLTA alerts or the pilot manually inhibits them.
There are two types of FLTA alerts, Reduced Required Terrain/Obstacle Clearance (RTC or ROC respectively) and Imminent Terrain/Obstacle Impact (ITI or IOI respectively).

Figure 6-59 FLTA Alert Minimum Terrain and Obstacle Clearance Values

The system automatically disables FLTA alerts when the aircraft is less than 200 feet above the destination runway elevation while within 0.5 nm of the approach runway or the aircraft is between runway ends.
When TAWS-B FLTA alerts are manually inhibited, the annunciation is shown on the PFD and in the MFD for maps displaying relative terrain.

TAWS INH

Figure 6-60 FLTA Alerting is Inhibited when Annunciation is displayed

NOTE: Premature Descent Alerting (PDA), discussed next, is also inhibited when FLTA alerting is inhibited.
Inhibiting/enabling TAWS-B Alerting

1) Select the TAWS-B Page.
2) Press the Inhibit Softkey. Alerting is inhibited when softkey annunciator is green.

Or:
a) Press the MENU Key.
b) Turn the FMS Knob to highlight 'Inhibit TAWS' or 'Enable TAWS' (choice dependent on current state) and press the ENT Key.

ADDITIONAL TAWS-B ALERTING

In addition to the FLTA alerting discussed previously, TAWS-B provides the following additional types of alerts.

PREMATURE DESCENT ALERTING

A Premature Descent Alert (PDA) is issued when the system detects that the aircraft is significantly below the normal approach path to a runway.

PDA alerting begins when the aircraft is below 700 feet AGL within 15 nm of the destination airport and ends when the aircraft is 0.5 nm from the runway threshold.

Figure 6-61 PDA Alerting Threshold

NCR alerts can be triggered by either altitude loss or sink rate.

Figure 6-62 Negative Climb Rate (NCR) Altitude Loss

NEGATIVE CLIMB RATE AFTER TAKEOFF ALERT (NCR)

The Negative Climb Rate (NCR) After Takeoff alert (also referred to as "Altitude Loss After Takeoff") provides alerts when the system determines the aircraft is losing altitude (closing upon terrain) after takeoff. The voice alert "Don't Sink" is given for NCR alerts, accompanied by visual annunciations. NCR alerting is only active when departing from an airport and when the following conditions are met:

- Height above the terrain is less than 700 feet
- Distance from the departure airport is 5 nm or less
- Heading change from the departure heading is less than 110 degrees

Figure 6-63 Negative Climb Rate (NCR) Sink Rate

SYSTEM STATUS

TAWS－B continually monitors several system－critical items such as database validity，hardware status，and GPS status．If the terrain／obstacle database is not available，the voice alert＂TAWS System Failure＂is generated along with the＇TAWS FAIL＇alert annunciation．

TAWS－B requires a 3－D GPS navigation solution along with specific vertical accuracy minimums．Should the navigation solution become degraded or if the aircraft is out of the database coverage area，the system displays the＇TAWS N／A＇annunciation，and issues the＂TAWS Not Available＂voice alert．When the GPS signal integrity returns and the aircraft is within the database coverage area，the system issues the voice alert，＂TAWS Available＂

Alert Type	$\begin{array}{c}\text { PFD／MFD＊Alert } \\ \text { Annunciation }\end{array}$	$\begin{array}{c}\text { TAWS－B Page Center Banner } \\ \text { Annunciation }\end{array}$	Voice Alert
System Test in progress	TAWS TEST	TAWS TEST	None
System Test pass	None	None	＂TAWS System Test Test OK＂
TAWS－B FLTA Alerting Inhibited	TAWS INH	None	None
No GPS position	TAWS N／A	NO GPS POSITION	＂TAWS Not Available＂
$\begin{array}{l}\text { Excessively degraded GPS signal；} \\ \text { or Out of database coverage } \\ \text { area }\end{array}$	TAWS N／A	None	＂TAWS Not Available＂
$\begin{array}{l}\text { TAWS－B System Test Fail；Terrain } \\ \text { or Obstacle database unavailable }\end{array}$	TAWS FAIL	TAWS FAIL	＂TAWS System Failure＂
or invalid；Invalid software			
configuration；or System audio			
fault			

＊＂TAWS Available＂will be heard when sufficient GPS signal is received，or Terrain database coverage area re－ entered．

Table 6－11 TAWS－B System Status Annunciations

6.4 TRAFFIC INFORMATION SERVICE (TIS)

(1. WARNING: Do not rely solely upon the display of traffic information for collision avoidance maneuvering. The traffic display does not provide collision avoidance resolution advisories and does not under any circumstances or conditions relieve the pilot's responsibility to see and avoid other aircraft.

NOTE: TIS is available only when the aircraft is within the service volume of a TIS-capable terminal radar site. Aircraft without an operating transponder are invisible to both Traffic Advisory Systems (TAS) and TIS. Aircraft without altitude reporting capability are shown without altitude separation data or climb descent indication.

NOTE: TIS is disabled if another traffic system is installed.
Traffic Information Service (TIS) is designed to help in detection and avoidance of other aircraft. TIS uses the Mode S transponder for the traffic data link. TIS receives traffic information from ground stations, and is updated every five seconds. The system displays up to eight traffic targets within a 7.5 -nm radius, from 3000 feet below to 3500 feet above the requesting aircraft. The system displays TIS traffic with the symbology shown in the following table.

TIS Symbol	Description
-	Non-Threat Traffic
	Traffic Advisory (TA)

Table 6-12 TIS Traffic Symbols
Traffic Advisories (TA) alert the crew to intruding aircraft. When traffic meets the advisory criteria for the TA, a solid yellow circle symbol appears. A TA which is detected but is outside the range of the map on which traffic is displayed are indicated with a message in the lower left corner of the map.

TIS also provides a vector line showing the direction in which the traffic is moving, to the nearest 45°. Traffic information for which TIS is unable to determine the bearing (non-bearing traffic) is displayed in the center of the Traffic Map Page or in a banner at the lower left corner of maps other than the Traffic Map Page on which traffic can be displayed.
The altitude difference between the requesting aircraft and other intruder aircraft is displayed above/below the traffic symbol in hundreds of feet. If the other aircraft is above the requesting aircraft, the altitude separation appears above the traffic symbol; if below, the altitude separation appears below. Altitude trend is displayed as an up/down arrow (for speeds greater than 500 fpm in either direction) to the right of the target symbol. Traffic
symbols for aircraft without altitude reporting capability appear without altitude separation or climb/descent information.

DISPLAYING TRAFFIC DATA

The Map - Traffic Map Page is the principal map page for viewing traffic information. Traffic information can also be displayed on the following other maps for additional reference on the MFD when the traffic TIS is operating:

- PFD Inset Map
- Navigation Map Page
- Traffic Map Page
- Nearest Pages
- Active Flight Plan Page
- IFR/VFR Charts Page
- Trip Planning Page

Traffic information can also be displayed on the PFD when the Terrain-SVT option is installed and enabled. See the Additional Features Section for details.

Enabling/disabling traffic overlays (MFD navigation maps):

1) Select the Map Opt Softkey.
2) Select the Traffic Softkey. Traffic is now displayed on the navigation map.

When traffic is selected on maps other than the Traffic Map Page, an icon is shown to indicate the feature is enabled for display.

Figure 6-64 TIS Traffic on Navigation Map Page
The Navigation Map Page Setup Menu provides a means in addition to the softkey for enabling/disabling display of traffic. The setup menu also controls the map range settings above which traffic data (symbols and labels) are decluttered from the display. If a map range larger than the map range setting is selected, the data is removed from the map. Maps besides the Traffic Map Page use settings based on those selected for the Navigation Map Page.

Enabling/disabling traffic information on the PFD Inset Map or HSI Map:

1) On the PFD, press the Map/HSI Softkey.
2) Press the Traffic Softkey to enable/disable the display traffic information on the Inset Map or HSI Map.

Customizing traffic display on the Navigation Map Page:

1) Select the Navigation Map Page.
2) Press the MENU Key.
3) With 'Map Setup' highlighted, press the ENT Key.
4) Turn the small FMS Knob to select the 'Traffic' Group and press the ENT Key.
5) Turn the large FMS Knob or press the ENT Key to scroll through product selections.

- Traffic - Turns the display of traffic data on or off
- Traffic Mode - Selects the traffic mode for display; select from:
- All Traffic - Displays all traffic
- TA Only - Displays Traffic Alerts only
- Traffic Symbols - Selects the maximum range at which traffic symbols are shown
- Traffic Labels - Selects the maximum range at which traffic labels are shown (with the option to turn off)

6) Turn the small FMS Knob to scroll through options for each product (On/Off, range settings, etc.).
7) Press the ENT Key to select an option.
8) Press the FMS Knob or CLR Key to return to the Navigation Map Page with the changed settings.

TRAFFIC MAP PAGE

The Traffic Map Page is specialized to show surrounding TIS traffic data in relation to the aircraft's current position and altitude, without clutter from the basemap. Aircraft orientation on this map is always heading up unless there is no valid heading. Map range is adjustable with the Joystick from 2 to 12 nm , as indicated by the map range rings.
The traffic mode is annunciated in the upper left corner of the Traffic Map Page. When the aircraft is on the ground, TIS automatically enters Standby Mode. Once the aircraft is airborne, TIS switches from Standby to Operating Mode and the system begins to display traffic information. Refer to the System Status discussion for more information.

Displaying traffic on the Traffic Map Page:

1) Turn the large FMS Knob to select the Map Page Group.
2) Turn the small FMS Knob to select the Traffic Map Page.
3) Confirm TIS is in Operating Mode:

Press the TIS OPER Softkey to begin displaying traffic.
Or:
a) Press the MENU Key.
b) Select 'Operate Mode' (shown if TIS is in Standby Mode) and press the ENT Key.

Figure 6－65 Traffic Map Page

TIS ALERTS

When the number of TAs on the Traffic Map Page increases from one scan to the next，the following occur：
－A single＂Traffic＂voice alert is generated．
－A＇TRAFFIC＇Annunciation appears to the right of the airspeed tape，flashes for five seconds，and remains displayed until no TAs are detected in the area．
－The PFD Inset Map or HSI Map is automatically displayed with traffic．
To reduce the number of nuisance alerts due to proximate aircraft，the＂Traffic＂voice alert is generated only when the number of TAs increases．For example，when the first TA is displayed，a voice and visual annunciation are generated．As long as a single TA remains on the display，no additional voice alerts are generated．If a second TA appears on the display or if the number of TAs initially decreases and then subsequently increases，another voice alert is generated．

SYSTEM STATUS

The system performs an automatic test of TIS during power-up. If TIS passes the test, TIS enters Standby Mode (on the ground) or Operating Mode (in the air). If TIS fails the power up test, an annunciation is shown in the center of the Traffic Map Page.

Traffic Map Page Center Banner Annunciation	Description
NO DATA	Data is not being received from the transponder*
DATA FAILED	Data is being received from the transponder, but a failure is detected in the data stream*
FAILED	The transponder has failed*
UNAVAILABLE	TIS is unavailable or out of range

* Contact a service center or Garmin dealer for corrective action

Table 6-13 TIS Failure Annunciations

The traffic mode is annunciated in the upper right corner of the Traffic Map Page. When the aircraft is on the ground, TIS automatically enters Standby Mode. If traffic is selected for display on another map while Standby Mode is selected, the traffic display enabled icon is crossed out (also the case whenever TIS has failed). Once the aircraft is airborne, TIS switches to Operating Mode and traffic information is displayed. The mode can be changed manually using softkeys or the page menu.

Mode	Traffic Mode Annunciation (Traffic Map Page)	Traffic Display Status Icon (Other Maps)
TIS Operating	OPERATING	
TIS Standby	STANDBY (also shown in white in center of page)	
TIS Failed*	FAIL	

* See Table 6-15 for additional failure annunciations

Table 6-14 TIS Modes

Switching between TIS modes:

1) Select the Traffic Map Page.
2) Press the Standby or Operate Softkey to switch between modes. The mode is displayed in the upper right corner of the Traffic Map Page.

Or:
a) Press the MENU Key.
b) Select 'Operate Mode' or 'Standby Mode' (choice dependent on current state) and press the ENT Key.

The annunciations to indicate the status of traffic information appear in a banner at the lower left corner of maps on which traffic can be displayed, as shown in the following table.

| Traffic Status Banner
 Annunciation | Description |
| :---: | :--- |$|$| TA OFF SCALE | A Traffic Advisory is outside the selected display range*
 Annunciation is removed when traffic comes within the selected display range |
| :---: | :--- |
| TA X.X \pm XX \downarrow | System cannot determine bearing of Traffic Advisory**
 Annunciation indicates distance in nm, altitude separation in hundreds of feet, and
 altitude trend arrow (climbing/descending) |
| AGE MM:SS | Appears if traffic data is not refreshed within 6 seconds
 If after another 6 seconds data is not received, traffic is removed from the display
 The quality of displayed traffic information is reduced as the age increases |
| TRFC COAST | The displayed data is not current (6 to 12 seconds since last message)
 The quality of displayed traffic information is reduced when this message is displayed |
| TRFC RMVD | Traffic is removed because it is too old for coasting (12 to 60 seconds since last message)
 Traffic may exist within the selected display range, but it is not displayed |
| TRFC FAIL | Traffic data has failed |
| NO TRFC DATA | Traffic has not been detected
 TRFC UNAVAIL |
| The traffic service is unavailable or out of range
 **Shown as symbol on Traffic Map Page
 *Shown in center of Traffic Map Page | |

Table 6-15 TIS Traffic Status Annunciations

6．5 TAS TRAFFIC

1．WARNING：Do not rely solely upon the display of traffic information for collision avoidance maneuvering． The traffic display does not provide collision avoidance resolution advisories and does not under any circumstances or conditions relieve the pilot＇s responsibility to see and avoid other aircraft．

1．WARNING：Do not rely solely upon the display of traffic information to accurately depict all of the traffic information within range of the aircraft．Due to lack of equipment，poor signal reception，and／or inaccurate information from other aircraft，traffic may be present but not represented on the display．

NOTE：Pilots should be aware of traffic system limitations．Traffic systems require transponders of other aircraft to respond to system interrogations．If the transponders do not respond to interrogations due to phenomena such as antenna shading or marginal transponder performance，traffic may be displayed intermittently，or not at all．Aircraft without altitude reporting capability are shown without altitude separation data or climb descent indication．Pilots should remain vigilant for traffic at all times．

NOTE：Mode－S TIS is disabled when another traffic system is installed．

NOTE：If a Garmin GTX 345R transponder is installed with this traffic system，refer to the Automatic Dependent Surveillance－Broadcast（ADS－B）traffic discussion for more information about ADS－B traffic displays．

NOTE：If an optional L－3 SkyWatch ${ }^{\circledR} 497$ TAS is installed，refer to the applicable Pilot＇s Guide from the manufacturer for detailed information about this traffic system．

The optional Garmin GTS 800／820 or L－3 Skywatch 497 is a Traffic Advisory System（TAS）．It enhances flight crew situational awareness by displaying traffic information for transponder－equipped aircraft．The system also provides visual annunciations and voice traffic alerts to assist in visually acquiring traffic．
The Garmin GTS 800／820 is capable of tracking up to 45 intruding aircraft equipped with Mode A or C transponders，and up to 30 intruding aircraft equipped with Mode S transponders．A maximum of 30 aircraft with the highest threat potential can be displayed simultaneously．
No TAS surveillance is provided for aircraft without operating transponders．

THEORY OF OPERATION

When the traffic system is in Operating Mode，the system interrogates the transponders of intruding aircraft while monitoring for transponder replies．The system uses this information to derive the distance，relative bearing，and if reported，the altitude and vertical trend for each aircraft within its surveillance range．The traffic system then calculates a closure rate to each intruder based on the projected Closest Point of Approach （CPA）．If the closure rate meets the threat criteria for a Traffic Advisory（TA），the traffic system provides visual annunciations and voice alerts．

TAS SURVEILLANCE VOLUME AND SYMBOLOGY

The TAS surveillance system monitors the airspace within $\pm 10,000$ feet of own altitude. Under ideal conditions, the GTS 800 scans transponder traffic up to 22 nm in the forward direction, and the GTS 820 scans transponder traffic up to 40 nm in the forward direction. The range is somewhat reduced to the sides and aft of own aircraft due to the directional interrogation signal patterns. In areas of greater transponder traffic density or when TCAS II (Traffic Alert and Collision Avoidance System II) systems are detected, the onboard traffic system automatically reduces its interrogation transmitter power (and therefore range) in order to limit potential interference from other signals.

NOTE: The Garmin traffic system does not display traffic determined to be on the ground, including Mode C transponder equipped aircraft operating below 300^{\prime} AGL that is not climbing. However, if own aircraft has ADS-B In capability, and is receiving traffic information from an ADS-B source (including ADS-R, ADS-B, TIS-B), the system does display this traffic while operating in SURF Mode. Refer to the ADS-B Traffic Section for more information.

If a Garmin GTX 335 transponder is installed, the traffic symbols shown in the following table depict traffic.

TAS Symbol	Description
Non-Threat Traffic	
Troximity Advisory (PA)	
Traffic Advisory (TA)	

Table 6-16 TAS Symbol Description with GTX 335 Transponder

If a Garmin GTX 345R transponder is installed, the symbols in the following table depict traffic, and include Automatic Dependent Surveillance-Broadcast (ADS-B) information. Refer to the ADS-B traffic discussion later in this section for more information.

Symbol	Description
	Traffic Advisory with ADS-B directional information. Points in the direction of the intruder aircraft track.
	Traffic Advisory without directional information.
	Traffic Advisory with ADS-B directional information is out of the selected display range. Displayed at outer range ring at proper bearing. Arrow points in the direction of the intruder aircraft track.
	Traffic Advisory out of the selected display range without directional information. Displayed at outer range ring at proper bearing.
	Proximity Advisory with ADS-B directional information. Points in the direction of the aircraft track.
	Proximity Advisory without ADS-B directional information.
	Other Non-Threat traffic with ADS-B directional information. Arrow points in the direction of the intruder aircraft track.
	Other Non-Threat traffic without ADS-B directional information.
17	Traffic located on the ground with ADS-B directional information. Arrow points in the direction of the aircraft track. Ground traffic is only displayed when ADS-B is in Surface (SURF) Mode or own aircraft is on the ground.
	Ground traffic without ADS-B directional information. Ground traffic is only displayed when ADS-B is in Surface (SURF) Mode or own aircraft is on the ground.
	Non-aircraft ground traffic with ADS-B directional information. Pointed end indicates direction of travel. Ground traffic is only displayed when ADS-B is in Surface (SURF) Mode or own aircratt is on the ground.
1	Non-aircraft ground traffic without ADS-B directional information.. Ground traffic is only displayed when ADS-B is in Surface (SURF) Mode or own aircraft is on the ground.

A Traffic Advisory (TA), displayed as a solid amber circle or circle enclosing an arrow, alerts the crew to a potentially hazardous intruding aircraft, if the closing rate, distance, and vertical separation meet TA criteria. A Traffic Advisory that is beyond the selected display range (off scale) is indicated by a half TA symbol at the edge of the screen at the relative bearing of the intruder.
A Proximity Advisory (PA), displayed as a solid white diamond or arrow, indicates the intruding aircraft is within ± 1200 feet and is within a 6 nm range, but is still not considered a TA threat.

Other, non-threat traffic, shown as an open white diamond or arrow, is displayed for traffic beyond six nautical miles that is neither a TA or PA.

Relative altitude, when available, is displayed above or below the corresponding intruder symbol in hundreds of feet. When this altitude is above own aircraft, it is preceded by a '+' symbol; a minus sign '-' indicates traffic is below own aircraft.

If the system is receiving ADS-B track information, a motion vector line extending beyond the traffic symbol in the direction of the track may also be displayed when either absolute or relative motion vectors are enabled.

Figure 6-68 Intruder Traffic with ADS-B Directional Information and Track

TA ALERTING CONDITIONS (GTS 800/820)

The GTS 800/820 traffic system automatically adjusts its TA sensitivity level to reduce the likelihood of nuisance TA alerting during flight phases likely to be near airports. The system applies Level A TA (less) sensitivity when the aircraft's landing gear is extended. Level B TA sensitivity applies in all other conditions to calculate TA threats.

Sensitivity Level	Intruder Altitude Available	TA Alerting Conditions
A	Yes	Intruder closing rate provides less than 20 seconds of vertical and horizontal separation. Or: Intruder closing rate provides less than 20 seconds of horizontal separation and vertical separation is within 600 feet. Or: Intruder range is within 0.2 nm and vertical separation is within 600 feet.
A	No	Intruder closing rate provides less than 15 seconds of separation or intruder range is within 0.2 NM.
B	Yes Or: Intruder closing rate provides less than 30 seconds of vertical and horizontal separation. separation is within 800 feet. Or: Intruder range is within 0.55 nm and vertical separation is within 800 feet.	
B	No	Intruder closing rate provides less than 20 seconds of separation or intruder range is within 0.55 NM.

Table 6-18 TA Sensitivity Level and TA Alerting Criteria

NOTE: If an optional L-3 SkyWatch ${ }^{\circledR} 497$ TAS is installed, refer to the applicable Pilot's Guide from the manufacturer for information about applicable voice alerts.

When the GTS 800/820 detects a new TA, the following occur:

- The system issues a single "Traffic!" voice alert, followed by additional voice information about the bearing, relative altitude, and approximate distance from the intruder that triggered the TA. For example, the announcement "Traffic! $\mathbf{1 2}$ o'clock, high, four miles," would indicate the traffic is in front of own aircraft, above own altitude, and approximately four nautical miles away.

Bearing	Relative Altitude	Approximate Distance (nm)
"One o'clock" through "Twelve o'clock" or "No Bearing"	"High", "Low", "Same Altitude" (if within 200 feet of own altitude), or "Altitude not available"	"Less than one mile", "One Mile" through "Ten Miles", or "More than ten miles"

Table 6-19 TA Descriptive Voice Announcements

NOTE: The system mutes TAS traffic voice alerts when own aircraft altitude is below $400^{\prime} \mathrm{AGL}$.

- A TRAFFIC Annunciation appears at the right of the airspeed on the PFD, flashes for five seconds, and remains displayed until no TAs are detected in the area.
- A PFD map is automatically displayed with TA traffic.

If the bearing of TA traffic cannot be determined, a yellow text banner will be displayed in the center of the Traffic Map Page and in the lower-left of the PFD inset map instead of a TA symbol. The text will indicate "TA" followed by the distance, relative altitude, and vertical trend arrow for the TA traffic, if known.

A TA will be displayed for at least eight seconds, even if the condition(s) that initially triggered the TA are no longer present.

Figure 6-69 Traffic Annunciation (PFD)

NOTE: If an optional L-3 SkyWatch ${ }^{\circledR} 497$ TAS is installed, refer to the applicable Pilot's Guide from the manufacturer for information about applicable voice alerts for the system test.

The traffic system provides a system test mode to verify the TAS is operating normally. The test takes ten seconds to complete. When the system test is initiated, a test pattern of traffic symbols appears on the Traffic Map Page. For the GTS 800/820, if system test passes, the system announces, "TAS System Test Passed" or "TAS System Test Failed." When the system test is complete, the traffic system enters Standby Mode.

Testing the traffic system:

1) Turn the large FMS Knob to select the Map Page Group.
2) Turn the small FMS Knob to select the Traffic Map Page.
3) Turn the Joystick to set the range to $2 / 6 \mathrm{~nm}$ to allow for full test pattern to be displayed during test.
4) Press the Standby or TAS STBY Softkey to place the traffic system into Standby Mode. The system must be in Standby Mode before the Test Softkey becomes available.
5) Press the Test Softkey.

Or:

1) On the Traffic Map Page, press the MENU Key.
2) Turn the small FMS knob to select 'Test Mode'.
3) Press the ENT Key.

Figure 6-70 System Test in Progress with Test Pattern

OPERATION

NOTE: The Garmin GTS 800/820 traffic system automatically changes from Standby to Operating mode eight seconds after takeoff. The system also automatically changes from Operating to Standby mode 24 seconds after landing.

After power-up, the traffic system is in Standby Mode. The system must be in Operating Mode for traffic to be displayed and for TAs to be issued.

Changing traffic system modes on the Traffic Map Page:

1) Turn the large FMS Knob to select the Map Page Group.
2) Turn the small FMS Knob to select the Traffic Map Page.
3) Select the Operate or TAS OPER Softkey to begin displaying traffic. 'OPERATING' is displayed in the Traffic mode field.
4) Select the Standby or TAS STBY Softkey to place the system in the Standby mode. 'STANDBY' is displayed in the Traffic mode field.

Or:

1) With the Traffic Map Page displayed, press the MENU Key.
2) Turn the small FMS knob to highlight the desired mode.
3) Press the ENT Key.

TRAFFIC MAP PAGE

The Map - Traffic Map Page shows surrounding traffic data in relation to the aircraft's current position and altitude, without basemap clutter. It is the principal map page for viewing traffic information. Aircraft orientation is always heading up unless there is no valid heading. The pilot can adjust the map range with the Joystick. A range indication appears on each range ring.
The system annunciates the traffic mode and altitude display mode in the upper right corner of the Traffic Map Page.

Figure 6-71 Traffic Map Page

Altitude Display Mode

The pilot can select the volume of airspace in which Other Non-Threat and Proximity Advisory traffic is displayed. TAs occurring outside of these limits will always be shown.

Changing the altitude range:

1) On the Traffic Map Page, select the ALT Mode Softkey.
2) Press one of the following Softkeys:

- Above: Displays Other Non-Threat and Proximity Advisory traffic from 9900 feet above the aircraft to 2700 feet below the aircraft. Typically used during climb phase of flight.
- Normal: Displays Other Non-Threat and Proximity Advisory traffic from 2700 feet above the aircraft to 2700 feet below the aircraft. Typically used during enroute phase of flight.
- Below: Displays Other Non-Threat and Proximity Advisory traffic from 2700 feet above the aircraft to 9900 feet below the aircraft. Typically used during descent phase of flight.
- UNREST (unrestricted): All traffic is displayed from 9900 feet above and 9900 feet below the aircraft.

3) To return to the Traffic Page, select the Back Softkey.

Or:

1) Press the MENU Key.
2) Turn the small FMS Knob to select one of the following (see softkey description in the previous step 2):

- Above
- Normal
- Below
- Unrestricted

3）Select the ENT Softkey．

Traffic Map Page Display Range

The display range on the Traffic Map Page can be changed at any time．Map range is adjustable with the Joystick，and rings on the map denote the ranges．

Changing the display range on the Traffic Map Page：
1）Turn the Joystick．
2）The following range options are available：
－ 750 ft （with optional ADS－B）
－ 750 ft and 1500 ft （with optional ADS－B）
－ 1500 FT and 0.5 nm （with optional ADS－B）
－ 0.5 nm and 1 nm （with optional ADS－B）
－ 1 nm and 2 nm （with optional ADS－B）
－ 2 nm
－ 2 and 6 nm
－ 6 and 12 nm
－ 12 and 24 nm
－ 24 and 40 nm （available with ADS－B or GTS 820 or SkyWatch 497）

ADDITIONAL TRAFFIC DISPLAYS

The Map－Traffic Map Page is the principal map page for viewing traffic information．Traffic information can also be displayed on the following other maps for additional reference on the MFD when the traffic unit is operating：
－Navigation Map Page
－Nearest Pages
－Traffic Map Page
－Active Flight Plan Page
－Trip Planning Page
－IFR／VFR Charts Page

Traffic information can also be displayed on the PFD when the Synthetic Vision Technology（SVT）option is installed and enabled．See the Additional Features Section for details．

Enabling／disabling traffic information（MFD maps other than the Traffic Map Page）：
1）Press the Map Opt Softkey．
2）Press the Traffic Softkey．Traffic is now displayed on the map．
When traffic is selected on maps other than the Traffic Map Page，the system shows a traffic status icon to indicate traffic is enabled for display．

Figure 6-72 TAS Traffic on Navigation Map

Customizing the traffic display on the Navigation Map Page:

1) Select the Navigation Map Page.
2) Press the MENU Key.
3) With 'Map Settings' highlighted, press the ENT Key.
4) Turn the small FMS Knob to select the Traffic Group and press the ENT Key.
5) Turn the large FMS Knob or press the ENT Key to scroll through the selections.

- Traffic - Turns the display of traffic data on or off
- Traffic Mode - Selects the traffic mode for display; select from:
- All Traffic - Displays all traffic
- TA/PA - Displays Traffic Advisories and Proximity Advisories
- TA Only - Displays Traffic Advisories only
- Traffic Symbols - Selects the maximum range at which traffic symbols are shown
- Traffic Labels - Selects the maximum range at which traffic labels are shown with the option to turn off

6) Turn the small FMS Knob to scroll through options (On/Off, range settings, etc.).
7) Press the ENT Key to select an option.
8) Press the FMS Knob or CLR Key to return to the Navigation Map Page.

The Navigation Map Page Setup Menu also controls the display of traffic. The setup menu controls the map range settings. Traffic data symbols and labels can be decluttered from the display. If a map range larger than the map range setting is selected, the data is removed from the map. Maps besides the Traffic Map Page use settings based on those selected for the Navigation Map Page.

A traffic－only inset map is available on the PFD by pressing the TFC Map Softkey．A traffic map appears on the PFD．This map resembles the Traffic Map Page，and presents a heading up format．Traffic information can also be overlaid on PFD navigation maps．

Enabling／disabling traffic overlay on PFD navigation maps：

1）With the Inset Map or HSI Map displayed，press the Map／HSI Soffkey on the PFD．
2）Press the Traffic Softkey to enable／disable the display traffic information．

SYSTEM STATUS

The traffic mode is annunciated in the upper right corner of the Traffic Map Page．

Mode	Traffic Mode Annunciation （Traffic Map Page）	Traffic Display Status Icon （Other Maps）
Traffic System Test Initiated	TEST （＇TEST MODE＇shown in center of page）	
Operating	OPERATING	
Standby	STANDBY （also shown in white in center of page）	
Traffic System Failed＊	FAIL	

＊See Table 6－21 for additional failure annunciations

> Table 6-20 Traffic Modes

If the traffic unit fails，an annunciation as to the cause of the failure is shown in the center of the Traffic Map Page．During a failure condition，the Operating Mode cannot be selected．

Traffic Map Page Center Annunciation	Description
NO DATA	Data is not being received from the TAS unit
DATA FAILED	Data is being received from the TAS unit，but the unit is self－reporting a failure
FAILED	Incorrect data format received from the TAS unit

Table 6－21 TAS Failure Annunciations

The annunciations to indicate the status of traffic information appear in a banner at the lower left corner of maps on which traffic can be displayed.

Traffic Status Banner Annunciation	Description
TA OFF SCALE	A Traffic Advisory is outside the selected display range*. Annunciation is removed when traffic comes within the selected display range.
TA X.X \pm XX \downarrow	System cannot determine bearing of Traffic Advisory**. Annunciation indicates distance in nm, altitude separation in hundreds of feet, and altitude trend arrow (climbing/descending).
TRFC FAIL	TAS unit has failed (unit is self-reporting a failure or sending incorrectly formatted data)
NO TRFC DATA	Data is not being received from the TAS unit
*Shown as symbol on Traffic Map Page **Shown in center of Traffic Map Page	

Table 6-22 TAS Traffic Status Annunciations

6．6 ADS－B TRAFFIC

1．WARNING：Do not rely solely upon the display of traffic information for collision avoidance maneuvering． The traffic display does not provide collision avoidance resolution advisories and does not under any circumstances or conditions relieve the pilot＇s responsibility to see and avoid other aircraft．

4．WARNING：Do not rely solely upon the display of traffic information to accurately depict all of the traffic information within range of the aircraft．Due to lack of equipment，poor signal reception，and／or inaccurate information from other aircraft，traffic may be present but not represented on the display．

The optional Garmin GTX 345R transponder sends and receives Automatic Dependent Surveillance－Broadcast （ADS－B）traffic information on the 1090 MHz Extended Squitter（1090 ES）frequency．It receives ADS－B traffic and data link weather information on the 978 MHz Universal Access Transceiver（UAT）frequency．The system provides visual annunciations and voice traffic alerts to help the pilot visually acquire potentially conflicting traffic．This discussion covers the traffic features of the GTX 345 transponder；refer to the Flight Information Service－Broadcast（FIS－B）Weather discussion for more information about the UAT data link weather features of the GTX 345.

ADS－B SYSTEM OVERVIEW

ADS－B is a core technology in the FAA NextGen air traffic control system and is comprised of three segments： ADS－B（Broadcast），ADS－R（Rebroadcast），and Traffic Information Service－Broadcast（TIS－B）．

ADS－B includes the automatic broadcast of position reports by aircraft，surface vehicles，and transmitters on fixed objects．These broadcasts contain information such as GPS position，identity（Flight ID，Call Sign，Tail Number，ICAO registration number，etc．），ground track，ground speed，pressure altitude，and emergency status．

Figure 6－73 ADS－B System

For the purpose of distinguishing between levels of ADS－B service，there are three classifications of aircraft or system capability：ADS－B In，ADS－B Out，and ADS－B participating．ADS－B In refers to the capability to receive

ADS-B information. ADS-B Out refers to the capability to transmit ADS-B information. ADS-B participating refers to the capability to both send and receive ADS-B information. Aircraft lacking either ADS-In, ADS-B Out, or both ADS-B capabilities may also be referred to as ADS-B nonparticipating aircraft.

AUTOMATIC DEPENDENT SURVEILLANCE-REBROADCAST (ADS-R)

Because it is not required that ADS-B In capable aircraft be able to receive ADS-B data on both the 1090 MHz and 978 MHz data links, a method exists to get data from one data link to the other. ADS-R is the rebroadcast of ADS-B data by FAA ground stations, which provide this service by taking data from one link and rebroadcasting it on the other. For example, two aircraft are in the service volume for a ground station, and one is transmitting on 1090 MHz and the other on 978 MHz , the ground station retransmits the data from each aircraft on the other link to ensure the two aircraft can "see" each other.

Because the GTX 345R transponder sends and receives ADS-B traffic reports on the 1090 ES frequency, but only receives traffic reports on the 978 MHz UAT frequency, the presence of an ADS-R ground station is necessary for an aircraft with only UAT-capabilities to 'see' the aircraft with the GTX 345R transponder.

TRAFFIC INFORMATION SERVICE-BROADCAST (TIS-B)

TIS-B provides the bridge between the radar-based ATC system and the ADS-B-based system. When an ADS-B In or Out capable aircraft is within the service volume of an FAA ADS-B ground station, the ground station broadcasts a portion of the ATC radar data to the aircraft. This aircraft is then included in the list of aircraft being provided TIS-B service and is then considered a "TIS-B participant."

TIS-B coverage is available when the aircraft is within ground station coverage, in Secondary Surveillance Radar coverage, and the other aircraft is also in Secondary Surveillance Radar coverage, and is transmitting its altitude.

The ground station provides ATC radar information for other aircraft within $\pm 3,500$ feet and 15 NM of the participant, to include altitude, position, ground speed, and ground track. TIS-B broadcasts occur once every three to thirteen seconds, depending on the characteristics of the ground station providing the TIS-B service.

The following table describes the aircraft that are observed by a GTX 345R-equipped aircraft according to the level of equipment installed in the other aircraft.

Other Aircraft Equipment	Viewable by GTX 345R Equipped Aircraft
1090ES Out Equipped	Yes
UAT Receive Only Capable	No
UAT Transmit Equipped	Yes
No Transponder, No ADS-B	No
Non ADS-B Equipped, but with Mode C or S Transponder	Yes*

> * Only when in ADS-B ground station coverage and when the other aircraft is in ATC radar coverage, or own aircraft is equipped with a TAS system and traffic is within the TAS surveillance range.

Table 6-23 Aircraft Available for Viewing by an ADS-B Equipped Own Aircraft

ADS-B WITH TAS

When an optional active traffic system, such as a Traffic Advisory System (TAS) is installed and operating with an optional GTX 345R transponder, the transponder receives traffic from the active traffic system and attempts to match (or "correlate") this traffic with ADS-B traffic the transponder is tracking. When a correlation
is made, the only the traffic with the most accurate information is displayed to the flight crew. Any traffic that is not correlated (i.e., only detected by one system but not the other) is also displayed for the flight crew. This correlation of traffic by the transponder improves the accuracy of the traffic displayed, while reducing the occurrence of the same aircraft being displayed twice.

NOTE: When operating on the edges of ATC radar coverage or when using an optional active traffic system providing intermittent traffic data, a single aircraft may be briefly or periodically depicted as two aircraft on the display.

CONFLICT SITUATIONAL AWARENESS \& ALERTING

Conflict Situational Awareness (CSA) is an alerting algorithm which provides ADS-B traffic alerting similar to the TAS system discussed previously.

When a TA occurs with is equipment, the displays a 'TRAFFIC' annunciation and provides a voice alert. This annunciation and voice alert is the same as the alerts issues by the Garmin GTS 800 TAS discussed previously.
The own aircraft altitude above terrain determines the sensitivity of the CSA algorithm to minimize nuisance alerts. Height Above Terrain, and Geodetic Sea Level (GSL) altitude are used to adjust the sensitivity of the CSA algorithm in accordance with the following table:

Sensitivity Level	Height Above Terrain (HAT)	GPS Phase of Flight	Own Altitude (Feet)	Look-ahead time (sec)	Vertical Threshold for Alert (feet)	Protected Volume (NM)
4	Any	Any	Any	20	850	0.20
4	Any	Any	Any	20	850	0.20
4	Unavailable	Approach	Any	20	850	0.20
5	Any	Any	Any	25	850	0.20
5	>1000 $<=2350$	Any	Any	25	850	0.20
5	Unavailable	Terminal	Any	25	850	0.20
6	Unavailable or >2350	Not approach and not Terminal (including unavailable)	$<=5000$	30	850	0.35
7	Unavailable or >2350	Not approach and not Terminal (including unavailable)	>5000 $<=10,000$	40	850	0.55
8	Unavailable or >2350	Not approach and not Terminal (including unavailable)	$>10,000$ $<=20,000$	45	850	0.80
9	Unavailable or >2350	Not approach and not Terminal (including unavailable)	$>20,000$ $<=42,000$	48	850	1.10
10	Unavailable or >2350	Not approach and not Terminal (including unavailable)	$>42,000$	48	1200	1.10

Table 6-24 CSA Alerting Thresholds for ADS-B Traffic

NOTE: ADS-B traffic voice alerts are suppressed when own aircraft is below 500 feet AGL.

AIRBORNE AND SURFACE APPLICATIONS

ADS-B traffic can help the pilot visually acquire traffic both in the air and on-the-ground. There are two ADS-B applications or modes: Airborne Situational Awareness (AIRB) and Surface Situational Awareness (SURF). The system automatically selects the appropriate application based on conditions.

The AIRB application is on when the aircraft is more than five nautical miles and 1,500 feet above the nearest airport. When the AIRB application is active, the system only displays traffic which is airborne.

The SURF application is on when the aircraft is within five nautical miles and less than 1,500 feet above field elevation. When the SURF applications is on, the system displays airborne and on the ground traffic. At a Traffic Map Page range of one nm or less, the airport environment (including taxiways and runways) appears in addition to traffic. The airport displays are derived from the SafeTaxi database. Refer to the Additional Features section for more information about SafeTaxi displays.

NOTE: Do not rely on the solely on the traffic display to determine the runway alignment of traffic, especially when runways are in close proximity to each other.

Due to the varying precision of the data received via ADS-B, ADS-R, and TIS-B services, not all traffic symbols may not be depicted on the traffic display. Because higher data precision is required for traffic to be displayed in the SURF environment, some traffic eligible for AIRB will not be displayed while SURF is on. Availability for AIRB and SURF is depicted on the AUX-ADS-B Status Page, discussed later in this section.

Figure 6-75 Traffic Map Page with SURF Mode On

TRAFFIC DESCRIPTION

The symbols used to display ADS-B traffic are shown in the following table. Above or below the traffic symbol is the traffic identifier, and altitude. A small up or down arrow next to the traffic symbol indicates that the traffic is climbing or descending at a rate of at least 500 feet per minute.

Table 6-26 ADS-B Traffic Symbology with GTX 345R Transponder

OPERATION

TRAFFIC MAP PAGE

The Traffic Map Page shows surrounding traffic data in relation to the aircraft's current position and altitude, without basemap clutter. Aircraft orientation is always heading up unless there is no valid heading. Map range is adjustable with the Joystick, as indicated by the map range rings.

The traffic mode and altitude display mode are annunciated in the upper right corner of the page.

Figure 6-76 Traffic Map Page

Enabling/disabling the display of ADS-B traffic.

1) Select the Traffic Map Page.
2) Select the ADS-B Softkey.

Or:
a) Press the MENU Key and turn the small FMS Knob to highlight 'ADS-B On' or 'ADS-B Off'.
b) Press the ENT Key.

Testing the display of ADS-B traffic:

1) Select the Traffic Map Page.
2) If necessary, turn the Joystick to select a map range of 2 and 6 nm to ensure full test pattern display.
3) Ensure the ADS-B Softkey is disabled.
4) If the optional TAS is installed, ensure the TAS STBY Softkey is enabled.
5) Press the Test Softkey.

Or:
a) Press the MENU Key.
b) Turn the small FMS Knob to highlight 'Test Mode'.
c) Press the ENT Key.

A test pattern of traffic symbols appears during the test，and a＇TRAFFIC＇annunciation appears on the PFD．At the conclusion of the test，the system issues the voice alert＂Traffic System Test＂．If the test pattern is displayed and the voice alert is heard，the system has passed the test．

Figure 6－77 System Test in Progress with Test Pattern
The pilot can select the volume of airspace in which Other Non－Threat and Proximity traffic is displayed． TAs occurring outside of these limits will always be shown．

Changing the altitude range：

1）On the Traffic Map Page，select the ALT Mode Softkey．
2）Select one of the following softkeys：
－Above：Displays Other Non－Threat and proximity traffic from 9900 feet above the aircraft to 2700 feet below the aircraft．Typically used during climb phase of flight．
－Normal：Displays Other Non－Threat and proximity traffic from 2700 feet above the aircraft to 2700 feet below the aircraft．Typically used during enroute phase of flight．
－Below：Displays Other Non－Threat and proximity traffic from 2700 feet above the aircraft to 9900 feet below the aircraft．Typically used during descent phase of flight．
－UNREST（unrestricted）：All traffic is displayed from 9900 feet above and 9900 feet below the aircraft．
3）To return to the Traffic Map Page，select the Back Softkey．
Or：

1) On the Traffic Map Page, press the MENU Key.
2) Turn the small FMS Knob to highlight one of the following options (see softkey description in the previous step 2):

- Above
- Normal
- Below
- Unrestricted

3) Press the ENT Key.

DISPLAYING MOTION VECTORS

When Absolute Motion Vectors are selected, the vectors extending from the traffic symbols depict the traffic's reported track and speed over the ground. When Relative Motion Vectors are selected, the vectors extending from the traffic symbols display how the traffic is moving relative to own aircraft. These vectors are calculated using the traffic's track and ground speed and own aircraft's track and ground speed. These two values are combined to depict where the traffic is moving purely with respect to own aircraft, and provide a forecast of where the traffic will be, relative to own aircraft, in the near future.

Figure 6-78 Traffic Map Page with Absolute Motion Vectors Enabled

Figure 6－79 Traffic Map Page with Relative Motion Vectors Enabled

Enabling／disabling the Motion Vector display：

1）Select the Traffic Map Page．
－Relative：Displays the motion vector relative to own aircraft
－Off：Disables the display of the motion vector．
Or：
1）Select the Traffic Map Page．
2）Press the MENU Key．
3）Turn the small FMS Knob to highlight＇Relative Motion＇，＇Absolute Motion＇or＇Motion Vector Off＇．
4）Press the ENT Key．
Adjusting the duration for the Motion Vector projected time：
1）Select the Traffic Map Page．
2）Select the Motion Softkey．
3）Select the Duration Softkey．
4）Select a softkey for the desired duration（ $\mathbf{3 0}$ SEC， 1 MIN， 2 MIN， 5 MIN）．
5）When finished，select the Back Softkey to return to the Traffic Map Page．

Displaying Additional Traffic Information

The Traffic Map Page can display additional information for a selected aircraft symbol. This may include the aircraft tail number/Flight ID, type of aircraft (e.g., glider, small/medium/large aircraft, service vehicle, unmanned airborne vehicle (UAV), course, track, groundspeed), and other information.

Showing additional traffic information:

1) Select the Traffic Map Page.
2) Press the FMS Knob. A cyan border appears on the first selected traffic symbol. Additional information appears in a window in the lower-left corner of the Traffic Map Page.
3) To select a different aircraft symbol, turn the FMS Knob to move the cyan border until another symol is selected.
4) When finished, press the FMS Knob again to disable the traffic selection.

Traffic Map Page Display Range

The display range on the Traffic Map Page can be changed at any time. Map range is adjustable with the Joystick, as indicated by the map range rings.

Changing the display range on the Traffic Map Page:

1) Turn the Joystick.
2) The following range options are available:

- 500 feet
- 500 feet and 1000 feet
- 1000 feet and 2000 feet
- 2000 feet and 1 nm
- 1 and 2 nm
- 2 and 6 nm
- 6 and 12 nm
- $\quad 12$ and 24 nm
- 24 and 40 nm

NOTE: ADS-B traffic can be displayed as an overlay to navigation maps and IFR/VFR Charts. Refer to the previous TAS discussions for information about these additional traffic displays.

ADS-B SYSTEM STATUS

The traffic mode is annunciated in the upper right corner of the Traffic Map Page.

ADS-B Mode	Traffic Mode Annunciation (Traffic Map Page)	Traffic Map Page Center Banner Annunciation	Traffic Display Status Icon (Other Maps)
ADS-B System Test Initiated	ADS-B: TEST	TEST MODE	
ADS-B Operating in Airborne Mode	ADS-B: AIRB	None	
ADS-B Operating in Surface Mode	ADS-B: SURF	None	
ABS-B Traffic Off	ADS-B: OFF	ADS-B TRFC OFF	
ADS-B Traffic Not Available	ADS-B: N/A	ADS-B TRFC N/A	
ADS-B Failed*	ADS-B: FAIL	ADS-B TRFC FAIL	

* See Table 6-28 for additional failure annunciations

Table 6-27 ADS-B Modes
If the traffic unit fails, an annunciation as to the cause of the failure is shown in the center of the Traffic Map Page. During a failure condition, the Operating Mode cannot be selected.

Traffic Map Page Center Annunciation	Description
NO DATA	Data is not being received from the traffic unit
DATA FAILED	Data is being received from the traffic unit, but the unit is self-reporting a failure
FAILED	Incorrect data format received from the traffic unit

Table 6-28 Traffic Failure Annunciations
The annunciations to indicate the status of traffic information appear in a banner at the lower left corner of maps on which traffic can be displayed.

Traffic Status Banner Annunciation	Description
TA OFF SCALE	A Traffic Advisory is outside the selected display range*. Annunciation is removed when traffic comes within the selected display range.
TA X.X \pm XX \uparrow	System cannot determine bearing of Traffic Advisory**. Annunciation indicates distance in nm, altitude separation in hundreds of feet, and altitude trend arrow (climbing/descending).
TRFC FAIL	Traffic unit has failed (unit is self-reporting a failure or sending incorrectly formatted data)
NO TRFC DATA	Data is not being received from the traffic unit
*Shown as symbol on Traffic Map Page **Shown in center of Traffic Map Page	

Additional information about the status of ADS-B traffic products is available on the Aux - ADS-B Status Page.

Viewing ADS-B Traffic Status:

1) Turn the large FMS Knob to select the Aux Page Group.
2) Turn the small FMS Knob to select the Aux - ADS-B Status Page.

Figure 6-80 Viewing ADS-B Traffic Status on ADS-B Status Page

ADS－B Status Page Item	Status Message	Description
Traffic Application Status：Airborne （AIRB），Surface（SURF）， Airborne Alerts（CSA）	On	Traffic application is currently on．Required input data is available，and it meets performance requirements．
	Available to Run	Traffic application is not currently active，but application is ready to run when condition（s）determine the application should be active．Required input data is available，and it meets performance requirements．
	Not Available	Traffic application is not available．Required input data is available，but it does not meet performance requirements．
	Fault	Traffic application is not available．Required input data is not available or the application has failed．
	Not Configured	Traffic application is not available，because it has not been configured．If this annunciation persists，the system should be serviced．
	－－－－－－－－－－－－－－－	Traffic application status is invalid or unknown．
TIS－B／ADS－R Coverage	Available	The system is receiving the ADS－R coverage from an FAA ground station．
	Not Available	The system is not receiving the ADS－R coverage from an FAA ground station．
	－－－－－－－－－－	ADS－R coverage is invalid or unknown．
GPS Status：GPS Source	External \＃1	The GTX 345R is using the \＃1 GPS receiver for the GPS position source．
	External \＃2	The GTX 345R is using the \＃2 GPS receiver for the GPS position source．
	－－－－－－－－－	The GPS source is invalid or unknown．
Ground Uplink Status： Last Uplink	Number of minutes，or ＇－－－－－－＇	Displays the number of minutes since the last uplink from a ground station occurred．If no uplink has been received，or the status is invalid，dashes appear instead of a number of minutes．

Table 6－30 Aux－ADS－B Status Page Messages for ADS－B Traffic

Blank Page

SECTION 7 AUTOMATIC FLIGHT CONTROL SYSTEM

7．1 AFCS OVERVIEW

NOTE：The approved Pilot＇s Operating Handbook（POH）and FAA Approved Airplane Flight Manual（AFM） always supersedes this Pilot＇s Guide．

The Garmin AFCS is a digital Automatic Flight Control System（AFCS），fully integrated within the system avionics architecture．The System Overview section provides a block diagram to support this system description．

The Garmin AFCS can be divided into these main operating functions：
－Flight Director（FD）－Flight director operation takes place within the primary（\＃1）GIA 63W．Flight director commands are displayed on the PFD．The flight director provides：

The flight director provides：
－Command Bars showing pitch／roll guidance
－Vertical／lateral mode selection and processing
－Autopilot communication
－Autopilot（AP）－Autopilot operation occurs within the pitch，roll，and pitch trim servos．It also provides servo monitoring and automatic flight control in response to flight director steering commands，Attitude and Heading Reference System（AHRS）attitude and rate information，and airspeed．
－Yaw Damper（YD）— The yaw servo is self－monitoring and provides Dutch roll damping and turn coordination in response to yaw rate，roll angle，lateral acceleration，and airspeed．
－Manual Electric Pitch Trim（MEPT）－The pitch trim servo provides manual electric pitch trim capability when the autopilot is not engaged．

AFCS CONTROLS ON THE MFD

The following dedicated AFCS keys are located on the bezel of the MFD：

（1）AP Key	Engages／disengages the autopilot （2）FD Key Activates／deactivates the flight director only Pressing once turns on the flight director in the default vertical and lateral modes． Pressing again deactivates the flight director and removes the Command Bars．If the autopilot is engaged，the key is disabled．
（3）NAV Key Selects／deselects Navigation Mode	
（4）ALT Key Selects／deselects Altitude Hold Mode	
（5）VS Key	Selects／deselects Vertical Speed Mode
（6）FLC Key	Selects／deselects Flight Level Change Mode
（7）YD Key	Engages／disengages the yaw damper
（8）HDG Key	Selects／deselects Heading Select Mode
（9）APR Key	Selects／deselects Approach Mode
（10）VNV Key	Selects／deselects Vertical Path Tracking Mode for Vertical Navigation flight control
（11）NOSE UP／	Control the mode reference in Pitch Hold，Vertical Speed and Flight Level Change

GDU 1055

Figure 7－1 Dedicated MFD AFCS Controls

ADDITIONAL AFCS CONTROLS

The following controls used for the AFCS are located in the cockpit separately from the MFD：
AP DISC／TRIM Disengages the autopilot and yaw damper and interrupts pitch trim operation

INT Switch
（Autopilot
Disconnect／Trim Interrupt ）

An AP DISC／TRIM INT Switch is red and is located on the pilot＇s control．
This switch may be used to acknowledge an autopilot disconnect alert and mute the associated aural tone．

While pressed，allows manual control of the aircraft while the autopilot is engaged and synchronizes the flight director＇s Command Bars with the current aircraft pitch（if not in a Vertical Navigation，Glideslope，or Glidepath Mode）and roll（if in Roll Hold Mode）

A CWS Switch is located on the pilot＇s control wheel．
Upon release of the CWS Switch，the flight director may establish new pitch and roll references，depending on the current vertical and lateral modes．CWS operation details are discussed in the respective mode sections of this manual．

This composite switch is split into left and right sides．The left switch is the ARM contact and the right switch controls the DN（forward）and UP（rearward）contacts． Pushing the MEPT ARM Switch disengages the autopilot，if currently engaged，but does not affect yaw damper operation．The MEPT ARM Switch may be used to acknowledge an autopilot disconnect alert and mute the associated aural tone．

Manual trim commands are generated only when both sides of the switch are operated simultaneously．If either side of the switch is active separately for more than three seconds，MEPT function is disabled and＇PTRM＇is displayed as the AFCS Status Annunciation on the PFD．The function remains disabled until both sides of the switch are inactivated．

The GA Switch is located on the throttle．

Used to command manual electric pitch trim
An MEPT Switch is located on the pilot＇s control wheel．

$$
\begin{array}{ll}
\text { GA Switch } & \text { Disengages the autopilot and selects flight director Go Around Mode } \\
\text { (Go Around) } & \begin{array}{l}
\text { If an approach procedure is loaded this switch also activates the missed approach when } \\
\text { the selected navigation source is GPS or when the navigation source is VOR/LOC and } \\
\text { a valid frequency has been tuned. }
\end{array}
\end{array}
$$

MEPT Switch
 （Manual Electric

Pitch Trim）

CWS Switch
 （Control Wheel
 Steering）

BASIC AUTOPILOT OPERATION

This section provides an overview for autopilot engagement and disengagement. A more detailed description follows in Section 7.4.

- Autopilot Engagement - The autopilot may be engaged by pushing the AP Key on the AFCS Control Unit. Annunciations regarding the engagement are indicated on the PFD.
- Autopilot Engagement with Flight Director Off - Upon engagement, the autopilot will be set to hold the current attitude of the airplane, if the flight director was not previously on. In this case, 'PIT' and 'ROL' will be annunciated.
- Autopilot Engagement with Flight Director On - If the flight director is on, the autopilot will smoothly pitch and roll the airplane to capture the FD command bars. The prior flight director modes remain unchanged.
- Autopilot Disengagement - The most common way to disconnect the autopilot is to press and release the AP DISC/TRIM INT Switch, which is located on the control stick. An autopilot disconnect tone will be heard and annunciated on the PFD. Other ways to disconnect the autopilot include:
- Pressing the AP Key on the AFCS Control Unit
- Pressing the GA Switch (located on the left throttle)
- Pulling the autopilot circuit breaker

In the event of unexpected autopilot behavior, pressing and holding the AP DISC/TRIM INT Switch will disconnect the autopilot and remove all power to the servos.

7．2 FLIGHT DIRECTOR OPERATION

The flight director function provides pitch and roll commands to the AFCS and displays them on the PFD． With the flight director active，the aircraft can be hand－flown to follow the path shown by the Command Bars． Maximum commanded pitch $\left(-15^{\circ},+20^{\circ}\right)$ and roll $\left(25^{\circ}\right)$ angles，vertical acceleration，and roll rate are limited to values established during AFCS certification．The flight director also provides commands to the autopilot．

ACTIVATING THE FLIGHT DIRECTOR

An initial press of a key listed in the following table（when the flight director is not active）activates the flight director in the listed modes．The flight director may be turned off and the Command Bars removed from the display by pressing the FD Key again．The FD Key is disabled when the autopilot is engaged．

Control Pressed	Modes Selected			
	Lateral	Vertical		
FD Key	Roll Hold（default）	ROL	Pitch Hold（default）	PIT
AP Key	Roll Hold（default）	ROL	Pitch Hold（default）	PIT
CWS Switch	Roll Hold（default）	ROL	Pitch Hold（default）	PIT
GA Switch	Go Around	GA	Go Around	GA
ALT Key	Roll Hold（default）	ROL	Altitude Hold	ALT
VS Key	Roll Hold（default）	ROL	Vertical Speed	VS
VNV Key	Roll Hold（default）	ROL	Vertical Path Tracking＊	VPTH
		GPS		
NAV Key	Navigation＊＊	VOR	Pitch Hold（default）	PIT
		LOC		
		BC		
APR Key	Approach＊＊	GPS		VOR
		Pitch Hold（default）	PIT	
HDG Key	Heading Select	HDG	Pitch Hold（default）	PIT

＊Valid VNV flight plan must be entered before VNV Key press activates flight director．
＊＊The selected navigation receiver must have a valid VOR or LOC signal or active GPS course before NAV or APR Key press activates flight director．

Table 7－1 Flight Director Activation

AFCS STATUS BOX

Flight director mode annunciations are displayed on the PFD when the flight director is active. Flight director selection and autopilot and yaw damper statuses are shown in the center of the AFCS Status Box. Lateral flight director modes are displayed on the left and vertical on the right. Armed modes are displayed in white and active in green.

Figure 7-2 PFD AFCS Display

FLIGHT DIRECTOR MODES

Flight director modes are normally selected independently for the pitch and roll axes．Unless otherwise specified，all mode keys are alternate action（i．e．，press on，press off）．In the absence of specific mode selection， the flight director reverts to the default pitch and／or roll modes．

Armed modes are annunciated in white and active in green in the AFCS Status Box．Under normal operation， when the control for the active flight director mode is pressed，the flight director reverts to the default mode（s） for the axis（es）．Automatic transition from armed to active mode is indicated by the white armed mode annunciation moving to the green active mode field and flashing for 10 seconds．
If the information required to compute a flight director mode becomes invalid or unavailable，the flight director automatically reverts to the default mode for that axis．A flashing yellow mode annunciation and annunciator light indicate loss of sensor（ADC）or navigation data（VOR，LOC，GPS，VNV，SBAS）required to compute commands．When such a loss occurs，the system automatically begins to roll the wings level（enters Roll Hold Mode）or maintain the pitch angle（enters Pitch Hold Mode），depending on the affected axis．The flashing annunciation stops when the affected mode key is pressed or another mode for the axis is selected．If after 10 seconds no action is taken，the flashing annunciation stops．

GPS AP YDVS $\uparrow 400$ FPM ALTS

Figure 7－3 Loss of GPS Signal

The flight director is automatically disabled if the attitude information required to compute the default flight director modes becomes invalid or unavailable．

COMMAND BARS

Upon activation of the flight director，Command Bars are displayed in magenta on the PFD as a single cue． The Command Bars do not override the Aircraft Symbol．The Command Bars move together vertically to indicate pitch commands and bank left or right to indicate roll commands．

Figure 7－4 Command Bars

If the attitude information being sent to the flight director becomes invalid or unavailable，the Command Bars are removed from the display．The flight director Command Bars also disappear if the pitch exceeds $+30^{\circ} /-20^{\circ}$ or bank exceeds 65° ．

7.3 AFCS MODES

The AFCS is capable of operating in a variety of independent Lateral Modes, Vertical Modes and Combination of both the Lateral and Vertical Modes.

VERTICAL MODES

The following table lists the vertical modes with their corresponding controls and annunciations. The mode reference is displayed next to the active mode annunciation for Altitude Hold, Vertical Speed, and Flight Level Change modes. The NOSE UP/DN Wheel can be used to change the vertical mode reference while operating under Pitch Hold, Vertical Speed, or Flight Level Change Mode.

Vertical Mode	Description	Control	Annunciation	Reference Range	Reference Change Increment
Pitch Hold	Holds the current aircraft pitch attitude; may be used to climb/ descend to the Selected Altitude	(default)	PIT	$\begin{gathered} -15^{\circ} \text { to } \\ +20^{\circ} \end{gathered}$	0.5°
Selected Altitude Capture	Captures the Selected Altitude	*	ALTS		
Altitude Hold	Holds the current Altitude Reference	ALT Key	ALT nnnnn ft		
Vertical Speed	Maintains the current aircraft vertical speed; may be used to climb/descend to the Selected Altitude	VS Key	VS nnnn fPM	$\begin{gathered} -2000 \mathrm{to} \\ +1500 \mathrm{fpm} \end{gathered}$	100 fpm
Flight Level Change, IAS Hold	Maintains the current aircraft airspeed in IAS while the aircraft is climbing/descending to the Selected Altitude	FLC Key	FLC nnn kt	$\begin{aligned} & 90 \text { to } \\ & 210 \mathrm{kt} \end{aligned}$	1 kt

* ALTS armed automatically when PIT, VS, FLC, TO, or GA active, and under VPTH when Selected Altitude is to be captured instead of VNV Target Altitude

Table 7-2 Flight Director Vertical Modes

PITCH HOLD MODE (PIT)

When the flight director is activated (the FD Key is pressed), Pitch Hold Mode is selected by default. Pitch Hold Mode is indicated as the active vertical mode by the green 'PIT' annunciation. This mode may be used for climb or descent to the Selected Altitude (shown above the Altimeter), since Selected Altitude Capture Mode is automatically armed when Pitch Hold Mode is activated.

In Pitch Hold Mode, the flight director maintains a constant pitch attitude, the pitch reference. The pitch reference is set to the aircraft pitch attitude at the moment of mode selection. If the aircraft pitch attitude exceeds the flight director pitch command limitations, the flight director commands a pitch angle equal to the nose-up/down limit.

Changing the Pitch Reference

When operating in Pitch Hold Mode，the pitch reference can be adjusted by：
－Using the NOSE UP／NOSE DN Keys
－Pressing the CWS Switch，hand－flying the aircraft to establish a new pitch reference，then releasing the CWS Switch

Figure 7－5 Pitch Hold Mode

SELECTED ALTITUDE CAPTURE MODE（ALTS）

Selected Altitude Capture Mode is automatically armed with activation of the following modes：
－Pitch Hold • Go Around
－Vertical Speed
－Flight Level Change
－Vertical Path Tracking（if the Selected Altitude is to be captured instead of the VNV Target Altitude）

The white＇ALTS＇annunciation indicates Selected Altitude Capture Mode is armed．The ALT Knob is used to set the Selected Altitude（shown above the Altimeter）until Selected Altitude Capture Mode becomes active．

As the aircraft nears the Selected Altitude，the flight director automatically transitions to Selected Altitude Capture Mode with Altitude Hold Mode armed．This automatic transition is indicated by the green＇ALTS＇ annunciation flashing for up to 10 seconds and the appearance of the white＇ALT＇annunciation．The Selected Altitude is shown as the Altitude Reference beside the＇ALTS＇annunciation．

At 50 feet from the Selected Altitude，the flight director automatically transitions from Selected Altitude Capture to Altitude Hold Mode and holds the Selected Altitude（shown as the Altitude Reference）．As Altitude Hold Mode becomes active，the white＇ALT＇annunciation moves to the active vertical mode field and flashes green for 10 seconds to indicate the automatic transition．

Changing the Selected Altitude

NOTE: Pressing the CWS Switch while in Selected Altitude Capture Mode does not cancel the mode.
Use of the ALT Knob to change the Selected Altitude while Selected Altitude Capture Mode is active causes the flight director to revert to Pitch Hold Mode with Selected Altitude Capture Mode armed for the new Selected Altitude.

ALTITUDE HOLD MODE (ALT)

Altitude Hold Mode can be activated by pressing the ALT Key; the flight director maintains the current aircraft altitude (to the nearest 10 feet) as the Altitude Reference. The flight director's Altitude Reference, shown in the AFCS Status Box, is independent of the Selected Altitude, displayed above the Altimeter. Altitude Hold Mode active is indicated by a green 'ALT' annunciation in the AFCS Status Box.
Altitude Hold Mode is automatically armed when the flight director is in Selected Altitude Capture Mode. Selected Altitude Capture Mode automatically transitions to Altitude Hold Mode when the altitude error is less than 50 feet. In this case, the Selected Altitude becomes the flight director's Altitude Reference.

Changing the Altitude Reference

Figure 7－7 Altitude Hold Mode

VERTICAL SPEED MODE（VS）

In Vertical Speed Mode，the flight director acquires and maintains a Vertical Speed Reference．Current aircraft vertical speed（to the nearest 100 fpm ）becomes the Vertical Speed Reference at the moment of Vertical Speed Mode activation．This mode may be used for climb or descent to the Selected Altitude（shown above the Altimeter）since Selected Altitude Capture Mode is automatically armed when Vertical Speed Mode is selected．

When Vertical Speed Mode is activated by pressing the VS Key，＇VS＇is annunciated in green in the AFCS Status Box along with the Vertical Speed Reference．The Vertical Speed Reference is also displayed above the Vertical Speed Indicator．A Vertical Speed Reference Bug corresponding to the Vertical Speed Reference is shown on the indicator．

Changing the Vertical Speed Reference

The Vertical Speed Reference（shown both in the AFCS Status Box and above the Vertical Speed Indicator） may be changed by：
－Using the NOSE UP／NOSE DN Keys
－Pressing the CWS Switch，hand－flying the aircraft to attain a new Vertical Speed Reference，then releasing the CWS Switch

NOTE：If the Selected Altitude is reached during CWS maneuvering，the Altitude Reference is not changed． To adjust the Altitude Reference in this case，the CWS Switch must be pressed again after the Selected Altitude is reached．

Command Bars Indicate Climb to Attain Vertical Speed Reference

Selected	16000	Vertical Altitude	1200	1000
Speed				
Reference				

Figure 7-8 Vertical Speed Hold Mode

FLIGHT LEVEL CHANGE MODE (FLC)

NOTE: The Selected Altitude should be set before selecting Flight Level Change Mode.
Flight Level Change Mode is selected by pressing the FLC Key. This mode acquires and maintains the Airspeed Reference (IAS) while climbing or descending to the Selected Altitude (shown above the Altimeter). When Flight Level Change Mode is active, the flight director continuously monitors Selected Altitude, airspeed and altitude.

The Airspeed Reference is set to the current airspeed upon mode activation. Flight Level Change Mode is indicated by a green 'FLC' annunciation beside the Airspeed Reference in the AFCS Status Box. The Airspeed Reference is also displayed directly above the Airspeed Indicator, along with a bug corresponding to the Airspeed Reference along the tape.

Engine power must be adjusted to allow the autopilot to fly the aircraft at a pitch attitude corresponding to the desired flight profile (climb or descent) while maintaining the Airspeed Reference. The flight director maintains the current altitude until either engine power or the Airspeed Reference are adjusted and does not allow the aircraft to climb or descend away from the Selected Altitude.

Changing the Aisspeed Reference

The Airspeed Reference (shown in both the AFCS Status Box and above the Airspeed Indicator) may be adjusted by:

- Using the NOSE UP/NOSE DN Keys
- Pressing the CWS Switch, hand-flying the aircraft to attain a new Airspeed Reference, then releasing the CWS Switch

NOTE：If the Selected Altitude is reached during CWS maneuvering，the Airspeed Reference is not changed． To adjust the Airspeed Reference in this case，the CWS Switch must be pressed again after the Selected Altitude is reached．

Figure 7－9 Flight Level Change Mode（IAS）

LATERAL MODES

The following table relates each Garmin AFCS lateral mode to its respective control and annunciation. Refer to the combination modes section for information regarding Go Around and Takeoff modes.

Mode	Description	Control	Annunciation	Maximum Roll Command Limit
Roll Hold	Holds the current aircraft roll attitude or rolls the wings level, depending on the commanded bank angle	(default)	ROL	25°
Heading Select	Captures and tracks the Selected Heading	HDG Key	HDG	25°
Navigation, GPS Arm/Capture/Track			GPS	25° Capture 10° Track
Navigation, VOR Enroute Arm/Capture/Track	Captures and tracks the selected navigation source (GPS, VOR, LOC)	NAV Key	VOR	25° Capture 10° Track
			LOC	25° Capture 10° Track

If no annunciation appears in the AFCS Status Box. The acceptable bank angle range is indicated in green along the Roll Scale of the Attitude Indicator.

Table 7-3 Flight Director Lateral Modes
The CWS Button does not change lateral references for Heading Select, Navigation, Backcourse, or Approach Mode. The autopilot guides the aircraft back to the Selected Heading/Course upon release of the CWS Button.

ROLL HOLD MODE (ROL)

NOTE: If Roll Hold Mode is activated as a result of a mode reversion, the flight director rolls the wings level.
When the flight director is activated or switched, Roll Hold Mode is selected by default. This mode is annunciated as 'ROL' in the AFCS Status Box. The current aircraft bank angle is held, subject to the bank angle condition.

ROL CWS YD PIT
 ALTS

Figure 7-10 Roll Hold Mode Annunciation

Bank Angle	Flight Director Response
$<6^{\circ}$	Rolls wings level
6 to 25°	Maintains current aircraft roll attitude
$>25^{\circ}$	Limits bank to 25°

Table 7-4 Roll Hold Mode Responses

Changing the Roll Reference

The roll reference can be changed by pressing the CWS Switch，establishing the desired bank angle，then releasing the CWS Switch．

HEADING SELECT MODE（HDG）

Heading Select Mode is activated by pressing the HDG Key．Heading Select Mode acquires and maintains the Selected Heading．The Selected Heading is shown by a light blue bug on the HSI．

Changing the Selected Heading

nOTE：Pressing the HDG Knob synchronizes the Selected Heading to the current heading．
The Selected Heading is adjusted using the HDG Knob．Pressing the CWS Switch and hand－flying the aircraft does not change the Selected Heading．The autopilot guides the aircraft back to the Selected Heading upon release of the CWS Switch．

Turns are commanded in the same direction as Selected Heading Bug movement，even if the bug is turned more than 180° from the present heading（e．g．，a 270° turn to the right）．However，Selected Heading changes of more than 330° at a time result in turn reversals．

Command Bars Track Selected Heading

Figure 7－11 Heading Select Mode

Changing the Selected Course

If the navigation source is VOR or localizer，or OBS Mode has been enabled when using GPS，the Selected Course is controlled using the CRS Knob．
Pressing the CWS Switch and hand－flying the aircraft does not change the Selected Course while in Navigation Mode．The autopilot guides the aircraft back to the Selected Course（or GPS flight plan）when the CWS Switch is released．

Figure 7－13 Navigation Mode

COMBINATION MODES (VNV, APR, NAV, GA)

The following table lists the modes that operating by using both Vertical and Lateral Modes with their corresponding controls and annunciations.

Mode	Description	Control	Annunciation	Maximum Roll Command Limit	Reference Range
Vertical Path Tracking	Captures and tracks descent legs of an active vertical profile	VNV Key	VPTH		
VNV Target Altitude Capture	Captures the Navarical Altituden (VNV) Narget	*	ALTV		
Glidepath	Captures and tracks the SBAS glidepath on approach	APR Key	GP		
Glideslope	Captures and tracks the ILS glideslope on approach		GS		
Backcourse Arm/Capture/Track	Captures and tracks a localizer signal for backcourse approaches	NAV Key	$B C$	25° Capture 10° Track	
Approach, GPS Arm/Capture/Track	Captures and tracks the selected navigation source (GPS, VOR, LOC)	APR Key	GPS	25° Capture 10° Track	
Approach, VOR Arm/Capture/Track			VAPP	25° Capture 10° Track	
Approach, ILS Arm/Capture/Track (Glideslope Mode automatically armed)			LOC	25° Capture 10° Track	
Go Around**	Commands a constant pitch angle and wings level in the air	GA Button	GA		7°

* ALTV is armed automatically under VPTH when VNV Target Altitude is to be captured instead of Selected Altitude.
**Go Around mode disengages the autopilot unless a compatible lift computer is installed.
Table 7-5 Flight Director Combination Modes

VERTICAL NAVIGATION MODES (VPTH, ALTV)

NOTE: VNV is disabled when parallel track or Dead Reckoning Mode is active.

NOTE: The Selected Altitude takes precedence over any other vertical constraints.

Vertical Navigation (VNV) flight control is available for enroute/terminal cruise and descent operations any time that VNV flight planning is available. Refer to the Flight Management Section for more information on VNV flight plans. Conditions for availability include, but are not limited to:

- The selected navigation source is GPS.
- A VNV flight plan (with at least one altitude-constrained waypoint) or vertical direct-to is active.
- VNV is enabled (VNV ENBL Softkey pressed on the MFD).
- Crosstrack error is valid and within certain limits.
- Desired/actual track are valid or track angle error is within certain limits.
- The VNV Target Altitude of the active waypoint is no more than 250 ft above the current aircraft altitude.

The flight director may be armed for VNV at any time, but no target altitudes are captured during a climb. The Command Bars provide vertical profile guidance based on specified altitudes (entered manually or loaded from the database) at waypoints in the active flight plan or vertical direct-to. The appropriate VNV flight control modes are sequenced by the flight director to follow the path defined by the vertical profile. Upon reaching the last waypoint in the VNV flight plan, the flight director transitions to Altitude Hold Mode and cancels any armed VNV modes.

Vertical Path Tracking Mode (VPTH)

NOTE: Vertical Path Tracking Mode is only applicable to aircraft equipped with a VNV Key.

NOTE: If another vertical mode key is pressed while Vertical Path Tracking Mode is selected, Vertical Path Tracking Mode reverts to armed.

NOTE: Pressing the CWS Switch while Vertical Path Tracking Mode is active does not cancel the mode. The autopilot guides the aircraft back to the descent path upon release of the CWS Switch.

When a vertical profile (VNV flight plan) is active and the VNV Key is pressed, Vertical Path Tracking Mode is armed in preparation for descent path capture. 'VPTH' (or ' V ' when Glidepath or Glideslope Mode is concurrently armed) is annunciated in white in addition to previously armed modes. If applicable, the appropriate altitude capture mode is armed for capture of the next VNV Target Altitude (ALTV) or the Selected Altitude (ALTS), whichever is greater.
GPS AP YD ALT 2000Ft VPTH GP

GPS AP YDVS $\downarrow 700$ FPM ALTV GP/V
Figure 7-14 Vertical Path Tracking Armed Annunciations

Prior to descent path interception, the Selected Altitude must be set below the current aircraft altitude by at least 75 feet. For the flight director to transition from Altitude Hold to Vertical Path Tracking Mode, acknowledgment is required within five minutes of descent path interception by:

- Pressing the VNV Key
- Adjusting the Selected Altitude

If acknowledgment is not received within one minute of descent path interception, the white 'VPTH' annunciation starts to flash. Flashing continues until acknowledged or the descent path is intercepted. If the descent is not confirmed by the time of interception, Vertical Path Tracking Mode remains armed and the descent is not captured.
In conjunction with the "TOD [top of descent] within 1 minute" annunciation in the PFD Navigation Status Box and the "Vertical track" voice message, VNV indications (VNV Target Altitude, vertical deviation, and vertical speed required) appear on the PFD in magenta.

Figure 7-15 Vertical Path Capture

When a descent leg is captured (i.e., vertical deviation becomes valid), Vertical Path Tracking becomes active and tracks the descent profile. An altitude capture mode ('ALTS' or 'ALTV') is armed as appropriate.

Figure 7－16 Vertical Path Tracking Mode

If the altimeter barometric setting is adjusted while Vertical Path Tracking is active，the flight director increases／decreases the descent rate by up to 500 fpm to re－establish the aircraft on the descent path （without commanding a climb）．Adjusting the altimeter barometric setting creates discontinuities in VNV vertical deviation，moving the descent path．For large adjustments，it may take several minutes for the aircraft to re－establish on the descent path．If the change is made while nearing a waypoint with a VNV Target Altitude，the aircraft may not re－establish on the descent path in time to meet the vertical constraint．

Automatic Reversion to Pitch Hold Mode

Several situations can occur while Vertical Path Tracking Mode is active which cause the flight director to revert to Pitch Hold Mode：
－Vertical deviation exceeds 200 feet during an overspeed condition．
－Vertical deviation experiences a discontinuity that both exceeds 200 feet in magnitude and results in the vertical deviation exceeding 200 feet in magnitude．Such discontinuities are usually caused by flight plan changes that affect the vertical profile．
－Vertical deviation becomes invalid（the Vertical Deviation Indicator is removed from the PFD）．
－A display enters Reversionary Mode（this does not apply to an active vertical direct－to）．
Unless VNV is disabled，Vertical Path Tracking Mode and the appropriate altitude capture mode become armed following the reversion to Pitch Hold Mode to allow for possible profile recapture．

Non-Path Descents

Pitch Hold, Vertical Speed, and Flight Level Change modes can also be used to fly non-path descents while VNV flight control is selected. If the VS or FLC Key is pressed while Vertical Path Tracking Mode is selected, Vertical Path Tracking Mode reverts to armed along with the appropriate altitude capture mode to allow profile re-capture.

GPS AP YDFLC 165kT ALTS VPTH

Figure 7-17 Flight Level Change VNV Non-Path Descent

To prevent immediate profile re-capture, the following must be satisfied:

- At least 10 seconds have passed since the non-path transition was initiated
- Vertical deviation from the profile has exceeded 250 feet, but is now less than 200 feet

Pressing the VNV Key twice re-arms Vertical Path Tracking for immediate profile re-capture.

VNV Target Altitude Capture Mode (ALTV)

NOTE: VNV Target Altitude Capture Mode is only applicable to aircraft equipped with a VNV Key.

NOTE: Armed VNV Target Altitude and Selected Altitude capture modes are mutually exclusive. However, Selected Altitude Capture Mode is armed implicitly (not annunciated) whenever VNV Target Altitude Capture Mode is armed.

VNV Target Altitude Capture is analogous to Selected Altitude Capture Mode and is armed automatically after the VNV Key is pressed and the next VNV Target Altitude is to be intercepted before the Selected Altitude. The annunciation 'ALTV' indicates that the VNV Target Altitude is to be captured. VNV Target Altitudes are shown in the active flight plan or vertical direct-to, and can be entered manually or loaded from a database (see the Flight Management Section for details). At the same time as "TOD within 1 minute" is annunciated in the Navigation Status Box, the active VNV Target Altitude is displayed above the Vertical Speed Indicator.
As the aircraft nears the VNV Target Altitude, the flight director automatically transitions to VNV Target Altitude Capture Mode with Altitude Hold Mode armed. This automatic transition is indicated by the green 'ALTV' annunciation flashing for up to 10 seconds and the appearance of the white 'ALT' annunciation. The VNV Target Altitude is shown as the Altitude Reference beside the 'ALTV' annunciation and remains displayed above the Vertical Speed Indicator. The Required Vertical Speed Indication (RVSI) is removed once VNV Target Altitude Capture Mode becomes active.
At 50 feet from the VNV Target Altitude, the flight director automatically transitions from VNV Target Altitude Capture to Altitude Hold Mode and tracks the level leg. As Altitude Hold Mode becomes active, the white 'ALT' annunciation moves to the active vertical mode field and flashes green for 10 seconds to indicate the automatic transition. The flight director automatically arms Vertical Path Tracking, allowing upcoming descent legs to be captured and subsequently tracked.

GPS AP YD ALTV 3100FT ALT VPTH

Flash up to 10 sec，Indicating Automatic Transition

GPS AP YD ALT 3100नT VPTH

Figure 7－18 Automatic Mode Transitions During Altitude Capture

Changing the VNV Target Altitude

NOTE：Pressing the CWS Switch while in VNV Target Altitude Capture Mode does not cancel the mode．
Changing the current VNV Target Altitude while VNV Target Altitude Capture Mode is active causes the flight director to revert to Pitch Hold Mode．Vertical Path Tracking and the appropriate altitude capture mode are armed in preparation to capture the new VNV Target Altitude or the Selected Altitude， depending on which altitude is to be intercepted first．
VNV target altitudes can be changed while editing the active flight plan（see the Flight Management Section for details）．

APPROACH MODES（GPS，VAPP，LOC）

NOTE：The selected navigation receiver must have a valid VOR or LOC signal or active GPS course for the flight director to enter Approach Mode．

Approach Mode is activated when the APR Key is pressed．Approach Mode acquires and tracks the selected navigation source（GPS，VOR，or LOC），depending on loaded approach．This mode uses the selected navigation receiver deviation and desired course inputs to fly the approach．Pressing the APR Key when the CDI is greater than one dot arms the selected approach mode（annunciated in white to the left of the active lateral mode）．If the CDI is less the 1 dot，the LOC is automatically captured when the APR Key is pressed．

VOR Approach Mode（VAPP）provides greater sensitivity for signal tracking than VOR Navigation Mode．

Selecting VOR Approach Mode:

1) Ensure a valid VOR frequency is tuned
2) Ensure that VOR is the selected navigation source (use the CDI Softkey to cycle through navigation sources if necessary).
3) Press the APR Key.

When GPS Approach Mode is armed, Glidepath Mode is also armed.
Selecting GPS Approach Mode:

1) Ensure a GPS approach is loaded into the active flight plan. The active waypoint must be part of the flight plan (cannot be a direct-to a waypoint not in the flight plan).
2) Ensure that GPS is the selected navigation source (use the CDI Softkey to cycle through navigation sources if necessary).
3) Press the APR Key.

GPS AP YD ALT 2000FT VPTH GP

Figure 7-19 GPS Approach Mode Armed
LOC Approach Mode allows the autopilot to fly a LOC/ILS approach with a glideslope. When LOC Approach Mode is armed, Glideslope Mode is also armed automatically. LOC captures are inhibited if the difference between aircraft heading and localizer course exceeds 105°.

Selecting LOC Approach Mode:

1) Ensure a valid localizer frequency is tuned.
2) Ensure that LOC is the selected navigation source (use the CDI Softkey to cycle through navigation sources if necessary).
3) Press the APR Key.

Or:

1) Ensure that GPS is the selected navigation source (use the CDI Softkey to cycle through navigation sources if necessary).
2) Ensure a LOC/ILS approach is loaded into the active flight plan.
3) Ensure the corresponding LOC frequency is tuned.
4) Press the APR Key.

If the following occurs, the flight director reverts to Roll Hold Mode (wings rolled level):

- Approach Mode is active and a Vectors-To-Final is activated
- Approach Mode is active and Navigation source is manually switched
- During a LOC/ILS approach, GPS Navigation Mode is active and the FAF is crossed after the automatic navigation source switch from GPS to LOC

Changing the Selected Course

If the navigation source is VOR or localizer or OBS Mode has been enabled when using GPS, the Selected Course is controlled using the CRS Knob corresponding to the selected flight director (CRS1 for the pilot side, CRS2 for the copilot side).

Pressing the CWS Button and hand-flying the aircraft does not change the Selected Course while in Approach Mode. The autopilot guides the aircraft back to the Selected Course (or GPS flight plan) when the CWS Button is released.

GLIDEPATH MODE (GP) (SBAS ONLY)

nOTE: Pressing the CWS Switch while Glidepath Mode is active does not cancel the mode. The autopilot guides the aircraft back to the glidepath upon release of the CWS Switch.

Glidepath Mode is available only when SBAS is available. Glidepath Mode is used to track the SBAS-based glidepath. When Glidepath Mode is armed, 'GP' is annunciated in white in the AFCS Status Box.

Selecting Glidepath Mode (SBAS Only):

1) Ensure a GPS approach with vertical guidance or vertical descent angle (LPV, LNAV/VNAV, LNAV $+V$) is loaded into the active flight plan. The active waypoint must be part of the flight plan (cannot be a direct-to a waypoint not in the flight plan).
2) Ensure that GPS is the selected navigation source (use the CDI Softkey to cycle through navigation sources if necessary).
3) Press the APR Key.

NOTE: Some RNAV (GPS) approaches provide a vertical descent angle as an aid in flying a stabilized approach. These approaches are NOT considered Approaches with Vertical Guidance (APV). Approaches that are annunciated on the HSI as LNAV or LNAV+V should be flown to an MDA, until visual with the landing surface, even though vertical glidepath (GP) information may be provided.

1. WARNING: When flying an LNAV approach (with vertical descent angle) with the autopilot coupled, the aircraft will not level off at the MDA even if the MDA is set in the altitude preselect.

Upon reaching the glidepath, the flight director transitions to Glidepath Mode and begins to capture and track the glidepath.

GPS AP YD ALT 2000FT VPTH GP

Figure 7-20 Glidepath Mode Armed

Once the following conditions have been met, the glidepath can be captured:

- A GPS approach with vertical guidance (LPV, LNAV/VNAV, LNAV+V) is loaded into the active flight plan.
- The active waypoint is at or after the final approach fix (FAF).
- Vertical deviation is valid.
- The CDI is at less than full-scale deviation
- Automatic sequencing of waypoints has not been suspended (no 'SUSP' annunciation on the HSI)

NOTE: Pressing the CWS Button while Glidepath Mode is active does not cancel the mode. The autopilot guides the aircraft back to the glidepath upon release of the CWS Button.

Figure 7-21 Glidepath Mode

GLIDESLOPE MODE (GS)

Glideslope Mode is available for LOC/ILS approaches to capture and track the glideslope. When Glideslope Mode is armed (annunciated as 'GS' in white), LOC Approach Mode is armed as the lateral flight director mode.

Selecting Glideslope Mode:

1) Ensure a valid localizer frequency is tuned.
2) Ensure that LOC is the selected navigation source (use the CDI Softkey to cycle through navigation sources if necessary).
3) Press the APR Key.

Or:

1) Ensure that GPS is the selected navigation source (use the CDI Softkey to cycle through navigation sources if necessary).

2）Ensure a LOC／ILS approach is loaded into the active flight plan．
3）Ensure the corresponding LOC frequency is tuned．
4）Press the APR Key．

LOC HDG AP YD ALT 9000ft GS

Figure 7－22 Glideslope Mode Armed
Once LOC is the navigation source，the localizer and glideslope can be captured．Upon reaching the glideslope，the flight director transitions to Glideslope Mode and begins to capture and track the glideslope．

NOTE：Pressing the CWS Button while Glideslope Mode is active does not cancel the mode．The autopilot guides the aircraft back to the glideslope upon release of the CWS Button．

Figure 7－23 Glideslope Mode

BACKCOURSE MODE（BC）

NOTE：When making a backcourse approach，set the Selected Course to the localizer front course．

NOTE：In order to Arm a LOC back course the aircraft heading must be within 75 degrees of the localizer back course．

INTERCEPTING AND FLYING A DME ARC

The AFCS will intercept and track a DME arc that is part of the active flight plan provided that GPS Navigation Mode is engaged, GPS is the active navigation source on the CDI, and the DME arc segment is the active flight plan leg. It is important to note that automatic navigation of DME arcs is based on GPS. Thus, even if the APR key is pressed and LOC or VOR Approach Mode is armed prior to reaching the Initial Approach Fix (IAF), Approach Mode will not activate until the arc segment is completed.

If the pilot decides to intercept the arc at a location other than the published IAF (i.e. ATC provides vectors to intercept the arc) and subsequently selects Heading Mode or Roll Mode, the AFCS will not automatically intercept or track the arc unless the pilot activates the arc leg of the flight plan and arms GPS Navigation Mode. The AFCS will not intercept and fly a DME arc before reaching an IAF that defines the beginning of the arc segment. Likewise, if at any point while established on the DME arc the pilot deselects GPS Navigation Mode, the AFCS will no longer track the arc.

GO AROUND (GA) MODES

Pressing the GA Switch while in the air activates the flight director in a wings-level, pitch-up attitude, allowing the execution of a missed approach or a go around. Go Around Mode disengages the autopilot and arms Selected Altitude Capture Mode automatically. Subsequent autopilot engagement is allowed. Attempts to modify the aircraft attitude (i.e., with the NOSE UP/NOSE DN Keys or CWS Switch) result in reversion to Pitch and Roll Hold modes.

Command Bars Indicate Climb

Figure 7-25 Go Around Modes

7.4 AUTOPILOT AND YAW DAMPER OPERATION

NOTE: Refer to the POH/AFM for specific instructions regarding emergency procedures.
The autopilot and yaw damper operate the flight control surface servos to provide automatic flight control. The autopilot controls the aircraft pitch and roll attitudes following commands received from the flight director. Pitch autotrim provides trim commands to the pitch trim servo to relieve any sustained effort required by the pitch servo. Autopilot operation is independent of the yaw damper.

The yaw damper reduces Dutch roll tendencies and coordinates turns. It can operate independently of the autopilot and may be used during normal hand-flight maneuvers. Yaw rate commands are limited to $6 \mathrm{deg} / \mathrm{sec}$ by the yaw damper.

FLIGHT CONTROL

Pitch and roll commands are provided to the servos based on the active flight director modes. Yaw damping is provided by the yaw servo. Servo motor control limits the maximum servo speed and torque. The servo mounts are equipped with slip-clutches set to certain values. This allows the servos to be overridden in case of an emergency.

PITCH AXIS AND TRIM

The autopilot pitch axis uses pitch rate to stabilize the aircraft pitch attitude during flight director maneuvers. Flight director pitch commands are rate and attitude-limited, combined with pitch damper control, and sent to the pitch servo motor. The pitch servo measures the output effort (torque) and provides this signal to the pitch trim servo. The pitch trim servo commands the motor to reduce the average pitch servo effort.

When the autopilot is not engaged, the pitch trim servo may be used to provide manual electric pitch trim (MEPT). This allows the aircraft to be trimmed using a control wheel switch rather than the trim wheel. Manual trim commands are generated only when both halves of the MEPT Switch are operated simultaneously. Trim speeds are scheduled with airspeed to provide more consistent response.

ROLL AXIS

The autopilot roll axis uses roll rate to stabilize aircraft roll attitude during flight director maneuvers. The flight director roll commands are rate- and attitude-limited, combined with roll damper control, and sent to the roll servo motor.

YAW AXIS

The yaw damper uses yaw rate and roll attitude to dampen the aircraft's natural Dutch roll response. It also uses lateral acceleration to coordinate turns.

ENGAGEMENT

NOTE：Autopilot engagement／disengagement is not equivalent to servo engagement／disengagement．Use the CWS Switch to disengage the pitch and roll servos while the autopilot remains active．

When the AP Key is pressed，the autopilot，yaw damper，and flight director（if not already active）are activated． The flight director engages in Pitch and Roll Hold Modes when initially activated．When the YD Key is pressed， the system engages the yaw damper independently of the autopilot（if not already engaged）．Autopilot and yaw damper status are displayed in the center of the AFCS Status Box．Engagement is indicated by green＇AP＇and ＇YD＇annunciations，respectively．

ROL AP YDPIT ALTS

Figure 7－26 Autopilot and Yaw Damper Engaged

When the YD Key is pressed，the system engages the yaw damper independently of the autopilot and the yaw damper annunciator light is illuminated．
Autopilot and yaw damper status are displayed in the center of the AFCS Status Box．Engagement is indicated by green＇AP＇and＇YD＇annunciations，respectively．

CONTROL WHEEL STEERING

During autopilot operation，the aircraft may be hand－flown without disengaging the autopilot．Pressing and holding the CWS Switch disengages the pitch and roll servos from the flight control surfaces and allows the aircraft to be hand－flown．At the same time，the flight director is synchronized to the aircraft attitude during the maneuver．CWS activity has no effect on yaw damper engagement．
The＇ AP ＇annunciation is temporarily replaced by＇CWS＇in white for the duration of CWS maneuvers．
Control Wheel Steering

ROL CWS YD PIT ALTS

Figure 7－27 CWS Annunciation

In most scenarios，releasing the CWS Button reengages the autopilot with a new reference．Refer to flight director mode descriptions for specific CWS behavior in each mode．

DISENGAGEMENT

The autopilot is manually disengaged by pushing the AP DISC/TRIM INT Switch, AP Key on the MFD, GA Switch, or MEPT ARM Switch. Manual autopilot disengagement is indicated by a five-second flashing yellow 'AP' annunciation and a three-second autopilot disconnect aural alert.

GPS AP YD ALT 12000नT

Figure 7-28 Manual Autopilot Disengagement

Pushing the AP DISC/TRIM INT Switch or YD Key disengages both the yaw damper and the autopilot. When the yaw damper and autopilot are manually disengaged, both the 'AP' and 'YD' annunciation turn yellow and flash for 5 seconds and a three-second autopilot disconnect aural alert is generated.

GPS AP YD ALT 12000FT

Figure 7-29 Yaw Damper Disengagement

After manual disengagement, the autopilot disconnect aural alert may be cancelled by pushing the MEPT ARM or AP DISC/TRIM INT Switch (AP DISC/TRIM INT Switch also cancels the flashing 'AP' annunciation).
Automatic autopilot disengagement is indicated by a flashing red and white 'AP' annunciation and by the autopilot disconnect aural alert, which continue until acknowledged by pushing the AP DISC/TRIM INT or MEPT ARM Switch. Automatic autopilot disengagement occurs due to:

- System failure
- Invalid sensor data
- Inability to compute default flight director modes (FD also disengages automatically)

Yaw damper disengagement is indicated by a five-second flashing yellow 'YD' annunciation. Automatic yaw damper disengagement occurs when autopilot disengagement is caused by failure in a parameter also affecting the yaw damper. This means the yaw damper can remain operational in some cases where the autopilot automatically disengages. A localized failure in the yaw damper system or invalid sensor data also cause yaw damper disengagement.

ROL AP YD|PIT ALTS

Figure 7-30 Automatic Autopilot and Yaw Damper Disengagement

7．5 AFCS ANNUNCIATIONS AND ALERTS

AFCS CAS MESSAGES

The annunciations in Table 7－6（listed in order of increasing priority）can appear on the PFDs above the Airspeed and Attitude indicators．Only one annunciation may occur at a time，and messages are prioritized by criticality．

OVERSPEED PROTECTION

NOTE: Overspeed protection is not active in ALT, GS or GP modes.

SECTION 8 ADDITIONAL FEATURES

NOTE：With the availability of SafeTaxi ${ }^{\circledR}$ ，ChartView，or FliteCharts ${ }^{\circledR}$ ，it may be necessary to carry another source of charts on－board the aircraft．

Additional features of the system include the following：
－Synthetic Vision Technology（SVT ${ }^{\text {TIW }}$ ）
－SafeTaxi ${ }^{\oplus}$ diagrams
－ChartView，FliteCharts ${ }^{\circledR}$ ，and IFR／VFR electronic charts
－AOPA ${ }^{\mathrm{Tw}}$ or AC－U－KWIK Airport Directory
－SurfaceWatch ${ }^{\text {nu }}$
－SiriusXM ${ }^{\circledR}$ Satellite Radio entertainment
－Scheduler
－Flight Data Logging
－Connext ${ }^{\oplus}$ Setup
－Electronic Checklist

The optional Synthetic Vision Technology（SVT）provides a three－dimensional forward view of terrain features on the PFD．SVT imagery shows the pilot＇s view of relevant features in relation to the aircraft attitude，as well as the flight path pertaining to the active flight plan．
SafeTaxi diagrams provide detailed taxiway，runway，and ramp information at more than 700 airports in the United States．By decreasing range on an airport that has a SafeTaxi diagram available，a close up view of the airport layout can be seen．

The optional ChartView，FliteCharts and IFR／VFR electronic charts provide on－board electronic terminal procedures charts．Electronic charts offer the convenience of rapid access to essential information．Either ChartView or FliteCharts may be configured in the system，but not both．

The AOPA and AC－U－KWIK Airport Directories offer detailed information for a selected airport，such as available services，hours of operation，and lodging options．

The optional SurfaceWatch feature provides voice and visual annunciations to aid in maintaining situational awareness and avoid potential runway incursions during ground and air operations in the airport environment．

The optional SiriusXM Satellite Radio entertainment audio feature of the GDL 69A SXM Data Link Receiver handles more than 170 channels of music，news，and sports．SiriusXM Satellite Radio offers more entertainment choices and longer range coverage than commercial broadcast stations．

The Scheduler feature can be used to enter and display short term or long term reminder messages such as Switch fuel tanks，Change oil，or Altimeter－Transponder Check in the Messages Window on the PFD．

The Flight Data Logging feature automatically stores critical flight and engine data on an SD data card． Approximately 1，000 flight hours can be recorded for each $1 G B$ of available space on the card．

Connext allows for setting up the installed optional Flight Stream device for a Bluetooth connection between the system and a mobile device running the Garmin Pilot ${ }^{\mathrm{TIN}}$ application．

Electronic checklists allow a pilot to quickly find the proper procedure for a particular phase of flight．

8.1 SYNTHETIC VISION TECHNOLOGY (SVT)

Figure 8－1 Synthetic Vision Imagery

SVT OPERATION

SVT is activated from the PFD using the softkeys located along the bottom edge of the display．Pressing the softkeys turns the related function on or off．When SVT is enabled，the pitch attitude scale is reduced from 20 degrees up and down to 10 degrees up to 7.5 degrees down．

SVT functions are displayed on three levels of softkeys．The PFD Opt Softkey leads into the PFD function Softkeys，including synthetic vision．Pressing the SVT Softkey displays the SVT feature softkeys．The softkeys are labeled Pathways，Terrain，HDG LBL，and APT Sign．The Back Softkey returns to the previous level of softkeys．Synthetic Terrain must be active before any other SVT feature may be activated．

Pathways，HDG LBL，and APT Sign Softkeys are only available when the Terrain Softkey is activated（gray with black characters）．After activating the Terrain Softkey，the Pathways，HDG LBL，and APT Sign softkeys may be activated in any combination to display desired features．When system power is cycled，the last selected state（on or off）of the Pathways，Terrain，HDG LBL，and APT Sign softkeys is remembered by the system．
－Pathways Softkey enables display of rectangular boxes that represent course guidance．
－Terrain Softkey enables synthetic terrain depiction．
－HDG LBL Softkey enables horizon heading marks and digits．
－APT Sign Softkey enables airport signposts．

Activating and deactivating SVT:

1) Press the PFD Opt Softkey.
2) Press the SVT Softkey.
3) Press the Terrain Softkey. The SVT display will cycle on or off with the Terrain Softkey.

Activating and deactivating Pathways:

1) Press the PFD Opt Softkey.
2) Press the SVT Softkey.
3) Press the Pathways Softkey. The Pathway feature will cycle on or off with the Pathways Softkey.

Activating and deactivating Horizon Headings:

1) Press the PFD Opt Softkey.
2) Press the SVT Softkey.
3) Press the HDG LBL Softkey. The horizon heading display will cycle on or off with the HDG LBL Softkey.

Activating and deactivating Airport Signs:

1) Press the PFD Opt Softkey.
2) Press the SVT Softkey.
3) Press the APT Sign Softkey. Display of airport signs will cycle on or off with the APT Sign Softkey.

SVT FEATURES

Figure 8-2 SVT on the Primary Flight Display

NOTE: Pathways and terrain features are not a substitute for standard course and altitude deviation information provided by the altimeter, CDI, and VDI.

PATHWAYS

Pathways provide a three-dimensional perspective view of the selected route of flight shown as colored rectangular boxes representing the horizontal and vertical flight path of the active flight plan. The box size represents 700 feet wide by 200 feet tall during enroute, oceanic, and terminal flight phases. During an approach, the box width is 700 feet or one half full scale deviation on the HSI, whichever is less. The height is 200 feet or one half full scale deviation on the VDI, whichever is less. The altitude at which the pathway boxes are displayed is determined by the higher of either the selected altitude or the VNAV altitude programmed for the active leg in the flight plan.

The color of the rectangular boxes may be magenta, green, or white depending on the route of flight and navigation source selected. The active GPS or GPS overlay flight plan leg is represented by magenta boxes that correspond to the Magenta CDI. A localizer course is represented by green boxes that correspond to a green CDI. An inactive leg of an active flight plan is represented by white boxes corresponding to a white line drawn on the Inset map or MFD map indicating an inactive leg.

Active Flight Plan KMKC / KCOS				_Programmed Altitudes
	DTK	DIS	ALT	
BRK	353°	36.2 NM	12000FT	
KCOS-RNAVGPS	Y 35R L			
HABUK iaf	164°	23.9NM	10220ft	
FALUR	290°	6.6NM	8100FT	
CEGIX faf	352°	6.5 NM	8100 FT	
RW35R map	352°	6.1 Nm		
6600FT	352°	0.9nm	6600 FT	
ADANE mahp	054 ${ }^{\circ}$	15.4 NM	9000FT	
HOLD	297°	7.0nm		
Destination - KCOS - RW35R F				
Active VNV Profile				
WPT FAL	JR 81	00FT T	TOD 15:28	
VS TGT -1187FPI	1	FPA	-3.0°	
VS REQ -----FP		V DEV	_----FT	

Figure 8-3 Programmed and Selected Altitude
Pathways provide supplemental glidepath/glideslope information on an active ILS, LPV, LNAV/VNAV, some LNAVand visual approaches. Pathways are intended as an aid to situational awareness and should not be used independent of the CDI, VDI, glide path indicator, and glide slope indicator. They are removed from the display when the selected navigation information is not available. Pathways are not displayed beyond the active leg when leg sequencing is suspended and are not displayed on any portion of the flight plan leg that would lead to intercepting a leg in the wrong direction.

Departure and Enroute

Prior to intercepting an active flight plan leg, pathways are displayed as a series of boxes with pointers at each corner that point in the direction of the active waypoint. Pathways are not displayed for the first leg of the flight plan if that segment is a Heading-to-Altitude leg. The first segment displaying pathways is the first active GPS leg or active leg with a GPS overlay. If this leg of the flight plan route is outside the SVT field of view, pathways will not be visible until the aircraft has turned toward this leg. While approaching the center of the active leg and prescribed altitude, the number of pathway boxes decreases to a minimum of four.

Climb profiles cannot be displayed due to the variables associated with aircraft performance. Flight plan legs requiring a climb are indicated by pathways displayed at a level above the aircraft at the altitude selected or programmed.

Descent and Approach

Pathways are shown descending only for a programmed descent．When the flight plan includes programmed descent segments，pathways are displayed along the descent path provided that the selected altitude is lower than the programmed altitude．

When an approach providing vertical guidance is activated，Pathways are shown level at the selected altitude up to the point along the final approach course where the altitude intercepts the extended vertical descent path，glidepath，or glideslope．From the vertical path descent，glidepath，or glideslope intercept point，the pathways are shown inbound to the Missed Approach Point（MAP）along the published lateral and vertical descent path，or at the selected altitude，whichever is lower．
During an ILS approach，the initial approach segment is displayed in magenta at the segment altitudes if GPS is selected as the navigation source on the CDI．When switching to localizer inbound with LOC selected as the navigation source on the CDI，pathways are displayed in green along the localizer and glide slope．
VOR，LOC BC，and ADF approach segments that are approved to be flown using GPS are displayed in magenta boxes．Segments that are flown using other than GPS or ILS，such as heading legs or VOR final approach courses are not displayed．

Figure 8－4 SVT Pathways，Enroute and Descent

FLIGHT PATH MARKER

The Flight Path Marker（FPM），also known as a Velocity Vector，is displayed on the PFD at groundspeeds above 30 knots．The FPM depicts the approximate projected path of the aircraft accounting for wind speed and direction relative to the three－dimensional terrain display．

The FPM is always available when the Synthetic Terrain feature is in operation．The FPM represents the direction of the flight path as it relates to the terrain and obstacles on the display，while the airplane symbol represents the aircraft heading．

The FPM works in conjunction with the Pathways feature to assist the pilot in maintaining desired altitudes and direction when navigating a flight plan．When on course and altitude the FPM is aligned inside the pathway boxes as shown．

The FPM may also be used to identify a possible conflict with the aircraft flight path and distant terrain or obstacles．Displayed terrain or obstacles in the aircraft＇s flight path extending above the FPM could indicate a potential conflict，even before an alert is issued by TAWS．However，decisions regarding terrain and／or obstacle avoidance should not be made using only the FPM．

Figure 8－6 Flight Path Marker and Pathways

ZERO PITCH LINE

The Zero Pitch Line is drawn completely across the display and represents the horizon when the terrain horizon is difficult to distinguish from other terrain being displayed．It may not align with the terrain horizon，particularly when the terrain is mountainous or when the aircraft is flown at high altitudes．

HORIZON HEADING

The Horizon Heading is synchronized with the HSI and shows approximately 60 degrees of compass heading in 30-degree increments on the Zero Pitch Line. Horizon Heading tick marks and digits appearing on the zero pitch line are not visible behind either the airspeed or altitude display. Horizon Heading is used for general heading awareness, and is activated and deactivated by pressing the HDG LBL Softkey.

TRAFFIC

1. WARNING: Intruder aircraft at or below 500 ft . AGL may not appear on the SVT display or may appear as a partial symbol.

Traffic symbols are displayed in their approximate locations as determined by the related traffic systems. Traffic symbols are displayed in three dimensions, appearing larger as they are getting closer, and smaller when they are further away. Traffic within 250 feet laterally of the aircraft will not be displayed on the SVT display. Traffic symbols and coloring are consistent with that used for traffic displayed in the Inset map or MFD traffic page. If the traffic altitude is unknown, the traffic will not be displayed on the SVT display. For more details refer to the traffic system discussion in the Hazard Avoidance section.

AIRPORT SIGNS

Airport Signs provide a visual representation of airport location and identification on the synthetic terrain display. When activated, the signs appear on the display when the aircraft is approximately 15 nm from an airport and disappear at approximately 4.5 nm . Airport signs are shown without the identifier until the aircraft is approximately eight nautical miles from the airport. Airport signs are not shown behind the airspeed or altitude display. Airport signs are activated and deactivated by pressing the APTSIGNS Softkey.

Figure 8-7 Airport Signs

RUNWAYS

WARNING：Do not use SVT runway depiction as the sole means for determining the proximity of the aircraft to the runway or for maintaining the proper approach path angle during landing．

NOTE：Not all airports have runways with endpoint data in the database，therefore，these runways are not displayed．

Runway data provides improved awareness of runway location with respect to the surrounding terrain．All runway thresholds are depicted at their respective elevations as defined in the database．In some situations， where threshold elevations differ significantly，crossing runways may appear to be layered．As runways are displayed，those within 45 degrees of the aircraft heading are displayed in white．Other runways will be gray in color．When an approach for a specific runway is active，that runway will appear brighter and be outlined with a white box，regardless of the runway orientation as related to aircraft heading．As the aircraft gets closer to the runway，more detail such as runway numbers and centerlines will be displayed．

Figure 8－8 Airport Runways

TERRAIN ALERTING

Terrain alerting on the synthetic terrain display is triggered by Forward-looking Terrain Avoidance (FLTA) alerts from the Terrain-SVT or optional TAWS system, and corresponds to the yellow terrain shading for a caution alert and the red shading for a warning alert on the navigation maps. These yellow or red areas represent potential impact areas. For more detailed information about terrain displays and alerting, refer to the Hazard Avoidance section.

In some instances, a terrain or obstacle alert may be issued with no conflict shading displayed on the synthetic terrain. In these cases, the conflict is outside the SVT field of view to the left or right of the aircraft.

Obstacles are represented on the synthetic terrain display by standard two－dimensional tower symbols or wind turbine symbols found on the maps．Obstacle symbols appear in the perspective view with relative height above terrain and distance from the aircraft．Unlike the maps，which present obstacles as gray，yellow，or red based on the obstacle height relative to the aircraft altitude，obstacles shown synthetic terrain display are gray until the obstacle is associated with an actual FLTA alert，at which point an obstacle may be yellow or red． Obstacles greater than 1000 feet below the aircraft altitude are not shown．Obstacles may appear behind the flight instruments．

Figure 8－10 Obstacle

FIELD OF VIEW

The PFD field of view can be represented on the MFD Navigation Map Page．Two dashed lines forming a V－shape in front of the aircraft symbol on the map，represent the forward viewing area shown on the PFD．

Configuring field of view：

1）While viewing the Navigation Map Page，press the MENU Key to display the Page Menu．
2）Turn the large FMS Knob to highlight Map Settings and press the ENT Key．

Navigation Map Page Options Menu

Map Setup Menu, Map Group, Field of View Option

Figure 8-11 Option Menus
3) Turn the FMS Knob to select the Map Group and press the ENT Key.
4) Turn the large FMS Knob to scroll through the Map Group Options to Field of View.
5) Turn the small FMS Knob to select On or Off.
6) Press the FMS Knob to return to the Navigation Map Page.

The following figure compares the PFD forward looking depiction with the MFD plan view and Field of View turned on.

SVT View on the PFD

Field of View on the MFD

Figure 8-12 PFD and MFD Field of View Comparison

8.2 SAFETAXI

SafeTaxi is an enhanced feature that gives greater map detail when viewing airports at close range. The maximum map ranges for enhanced detail are pilot configurable. When viewing at ranges close enough to show the airport detail, the map reveals taxiways with identifying letters/numbers, airport Hot Spots, and airport landmarks including ramps, buildings, control towers, and other prominent features. Resolution is greater at lower map ranges. When the MFD display is within the SafeTaxi ranges, the airplane symbol on the airport provides enhanced position awareness.
Designated Hot Spots are recognized at airports with many intersecting taxiways and runways, and/or complex ramp areas. Airport Hot Spots are outlined to caution pilots of areas on an airport surface where positional awareness confusion or runway incursions happen most often. Hot Spots are defined with a magenta circle or outline around the region of possible confusion.

Any map page that displays the navigation view can also show the SafeTaxi airport layout within the maximum configured range. The following is a list of pages where the SafeTaxi feature can be seen:

- Navigation Map Page
- VOR Information Page
- PFD Maps
- User Waypoint Information Page
- Weather Datalink Page
- Trip Planning Page
- Airport Information Page
- Nearest Pages
- Intersection Information Page
- Active and Stored Flight Plan Pages
- NDB Information Page

During ground operations the aircraft's position is displayed in reference to taxiways, runways, and airport features. In the example shown, the aircraft is on taxiway Bravo inside the High Alert Intersection boundary on KSFO airport. Airport Hot Spots are outlined in magenta. When panning over the airport, features such as runway holding lines and taxiways are shown at the cursor.

Figure 8-13 SafeTaxi Depiction on the Navigation Map Page

The Detail Softkey (declutter) label advances to Detail All, Detail 3, Detail 2 and Detail 1 each time the softkey is pressed for easy recognition of decluttering level. Pressing the Detail All Softkey removes the taxiway markings and airport feature labels. Pressing the Detail 3 Softkey removes VOR station ID, the VOR symbol, and intersection names if within the airport plan view. Pressing the Detail 2 Softkey removes the airport runway layout, unless the airport in view is part of an active route structure. Pressing the Detail $\mathbf{1}$ Softkey cycles back to the original map detail. Refer to Map Declutter Levels in the Flight Management Section.

Configuring SafeTaxi range:

1) While viewing the Navigation Map Page, press the MENU Key to display the Page Menu.
2) Turn the large FMS Knob to highlight the Map Settings Menu Option and press the ENT Key.
3) Turn the FMS Knob to select the Aviation Group and press the ENT Key.
4) Turn the large FMS Knob to scroll through the Aviation Group Options to SafeTaxi.
5) Turn the small FMS Knob to display the range of distances.
6) Turn either FMS Knob to select the desired distance for maximum SafeTaxi display range.
7) Press the ENT Key to complete the selection.
8) Press the FMS Knob to return to the Navigation Map Page.

8.3 CHARTS

Electronic charts that resemble the paper versions of AeroNav Services terminal procedures charts (FliteCharts) and Jeppesen terminal procedures charts (ChartView) can be displayed on the MFD. When the databases for both chart types are purchased and loaded in the system, the desired charts brand, or source, can be selected for viewing. The active chart source for a particular procedure is shown on the information pane under Source.

Selecting Preferred Charts Source:

1) While viewing a chart press the MENU Softkey to display the Page Menu Options.
2) Turn the large FMS Knob to highlight the Chart Setup menu option and press the ENT Key.
3) Turn the large FMS Knob to move to the Preferred Charts Source option.
4) Turn the small FMS Knob to choose between the available options (FliteCharts, ChartView).

Chart Setup Option

Preferred Charts Source Option

Figure 8-14 Preferred Charts Source

Figure 8-15 Chart Source

Figure 8-16 Sample Chart Indicating Off-Scale Areas

(v) nOTE: Do not maneuver the aircraft based solely upon the geo-referenced aircraft symbol.

The ChartView database subscription is available from Jeppesen, Inc. Available data includes:

- Arrivals (STAR)
- Departure Procedures (DP)
- Approaches

TERMINAL PROCEDURES CHARTS

Selecting Terminal Procedures Charts:

While viewing the Navigation Map Page, Nearest Airport Page, or Flight Plan Page, press the Charts Softkey.
Or:

1) Press the MENU Key to display the Page Menu.
2) Turn the large FMS Knob to scroll through the Options Menu to Charts.
3) Press the ENT Key to display the chart.

Figure 8-17 Option Menus
On the Waypoint Airport Information Page Options Menu, select the desired chart and press the ENT Key to display the chart.

When no terminal procedure chart is available, the banner CHART NOT AVAILABLE appears on the screen. The CHART NOT AVAILABLE banner does not refer to the FliteCharts subscription, but rather the availability of a particular airport chart selection or procedure for a selected airport.

CHART NOT AVAILABLE

Figure 8-18 Chart Not Available Banner

If there is a problem in rendering the data (such as a data error or a failure of an individual chart), the banner UNABLE TO DISPLAY CHART is then displayed.

UNABLE TO DISPLAY CHART

Figure 8-19 Unable To Display Chart Banner

When a chart is not available by pressng the Charts Softkey or selecting a Page Menu Option, charts may be obtained for other airports from the WPT Pages or Flight Plan Pages.

If a chart is available for the destination airport, or the airport selected in the active flight plan, the chart appears on the screen. When no flight plan is active, or when not flying to a direct-to destination, pressing the Charts Softkey displays the chart for the nearest airport, if available.

The chart shown is one associated with the 'WPT - Airport Information' page. Usually this is the airport runway diagram. Where no runway diagram exists, but Take Off Minimums or Alternate Minimums are available, that page appears. If Airport Information pages are unavailable, the Approach Chart for the airport is shown.

Selecting a chart:

1) While viewing the Navigation Map Page, Flight Plan Page, or Nearest Airports Page, press the Charts Softkey. The airport diagram or approach chart is displayed on the Airport Information Page.
2) Press the FMS Knob to activate the cursor.
3) Turn the large FMS Knob to select either the Airport Identifier Box or the Approach Box. (Press the APR Softkey if the Approach Box is not currently shown).
4) Turn the small and large FMS Knob to enter the desired airport identifier.
5) Press the ENT Key to complete the airport selection.
6) Turn the large FMS Knob to select the Approach Box.
7) Turn the small FMS Knob to show the approach chart selection choices.
8) Turn either FMS Knob to scroll through the available charts.
9) Press the ENT Key to complete the chart selection.

Figure 8-20 Approach Information Page, Chart Selection

While the Approaches Box is selected using the FMS Knob, the system softkeys are blank. Once the desired chart is selected, the chart scale can be changed and the chart page can be scrolled using the Joystick. Pressing the Joystick centers the chart on the screen.
The aircraft symbol is shown on the chart only if the chart is to scale and the aircraft position is within the boundaries of the chart. The aircraft symbol is not displayed when the Aircraft Not Shown Icon appears. If the Chart Scale Box displays a banner NOT TO SCALE, the aircraft symbol is not shown. The Aircraft Not Shown Icon may appear at certain times, even if the chart is displayed to scale.
Pressing the Chart Softkey switches between the ChartView diagram and the associated map in the WPT page group. In the example shown, the Chart Softkey switches between the Gainesville, FL (KGNV) Airport Diagram and the navigation map on the 'WPT - Airport Information' page.

Pressing the Info $\mathbf{1}$ or $\mathbf{I n f o} \mathbf{2}$ Softkey returns to the airport diagram when the view is on a different chart. If the displayed chart is the airport diagram, the Info $\mathbf{1}$ or Info $\mathbf{2}$ Softkey has no effect. The aircraft position is shown in magenta on the ChartView diagrams when the location of the aircraft is within the chart boundaries.

Another source for additional airport information is from the Info Box above the chart for certain airports. This information source is not related to the Info $\mathbf{1}$ or Info 2 Softkey. When the Info Box is selected using the FMS Knob, the system softkeys are blank. The Charlotte, NC airport has five additional charts offering information; the Airport Diagram, Take-off Minimums, Class B Airspace, Airline Parking Gate Coordinates, and Airline Parking Gate Location. (The numbers in parentheses after the chart name are Jeppesen designators.)

Figure 8-21 Airport Information Page, Info View, Full Screen Width

CHART OPTIONS

Pressing the CHRT Opt Softkey displays the next level of softkeys, the Chart Options level.
Pressing the All Softkey shows the complete approach chart on the screen.

Figure 8-23 Approach Information Page, ALL View

- Pressing the Header Softkey shows the header view (approach chart briefing strip) on the screen.
- Pressing the Plan Softkey shows the approach chart two dimensional plan view.
- Pressing the Profile Softkey displays the approach chart descent profile strip.
- Pressing the Minimums Softkey displays the minimum descent altitude/visibility strip at the bottom of the approach chart.
- If the chart scale has been adjusted to view a small area of the chart, pressing the Fit WDTH Softkey changes the chart size to fit the available screen width.
- Pressing the Full SCN Softkey alternates between removing and replacing the data window to the right.

Selecting Additional Information:

1) While viewing the Airport Taxi Diagram, press the Full SCN Softkey to display the information windows (Airport, Info).
2) Press the FMS Knob to activate the cursor.
3) Turn the large FMS Knob to highlight the Airport, Info, Runways, or Frequencies Box.
4) Turn the small FMS Knob to select the Info Box choices. If multiple choices are available, scroll to the desired choice with the large FMS Knob and press the ENT Key to complete the selection.
5) Press the FMS Knob again to deactivate the cursor.

Pressing the Back Softkey, or waiting for 45 seconds reverts to the chart selection softkeys. The full screen view can also be selected by using the page menu option.

Selecting full screen On or Off:

1) While viewing a terminal chart press the MENU Key to display the Page Menu Options.
2) Turn the large FMS Knob to highlight the Chart Setup Menu Option and press the ENT Key.
3) Turn the large FMS Knob to move between the Full Screen and Color Scheme Options.
4) Turn the small FMS Knob to choose between the On and Off Full Screen Options.

Chart Setup Option

Full Screen On/Off Selection

Figure 8-24 Page Menus

DAY/NIGHT VIEW

ChartView can be displayed on a white or black background for day or night viewing. The Day View offers a better presentation in a bright environment. The Night View gives a better presentation for viewing in a dark environment. When the Chart Setup Box is selected the MFD softkeys are blank.

Selecting Day, Night, or Automatic View:

1) While viewing a terminal chart press the MENU Key to display the Page Menu Options.
2) Turn the large FMS Knob to highlight the Chart Setup Menu Option and press the ENT Key.

Figure 8-25 Page Menu Chart Setup

The display must be changed in order for the new setting to become active. This may be accomplished by selecting another page or changing the display range.
6) Press the FMS Knob when finished to remove the Chart Setup Menu.

Figure 8-26 Arrival Information Page, Day View

Figure 8-27 Arrival Information Page, Night View

FLITECHARTS

FliteCharts resemble the paper version of AeroNav Services terminal procedures charts. The charts are displayed with high-resolution and in color for applicable charts.
The geo-referenced aircraft position is indicated by an aircraft symbol displayed on the chart when the current position is within the boundaries of the chart. Not all charts are geo-referenced. These charts will display an Aircraft Not Shown Icon in the lower right corner of the MFD.
An aircraft symbol may be displayed within an off-scale area depicted on some charts. Off-scale areas are indicated by the grey shading. Note, these areas are not shaded on the published chart. These off-scale areas appear on the chart to convey supplemental information. However, the depicted geographical position of this information, as it relates to the chart planview, is not the actual geographic position. Therefore, when the aircraft symbol appears within one of these areas, the aircraft position indicated is relative to the chart planview, not to the off-scale area.

The FliteCharts database subscription is available from Garmin. Available data includes:

- Arrivals (STAR)
- Approaches
- Departure Procedures (DP)
- Airport Diagrams

Figure 8-28 Sample Chart Indicating Off-Scale Areas

FLITECHARTS SOFTKEYS

FliteCharts functions are displayed on three levels of softkeys．While on the Navigation Map Page，Nearest Airports Page，or Flight Plan Page，pressing the Charts Softkey displays the available terminal chart and advances to the chart selection level of softkeys：CHRT Opt，Chart，Info，DP，STAR，APR，WX，and Go Back．The chart selection softkeys appear on the Airport Information Page．

Pressing the Go Back Softkey reverts to the top level softkeys and previous page．
Pressing the CHRT OPT Softkey displays the available terminal chart and advances to the next level of softkeys：All，Fit WDTH，Full SCN，and Back．

While viewing the CHRT Opt Softkeys，after 45 seconds of softkey inactivity，the system reverts to the chart selection softkeys．

NOTAMs are not available with FliteCharts．The NOTAM Softkey label appears subdued and is disabled．

TERMINAL PROCEDURES CHARTS

Selecting Terminal Procedures Charts：
While viewing the Navigation Map Page，Nearest Airport Page，or Flight Plan Page，press the Charts Softkey． Or：

1）Press the MENU Key to display the Page Menu．
2）Turn the large FMS Knob to scroll through the Options Menu to Charts．
3）Press the ENT Key to display the chart．
On the Waypoint Airport Information Page Options Menu，select the desired chart and press the ENT Key to display the chart．

When no terminal procedure chart is available，the banner NO AVAILABLE CHARTS appears on the screen． The NO AVAILABLE CHARTS banner does not refer to the FliteCharts subscription，but rather the availability of a particular airport chart selection or procedure for a selected airport．

NO AVAILABLE CHARTS

Figure 8－29 No Available Charts Banner

If there is a problem in rendering the data（such as a data error or a failure of an individual chart），the banner UNABLE TO DISPLAY CHART is then displayed．

UNABLE TO DISPLAY CHART

Figure 8－30 Unable To Display Chart Banner

When a chart is not available by pressing the Charts Softkey or selecting a Page Menu Option，charts may be obtained for other airports from the WPT Pages or Flight Plan Pages．

If a chart is available for the destination airport，or the airport selected in the active flight plan，the chart appears on the screen．When no flight plan is active，or when not flying to a direct－to destination，pressing the Charts Softkey displays the chart for the nearest airport，if available．
The chart shown is one associated with the＇WPT－Airport Information＇page．Usually this is the airport runway diagram．Where no runway diagram exists，but Take Off Minimums or Alternate Minimums are available，that page appears．If Airport Information pages are unavailable，the Approach Chart for the airport is shown．

Selecting a chart：

1）While viewing the Navigation Map Page，Flight Plan Page，or Nearest Airports Page，press the Charts Soffkey． The airport diagram or approach chart is displayed on the Airport Information Page．
2）Press the FMS Knob to activate the cursor．
3）Turn the large FMS Knob to select either the Airport Identifier Box or the Approach Box．（Press the APR Softkey if the Approach Box is not currently shown）．

4）Turn the small and large FMS Knob to enter the desired airport identifier．
5）Press the ENT Key to complete the airport selection．
6）Turn the large FMS Knob to select the Approach Box．
7）Turn the small FMS Knob to show the approach chart selection choices．
8）Turn either FMS Knob to scroll through the available charts．
9）Press the ENT Key to complete the chart selection．
While the Approach Box is selected using the FMS Knob，the sytem softkeys are blank．Once the desired chart is selected，the chart scale can be changed and the chart can be panned using the Joystick．Pressing the Joystick centers the chart on the screen．

The aircraft symbol is not shown on FliteCharts．The Chart Scale Box displays a banner NOT TO SCALE， and the Aircraft Not Shown Icon is displayed in the lower right corner of the screen．
Pressing the Chart Softkey switches between the FliteCharts diagram and the associated map in the WPT page group．In the example shown，the Chart Softkey switches between the Gainesville，FL（KGNV）Airport Diagram and the navigation map on the＇WPT－Airport Information＇page．

Pressing the Info 1 or Info 2 Softkey returns to the airport diagram when the view is on a different chart．If the displayed chart is the airport diagram，the Info $\mathbf{1}$ or Info $\mathbf{2}$ Softkey has no effect．

DAY/NIGHT VIEW

FliteCharts can be displayed on a white or black background for day or night viewing. The Day View offers a better presentation in a bright environment. The Night View gives a better presentation for viewing in a dark environment. When the Chart Setup Box is selected the MFD softkeys are blank.

Selecting Day, Night, or Automatic View:

1) While viewing a terminal chart press the MENU Key to display the Page Menu Options.
2) Turn the large FMS Knob to highlight the Chart Setup Menu Option and press the ENT Key.
3) Turn the large FMS Knob to move to the Color Scheme Option.
4) Turn the small FMS Knob to choose between Day, Auto, and Night Options.
5) If Auto Mode is selected, turn the large FMS Knob to select the percentage field. Use the small FMS Knob to change the percentage value. The percentage value is the day/night crossover point based on the percentage of backlighting intensity. For example, if the value is set to 15%, the day/night display changes when the display backlight reaches 15% of full brightness.

The display must be changed in order for the new setting to become active. This may be accomplished by selecting another page or changing the display range.
6) Press the FMS Knob when finished to remove the Chart Setup Menu.

IFR/VFR CHARTS

IFR/VFR charts resemble the paper version and are displayed with high-resolution and in color for applicable charts.

The geo-referenced aircraft position is indicated by an aircraft symbol displayed on the chart when the current position is within the boundaries of the chart. Not all charts are geo-referenced. IFR/VFR charts may be viewed by selecting the 'Map - IFR/VFR Charts' Page.

Selecting IFR Low, IFR High, VFR Charts:

Select the 'Map - IFR/VFR Charts' Page.

1) Press the VFR, IFR Low, or IFR High Softkey to display the desired chart.

Or:

1) Press the MENU Key to display the 'Page Menu.'
2) Select 'Display VFR', 'Display IFR Low' or 'Display IFR High' to display the desired chart.
3) Press the ENT Key.

8.4 DATABASE CYCLE NUMBER AND REVISIONS

CYCLE NUMBER AND REVISION

Databases that may be available include FliteCharts, Obstacle, Terrain, IFR/VFR, Navigation, ChartView, SafeTaxi, Airport Directory. Data is revised and expiration dates vary. Data is still viewable during a period that extends from the cycle expiration date to the disables date. When turning on the system, the Power-up Page displays the current status of the databases. As an example, see the table below for the various FliteCharts Power-up Page displays and the definition of each. The expiration date and disables date varies for each database.

Table 8-1 Database Power-up Page Annunciations
White text, such as 'FliteCharts Data Expires' plus a date, indicates the chart database is current. Yellow text, such as 'Chart data is out of date!' or 'FliteCharts Data: Disabled", indicates charts are no longer viewable and

YYTI

YY－Indicates the last two digits of the year（ex． 18 represents 2018）
T－Indicates the database type（ex．S is for SafeTaxi，D is for Airport Directory）
I－Indicates the numerical issue of the database for the year（ex． 5 is the fifth issue of the year）

YYII

YY－Indicates the last two digits of the year（ex． 18 represents 2018）
II－Indicates the numerical issue of the database for the year（ex． 05 is the fifth issue of the year）
Refer to Updating Garmin Databases in Appendix for instructions on revising databases．

Example Power－up Page Display Text	Database Cycle Number Format	Revision Cycle
4．Navigation	YYII	28 days
（80）Basemap Land	YYMI	Not Applicable
A Terrain	YYTI	Not Applicable
＊Obstacle	YYBI	56 days
$A \rightarrow$ SafeTaxi	YYSI	56 days
Airport Directory	YYDI	56 days
FliteCharts	YYII	28 days
	YYII	14 days
－IFR／VFR Charts	YYII	28 days

Table 8－3 Database Startup，Format and Cycle

8.5 SIRIUSXM RADIO ENTERTAINMENT

NOTE: Refer to the Hazard Avoidance Section for information about SiriusXM Weather products.
The optional SiriusXM Satellite Radio entertainment feature of the GDL 69A Data Link Receiver is available for the pilot's and passengers' enjoyment. The GDL 69A can receive SiriusXM Satellite Radio entertainment services at any altitude throughout the Continental U.S. Entertainment audio is available only on the GDL 69A Data Link Receiver, not the GDL 69.

SiriusXM Satellite Radio offers a variety of radio programming over long distances without having to constantly search for new stations. Based on signals from satellites, coverage far exceeds land-based transmissions. SiriusXM Satellite Radio services are subscription-based. For more information on specific service packages, visit www.siriusxm.com.

ACTIVATING SIRIUSXM SATELLITE RADIO SERVICES

The service is activated by providing SiriusXM Satellite Radio with either one or two coded IDs, depending on the equipment. Either the Audio Radio ID or the Data Radio ID, or both, must be provided to SiriusXM Satellite Radio to activate the entertainment subscription.
It is not required to activate both the entertainment and weather service subscriptions with the GDL 69A. Either or both services can be activated. SiriusXM Satellite Radio uses one or both of the coded IDs to send an activation signal that, when received by the GDL 69A, allows it to play entertainment programming.

These IDs are located:

- On the label on the back of the Data Link Receiver
- On the XM Information Page on the MFD
- On the XM Satellite Radio Activation Instructions included with the unit (available at www.garmin.com, P / N 190-00355-04)

Contact the installer if the Data Radio ID and the Audio Radio ID cannot be located.

Activating the SiriusXM Satellite Radio services:

1) Contact SiriusXM Satellite Radio. Follow the instructions provided by Sirius $X M$ Satellite Radio services.
2) Select the Auxiliary Page Group.
3) Select the 'Aux - XM Radio' page.
4) Press the Info Softkey to display the XM Information Page.
5) Verify that the desired services are activated.

Figure 8-31 XM Information Page

If SiriusXM Weather services have not been activated, all the weather product boxes are blank on the XM Information Page and a yellow Activation Required message is displayed in the center of the Weather Data Link Page (Map Page Group). The Service Class refers to the groupings of weather products available for subscription.

USING SIRIUSXM RADIO

The XM Radio Page provides information and control of the audio entertainment features of the SiriusXM Satellite Radio.

Selecting the XM Radio Page:

1) Turn the large FMS Knob to select the Auxiliary Page Group.
2) Turn the small FMS Knob to select the displayed 'Aux - XM Information' Page.
3) Press the Radio Softkey to show the XM Radio Page where audio entertainment is controlled.

ACTIVE CHANNEL AND CHANNEL LIST

The Active Channel Box on the XM Radio Page displays the currently selected channel that the SiriusXM Radio is using.

The Channels List Box of the XM Radio Page shows a list of the available channels for the selected category. Channels can be stepped through one at a time or may be selected directly by channel number.

Selecting a channel from the channel list:

1) While on the XM Radio Page, press the Channel Softkey.
2) Press the $\mathbf{C H}+$ Softkey to go up through the list in the Channel Box, or move down the list with the $\mathbf{C H}-$ Softkey. Or:
3) Press the FMS Knob to highlight the channel list and turn the large FMS Knob to scroll through the channels.
4) Press the ENT Key to activate the selected channel.

Selecting a channel directly:

1) While on the XM Radio Page, press the Channel Softkey.
2) Press the Direct CH Softkey. The channel number in the Active Channel Box is highlighted.
3) Press the numbered softkeys located on the bottom of the display to directly select the desired channel number.
4) Press the ENT Key to activate the selected channel.

CATEGORY

The Category Box of the XM Radio Page displays the currently selected category of audio. Categories of channels such as jazz, rock, or news can be selected to list the available channels for a type of music or other contents. One of the optional categories is Presets to view channels that have been programmed.

Selecting a category:

1) Press the Category Softkey on the XM Radio Page.
2) Press the CAT + and CAT - Softkeys to cycle through the categories.

Or:
Turn the small FMS Knob to display the Categories list. Highlight the desired category with the small FMS Knob and press the ENT Key. Selecting All Categories places all channels in the list.

PRESETS

Up to 15 channels from any category can be assigned a preset number．The preset channels are selected by pressing the Presets and More Softkeys．Then the preset channel can be selected directly and added to the channel list for the Presets category．

Setting a preset channel number：

1）On the XM Radio Page，while listening to an Active Channel that is wanted for a preset，press the Presets Softkey to access the first five preset channels（Preset 1 －Preset 5）．
2）Press the More Softkey to access the next five channels（Preset 6 －Preset 10），and again to access the last five channels（Preset 11 －Preset 15）．Pressing the More Softkey repeatedly cycles through the preset channels．

3）Press any one of the（Preset 1 －Preset 15）softkeys to assign a number to the active channel．
4）Press the Set Softkey on the desired channel number to save the channel as a preset．
Pressing the Back Softkey，or 45 seconds of softkey inactivity，returns the system to the top level softkeys．

VOLUME

Radio volume is shown as a percentage．Volume level is controlled by pressing the Volume Softkey，which brings up the Mute Softkey and the volume increase and decrease softkeys．

Adjusting the volume：

1）With the XM Radio Page displayed，press the Volume Softkey．
2）Press the VOL－Softkey to reduce volume or press the VOL＋Softkey to increase volume．（Once the VOL Softkey is pressed，the volume can also be adjusted using the small FMS Knob．）

SiriusXM Radio volume may also be adjusted on each passenger headset．

Muting SiriusXM audio：

1）Select the $X M$ Radio Page or $X M$ Information Page．
2）Press the Mute Softkey to mute the audio．Press the Mute Softkey again to unmute the audio．

8.6 SURFACEWATCH

NOTE: The SafeTaxi database must be available to provide information regarding taxiways, aprons and other objects in the airport environment.

Figure 8-32 Information Types Displayed in the Information Box

CURRENTLY OCCUPIED

This component indicates the aircraft is 'ON' the indicated apron, taxiway, or runway. The aircraft is currently 'ON' runway 04 right (RWY 04R). The remaining runway distance is also shown when the aircraft is situated on and aligned with a runway.
If the aircraft is airborne and approaching an airport, 'AIRBORNE TO' and the destination airport identifier will be displayed.
Information regarding non-manuevering areas not labeled on the SafeTaxi diagram will not be displayed.

APPROACHING COMPONENT

This component indicates the aircraft is 'APPROACHING' the indicated apron, taxiway, or runway. In the previous figure, the aircraft is currently 'APPROACHING' taxiway H (TWY H). The distance to the taxiway is also shown.

When the aircraft is taxiing and approaching an intersection of multiple taxiways, the taxiway identifiers will be listed in order of proximity and the distance to the nearest is displayed.
When the aircraft is taxiing and crossing an intersection of multiple taxiways, 'CROSSING' will be displayed and no distance will be shown.

CROSSING RUNWAYS

This component lists the runways, from closest to furthest, that are 'CROSSING' the runway the aircraft currently occupies. The distance to each runway is also shown in order of closest distance. Runways behind the aircraft are not depicted.
The Crossing Runways component is shown in conjunction with the Currently Occupied component of the Information Box.

ALERTS

The SurfaceWatch alert annunciations are displayed in the central portion of the PFD. The alert annunciations are accompanied by a corresponding voice alert.

SurfaceWatch Alert Annunciation	Associated Voice Alert	Description
TWY TAKEOFF	"Taxiway"	Issued when the aircraft is taking off from a non-runway (e.g. a taxiway)
RWY TOO SHORT	"Runway too short"	Issued when the aircraft is taking off from, or landing on, a runway with a length less than needed as entered by the crew.

SurfaceWatch Alert Annunciation	Associated Voice Alert	Description
CHECK RUNWAY	"Check runway"	Issued when the aircraft is taking off from, or landing on, a runway different than that entered by the crew.
TWY LANDING	"Taxiway"	Issued when the aircraft is landing on a non-runway (e.g. a taxiway).

Table 8-3 SurfaceWatch Alert Annunciations

TAKEOFF ALERTS

The Takeoff phase-of-flight, as determined by the system, must be valid in order for the system to issue Takeoff Alerts.

Taxiway Takeoff

The Taxiway Takeoff alert is issued when the aircraft attempts to takeoff from a non-runway (e.g. a taxiway) or the aircraft is not aligned with a runway.
In addition to the visual and voice alerts, the Information Box contains a textual description of the currently occupied taxiway (or other maneuvering area) and potentially the next area (apron or maneuvering area) to be occupied (based on aircraft heading and the airport geometry) and the distance to that area.

Figure 8-33 Typical Taxiway Information Displayed in the Information Box

Runway Too Short

The Runway Too Short (during takeoff) alert is issued when the aircraft attempts to takeoff from a runway and the remaining runway length is less than the required length. The insufficient runway length condition is determined based on aircraft current position during the takeoff roll and the required takeoff distance information entered on the Takeoff Data Screen.
Note that while the Runway Too Short alert may be issued for any runway from which the aircraft is taking off, the system will always calculate the runway length for the specific runway entered in the Takeoff Data.

In addition to the visual and voice alert, the Information Box will contain a textual description of the currently occupied runway and the remaining runway length as shown in the following figure.

Figure 8-34 Typical Runway Information Displayed in the Information Box

Check Runway

The Check Runway alert is issued when the aircraft attempts to takeoff from a runway that does not match the departure runway entered in the Takeoff Data Screen．
In addition to the visual and voice alert，the Information Box contains a textual description of the currently occupied runway．

LANDING ALERTS

The On－Final phase－of－flight，as determined by the system，must be valid in order for the system to issue Landing Alerts．Landing alertsare removed when the pilot initiates a climb during go－around．

Taxiway Landing

The Taxiway Landing alert is issued when the aircraft attempts to land on a non－runway（e．g．a taxiway） or the aircraft is not aligned with a runway．
In addition to the visual and voice alert，the Information Box will display the destination airport identifier and the text＂APPROACHING TWY＂to indicate a non－runway landing is being attempted．

Figure 8－35 Typical Information Displayed During a Taxiway Landing Alert

Runway Too Short

The Runway Too Short alert is issued when the aircraft attempts to land on a runway where the remaining runway length is less than the required landing runway length entered in the Landing Data Screen．

Note that while the Runway Too Short alert may be issued for any runway with which aircraft is aligned， the system will always calculate the runway length for the specific runway entered in entered in the Landing Data Screen．

In addition to the visual and voice alert，the Information Box will display the destination airport identifier and the text＂APPROACHING REMAINING＂to indicate a the remaining runway length as indicated in the following figure．

Figure 8－36 Typical Information Displayed During a Runway Too Short Alert

Check Runway

The Check Runway alert is issued when the aircraft attempts to land on a runway that does not match the arrival runway specified in the Landing Data.
Additionally, the Information Box will display the destination airport identifier, the runway with which the aircraft is aligned, and the distance to the runway (see following figure). the synthetic vision representation of the runway on the PFD.

Entering origin/destination airport:

1) Select the 'FPL - SurfaceWatch Setup' Page.
2) Press the FMS Knob momentarily to activate the flashing cursor.
3) Turn the large FMS Knob if necessary to highlight the Origin or Destination Airport field.
4) Use the FMS Knobs to input the desired Origin or Destination Airport.

Selecting origin/destination runway:

1) Select the 'FPL - SurfaceWatch Setup' Page.
2) Press the FMS Knob momentarily to activate the flashing cursor.
3) Turn the large FMS Knob if necessary to highlight the Runway or Landing Runway field.
4) Turn the small FMS Knob to select the desired available Runway or Landing Runway. As the small FMS Knob is turned, the preview of the selected runway or landing runway is also displayed.

Selecting required takeoff/landing distance:

1) Select the 'FPL - SurfaceWatch Setup' Page.
2) Press the FMS Knob momentarily to activate the flashing cursor.
3) Turn the large FMS Knob if necessary to highlight the REQD Takeoff DIS or REQD Landing DIS field.
4) Use the FMS Knobs to enter the required takeoff or landing distance. Upon pressing the FMS Knob and committing the required takeoff or landing distance, the Runway Length field will turn amber if an insufficient runway length exists.

GARMIN。

Figure 8－38 SurfaceWatch Setup Page（MFD）

Figure 8－39 SurfaceWatch Info and Cyan Runway Outline（PFD）

8.7 FLIGHT DATA LOGGING

NOTE: Some aircraft installations may not provide all aircraft/engine data capable of being logged by the system.

- Date
- Time
- GPS altitude (MSL)
- GPS altitude (WGS84 datum)
- Baro-Corrected altitude (feet)
- Baro Correction (in/Hg)
- Indicated airspeed (kts)
- Vertical speed (fpm)
- GPS vertical speed (fpm)
- OAT (degrees C)
- True airspeed (knots)
- Pitch Attitude Angle (degrees)
- Roll Attitude Angle (degrees)
- Lateral and Vertical G Force (g)
- Ground Speed (kts)
- Ground Track (degrees magnetic)
- Latitude (degrees; geodetic; +North)
- Longitude (degrees; geodetic; +East)
- Magnetic Heading (degrees)
- HSI source
- Selected course
- Coml/Com2 frequency
- Nav1/Nav2 frequency
- CDI deflection
- VDI/GP/GS deflection
- Wind Direction (degrees)
- Wind Speed (knots)
- Active Waypoint Identifier
- Distance to next waypoint (nm)
- Bearing to next waypoint (degrees)
- Magnetic variation (degrees)
- Autopilot On/Off
- AFCS roll/pitch modes
- AFCS roll/pitch commands
- GPS fix
- GPS horizontal alert limit
- GPS vertical alert limit
- SBAS GPS horizontal protection level
- SBAS GPS vertical protection level
- Fuel Qty (right \& left)(gals)
- Fuel Flow (gph)
- Manifold Pressure
- Oil Pressure (psi)
- Oil Temperature (deg. F)

The file containing the recorded data will appear in the format shown in the following figure. This file can be imported into most computer spreadsheet applications.

Figure 8-40 Log File Format

Data logging status can be monitored on the 'Aux-Utility' Page.

8.8 CONNEXT SETUP

The Connext Setup Page allows for setting up the installed optional Flight Stream device for a Bluetooth connection between the system and a mobile device running the Garmin Pilot ${ }^{\mathrm{TM}}$ application.

The mobile device must be 'paired' with the system in order to use the various functions. Pairing is accomplished by first placing the system in pairing mode by displaying the Connext Setup Page. The system is 'discoverable' whenever this page is displayed. The pairing operation is completed from the mobile device and the Garmin Pilot application. See the device Bluetooth pairing instructions and the connection instructions in the Garmin Pilot application.

Viewing the Connext Setup Page

1) Turn the large FMS Knob on the MFD to select the Aux page group.
2) Turn the small FMS Knob to select the Connext Setup page.

Changing the Bluetooth Name

1) While viewing the Connext Setup Page, press the FMS Knob to activate the cursor.
2) Turn the large FMS Knob to place the cursor in the 'Bluetooth Name' field.
3) Enter the desired name by using the large FMS Knob to select the character field, and the small FMS Knob select the desired alphanumeric character for that field.
4) Press the ENT Key. The cursor is removed and the new name is displayed.

Enabling/Disabling Flight Plan Importing from Garmin Pilot

1) While viewing the Connext Setup Page, press the FMS Knob to activate the cursor.
2) Turn the large FMS Knob to place the cursor in the 'Flight Plan Import' field.
3) Turn the small FMS Knob to select 'Enabled' or 'Disabled'.
4) Press the FMS Knob to remove the cursor.

Enabling/Disabling WiFi Database Importing from Garmin Pilot

1) While viewing the Connext Setup Page, press the FMS Knob to activate the cursor.
2) Turn the large FMS Knob to place the cursor in the 'WiFi Database Import' field.
3) Turn the small FMS Knob to select 'Enabled' or 'Disabled'.
4) Press the FMS Knob to remove the cursor.

Enabling/Disabling Automatic Reconnection of a Specific Paired Device

1) While viewing the Connext Setup Page, press the FMS Knob to activate the cursor.
2) Turn the large FMS Knob to highlight the desired paired device.
3) Turn the small FMS Knob to select 'Enabled' or 'Disabled'. Selecting 'Enabled' allows the system to automatically connect to a previously paired device when detected.
4) Press the FMS Knob to remove the cursor.

Removing a Specific Paired Device from the List of Paired Devices:

1) While viewing the Connext Setup Page, press the FMS Knob to activate the cursor.
2) Turn the large FMS Knob to highlight the desired paired device.
3) Press the Remove Softkey. A confirmation screen is displayed.
4) If necessary, turn the large FMS Knob to select 'Yes'.
5) Press the ENT Key to remove the device from the list of paired devices.

8.9 ELECTRONIC CHECKLISTS

NOTE: The optional checklists presented here are for example only and may differ from checklists available for the airframe. The information described in this section is not intended to replace the checklist information described in the POH or the Pilot Safety and Warning Supplements document.
nOTE: Garmin is not responsible for the content of checklists. Checklists are created by the aircraft manufacturer. Modifications or updates to the checklists are coordinated through the aircraft manufacturer. The user cannot edit these checklists.

The MFD is able to display optional electronic checklists which allow a pilot to quickly find the proper procedure on the ground and during each phase of flight. The system accesses the checklists from an SD card inserted into the bezel slot. If the SD card contains an invalid checklist file or no checklist, the Power-up Page messages display 'Checklist File: Invalid' or 'Checklist File: N/A' (not available) and the Checklist Softkey is not available.

Accessing and navigating checklists:

1) From any page on the MFD (except the EIS Pages), press the Checklist Softkey or turn the large FMS Knob to select the Checklist Page.
2) Turn the large FMS Knob to select the 'Group' field.
3) Turn the small FMS Knob to select the desired procedure and press the ENT Key.
4) Turn the large FMS Knob to select the 'Checklist' field.
5) Turn the FMS Knob to select the desired checklist and press the ENT Key. The selected checklist item is indicated with white text surrounded by a white box.
6) Press the ENT Key or Check Softkey to check the selected checklist item. The line item turns green and a checkmark is placed in the associated box. The next line item is automatically selected for checking.
Either FMS Knob can be used to scroll through the checklist and select the desired checklist item.
Press the CLR Key or Uncheck Softkey to remove a check mark from an item.
7) When all checklist items have been checked, '*Checklist Finished*' is displayed in green text at the bottom left of the checklist window. If all items in the checklist have not be checked, '*Checklist Not Finished*' will be displayed in yellow text.
8) Press the ENT Key. 'Go To Next Checklist?' will be highlighted by the cursor.
9) Press the ENT Key to advance to the next checklist.
10) Press the Exit Softkey to exit the Checklist Page and return to the page last viewed.

Accessing emergency procedures：

1）From any page on the MFD（except the EIS Pages），press the Checklist Softkey or turn the large FMS Knob to select the Checklist Page．
2）Press the EMER Softkey．
3）Turn the FMS Knob to select the desired emergency checklist and press the ENT Key．
4）Press the ENT Key or Check Softkey to check the selected emergency checklist item．The line item turns green and a checkmark is placed in the box next to it．The next line item is automatically highlighted for checking．

Either FMS Knob can be used to scroll through the checklist and select the desired checklist item．
Press the CLR Key or Uncheck Softkey to remove a check mark from an item．
5）When all checklist items have been checked，＇＊Checklist Finished＊＇is displayed in green text at the bottom left of the checklist window．If all items in the checklist have not be checked，＇＊Checklist Not Finished＊＇will be displayed in yellow text．

6）Press the ENT Key．＇Go To Next Checklist？＇will be highlighted by the cursor．
7）Press the ENT Key to advance to the next checklist．
8）Press the Return Softkey to return to the previous checklist．
9）Press the Exit Softkey to exit the Checklist Page and return to the page last viewed．

8.10 ABNORMAL OPERATION

SIRIUSXM DATA LINK RECEIVER TROUBLESHOOTING

For troubleshooting purposes, check the LRU Information Box on the 'Aux - System Status' Page for GDL 69A SXM status, serial number, and software version number. If a failure has been detected in the GDL 69A SXM the status is marked with a red X .

Selecting the 'Aux - System Status' Page:

1) Turn the large FMS Knob to select the Aux Page Group.
2) Turn the small FMS Knob to select the 'Aux - System Status' Page.

Some quick troubleshooting steps listed below can be performed to find the possible cause of a failure.

- Ensure the installed Data Link Receiver or Iridium Transceiver has an active subscription or account
- Perform a quick check of the circuit breakers to ensure that power is applied to the Data Link Receiver or Iridium Transceiver

GDL 69A SXM

Ensure that nothing is plugged into the MUSIC 1 or MUSIC 2 jacks because that would prevent SiriusXM radio from being heard

If a failure still exists, the following messages may provide insight as to the possible problem:

Message	Message Location	Description
CHECK ANTENNA	XM Information Page (MFD)	Data Link Receiver antenna error; service required
UPDATING	XM Information Page (MFD)	Data Link Receiver updating encryption code
NO SIGNAL	XM Information Page Weather Datalink Page (MFD)	Loss of signal; signal strength too low for receiver
LOADING	XM Radio Page (MFD)	Acquiring channel audio or information
OFF AIR	XM Radio Page (MFD)	Channel not in service
-------	XM Radio Page (MFD)	Missing channel information
WEATHER DATA LINK FAILED	Weather Datalink Page (MFD)	No communication from Data Link Receiver within last 5 minutes
ACTIVATION REQUIRED	XM Information Page (MFD)	SiriusXM subscription is not activated
DETECTING ACTIVATION	Weather Datalink Page (MFD)	SiriusXM subscription is activating.
WAITING FOR DATA...	Weather Datalink Page (MFD)	SiriusXM subscription confirmed downloading weather data.

Table 8-4 GDL 69/69A SXM Data Link Receiver Messages

ANNUNCIATIONS AND ALERTS

The Alerting System conveys alerts using the following：
－CAS Window：The Annunciation Window displays abbreviated annunciation text．Text color is based on alert levels described in the following section．The CAS Window is located to the right of the Altimeter and Vertical Speed Indicator．All Crew Alerting System（CAS）annunciations can be displayed simultaneously in the CAS Window．A white horizontal line separates annunciations that are acknowledged from annunciations that are not yet acknowledged．Higher priority annunciations are displayed towards the top of the window．
－Messages Window：The Messages Window displays text messages for up to 64 prioritized alert messages． Pressing the Messages Softkey displays the Messages Window．Pressing the Messages Softkey a second time removes the Messages Window from the display．When the Messages Window is displayed，the FMS Knob can be used to scroll through the alert message list．
－Softkey Annunciation：During certain alerts，the Messages Softkey may appear as a flashing annunciation to accompany an alert．The Messages Softkey assumes a new label consistent with the alert level（Warning， Caution，or Advisory）．By pressing the softkey when flashing an annunciation，the alert is acknowledged．The softkey label then returns to Messages．If alerts are still present，the Messages label is displayed in white with black text．Pressing the Messages Softkey a second time views the alert text messages．
－System Annunciations：Typically，a large red or amber＇ X ＇appears over instruments whose information is supplied by a failed Line Replaceable Unit（LRU）．See the System Annunciations Section for more information．

Figure A－1 Alerting System

CAS MESSAGE PRIORITIZATION

NOTE: Refer to the Pilot's Operating Handbook (POH) for corrective pilot actions.

NOTE: Any CAS messages that are generated when the system is first powered on are considered already acknowledged. They do not flash or trigger the Master Warning or Master Caution.

The Alerting System uses three alert levels. Messages are grouped by criticality (warning, caution, advisory) and sorted by order of appearance (most recent messages on top). The color of the message is based on its urgency and on required action:

The Crew Alerting System (CAS) Window is located on the right side of the PFD. Warning messages cannot be scrolled through and remain at the top of the CAS display. The scroll bar appears if more caution and advisory messages exist than can be displayed at once or if messages have been scrolled off the display. The CAS softkeys also become available.

NOTE: Aural alerts associated with abnormal conditions and advisories are managed through the audio panels. Refer to the Audio Panel and CNS Section for more information.

Warning: This level of alert requires immediate attention. When a new warning CAS message appears in the CAS Window, it flashes (inversely red on white) in conjunction with the Warning Softkey (see Figure A-2) and is accompanied by a repeating triple chime. Pressing the Warning Softkey acknowledges all flashing warning messages and extinguishes the softkey. Once acknowledged, warning messages are shown in red text and are displayed until the issue is corrected. Warning voice alerts repeat continuously until acknowledged by pressing the Warning Softkey.

Caution: This level of alert indicates the existence of abnormal conditions on the aircraft that may require intervention. When a new caution message appears in the CAS Window, it is shown in black on amber inverse video in conjunction with the Caution Softkey (see Figure A-2) and is accompanied by a double chime. Pressing the Caution Softkey Indicator acknowledges all amber messages and extinguishes the softkey. Once acknowledged, caution messages are displayed until the issue is corrected.
Advisory: This level of alert provides general information. When a new white advisory appears on the CAS display, it is shown in black on white inverse video in conjunction with the Advisory Softkey (see Figure A-2) and may be accompanied by a single chime.
Some CAS messages can be display in more than one alert level group. For example, a message might display as both a warning and a caution, but cannot appear more than once at any given time (unless the CAS is being tested). If the received signals justify multiple priorities for a certain message, the message is displayed for the higher priority condition. When graduating to a higher priority, the message flashes and requires new acknowledgment. When degrading to a lower priority condition, the message moves to the top of the appropriate grouping, but does not require new acknowledgment.

Warning

Caution

Advisory

Figure A－4 Softkey Annunciation（Message Softkey Labels）

CAS ANNUNCIATIONS

Red annunciation window text signifies warnings，amber signifies cautions，and white signifies advisories． See the POH for a list of CAS annunciations and for recommended pilot action．

DISPLAY INHIBITS

Inhibits prevent certain CAS messages from being displayed during the following conditions：
If two alert levels of the same message are active simultaneously（e．g．，L FUEL QTY warning and L FUEL QTY caution）only the higher alert level is displayed．

If a GEA or GIA fails，all CAS messages depending on sensors associated with that LRU are automatically inhibited．Inhibits cannot be activated by invalid sensor data．

Message	Comments
AHRS1 SERVICE－AHRS1 Magnetic－field model needs update．	The \＃1 AHRS earth magnetic field model is out of date．Update magnetic field model when practical．
AHRS1 TAS－AHRS1 not receiving airspeed．	The \＃1 AHRS is not receiving true airspeed from the air data computer．The AHRS relies on GPS information to augment the lack of airspeed．The system should be serviced．
APR DWNGRADE－Approach downgraded．	Use LNAV minima when approach is downgraded．
ARSPC AHEAD－Airspace ahead less than 10 minutes．	Special use airspace is ahead of aircraft．The aircraft will penetrate the airspace within 10 minutes．
$\begin{array}{\|l} \hline \text { ARSPC NEAR - Airspace near - less } \\ 2 \mathrm{~nm} \text {. } \\ \hline \end{array}$	Special use airspace is within 2 nm of the aircraft position．
ARSPC NEAR－Airspace near and ahead．	Special use airspace is near and ahead of the aircraft position．
APR INACTV－Approach is not active	The system notifies the pilot that the loaded approach is not active．Activate approach when required．
CHECK CRS－Database course for LOC2 I［LOC ID］is［CRS］．	Selected course for LOC2 differs from published localizer course by more than 10 degrees．
CNFG MODULE－PFD1 configuration module is inoperative．	The PFD1 configuration module backup memory has failed．The system should be serviced．
COM1 CONFIG－COM1 config error． Config service req＇d．	The COM1 configuration settings do not match backup configuration memory．The system should be serviced
COM1 PTT－COM1 push－to－talk key is stuck．	The COM1 external push－to－talk switch is stuck in the enable（or＂pressed＂） position．Press the PTT switch again to cycle its operation． If the problem persists，the system should be serviced．
COM1 RMT XFR－COM1 remote transfer key is stuck．	The COM1 transfer switch is stuck in the enabled（or＂pressed＂）position．Press the transfer switch again to cycle its operation．If the problem persists，the system should be serviced．
COM1 SERVICE－COM1 needs service． Return unit for repair．	The system has detected a failure in COM1．COM1 may still be usable．The system should be serviced when possible．
COM1 TEMP－COM1 over temp． Reducing transmitter power．	The system has detected an over temperature condition in COM1．The transmitter operates at reduced power．If the problem persists，the system should be serviced．
COM2 CONFIG－COM2 config error． Config service req＇d．	The COM2 configuration settings do not match backup configuration memory．The system should be serviced
COM2 PTT－COM2 push－to－talk key is stuck．	The COM2 external push－to－talk switch is stuck in the enable（or＂pressed＂） position．Press the PTT switch again to cycle its operation． If the problem persists，the system should be serviced．
COM2 RMT XFR－COM2 remote transfer key is stuck．	The COM2 transfer switch is stuck in the enabled（or＂pressed＂）position．Press the transfer switch again to cycle its operation．If the problem persists，the system should be serviced．
COM2 SERVICE－COM2 needs service． Return unit for repair．	The system has detected a failure in COM2．COM2 may still be usable．The system should be serviced when possible．
COM2 TEMP－COM2 over temp． Reducing transmitter power．	The system has detected an over temperature condition in COM2．The transmitter operates at reduced power．If the problem persists，the system should be serviced．

Message	Comments
$\begin{array}{l}\text { COPILOT RADIOS MUTED - Copilot } \\ \text { radios are muted. }\end{array}$	The copilot radios are set on mute.
$\begin{array}{l}\text { DATA LOST - Pilot stored data was lost. } \\ \text { Recheck settings. }\end{array}$	$\begin{array}{l}\text { The pilot profile data was lost. System reverts to default pilot profile and settings. } \\ \text { The pilot may reconfigure the MFD \& PFD with preferred settings, if desired. }\end{array}$
$\begin{array}{l}\text { DB CHANGE - Database changed. Verify } \\ \text { user modified procedures. }\end{array}$	$\begin{array}{l}\text { This occurs when a stored flight plan contains procedures that have been manually } \\ \text { edited. This alert is issued only after an navigation database update. Verify that } \\ \text { the user-modified procedures in stored flight plans are correct and up to date. }\end{array}$
$\begin{array}{l}\text { DB CHANGE - Database changed. Verify } \\ \text { stored airways. }\end{array}$	$\begin{array}{l}\text { This occurs when a stored flight plan contains an airway that is no longer } \\ \text { consistent with the navigation database. This alert is issued only after an } \\ \text { navigation database update. Verify use of airways in stored flight plans and reload } \\ \text { airways as needed. }\end{array}$
$\begin{array}{l}\text { DB MISMATCH - Navigation database } \\ \text { mismatch. Xtalk is off. }\end{array}$	$\begin{array}{l}\text { The PFD and MFD have different navigation database versions or types installed. } \\ \text { Crossill is off. Check the AUX-System Status Page to determine versions or regions. }\end{array}$
Also, check the AUX-System Status Page for a database synchronization function	
not completed. After synchronization is complete, power must be turned off, then	
on.	

Check the AUX-System Status Page to determine versions or regions. Also,

check the AUX-System Status Page for a database synchronization function not

completed. After synchronization is complete, power must be turned off, then on.\end{array}\right\}\)

Message	Comments
G／S1 FAIL－G／S1 is inoperative．	A failure has been detected in glideslope receiver 1．The system should be serviced．
G／S1 SERVICE－G／S1 needs service． Return unit for repair．	A failure has been detected in glideslope receiver 1．The receiver may still be available．The system should be serviced when possible．
G／S2 FAIL－G／S2 is inoperative．	A failure has been detected in glideslope receiver 2．The system should be serviced．
G／S2 SERVICE－G／S2 needs service． Return unit for repair．	A failure has been detected in glideslope receiver 2．The receiver may still be available．The system should be serviced when possible．
GDC1 MANIFEST－GDC1 software mismatch，communication halted．	The has incorrect software installed．The system should be serviced．
GDL69 CONFIG－GDL 69 config error． Config service req＇d．	GDL 69／69A SXM configuration settings do not match those of backup configuration memory．The system should be serviced．
GDL69 FAIL－GDL 69 has failed．	A failure has been detected in the GDL 69／69A or GDL 69／69A SXM．The receiver is unavailable．The system should be serviced．
GDL69 MANIFEST－GDL software mismatch，communication halted．	The GDL 69／69A SXM has incorrect software installed．The system should be serviced．
GEA1 CONFIG－GEA1 config error． Config service req＇d．	The GEA1 configuration settings do not match those of backup configuration memory．The system should be serviced．
GEA1 MANIFEST－GEA1 software mismatch，communication halted．	The \＃1 GEA 71 has incorrect software installed．The system should be serviced．
GEO LIMITS－AHRS1 too far North／ South，no magnetic compass．	The aircraft is outside geographical limits for approved AHRS operation．Heading is flagged as invalid．
GFC MANIFEST－GFC software mismatch，communication halted．	Incorrect servo software is installed，or gain settings are incorrect．
GIA1 CONFIG－GIA1 audio config error． Config service req＇d．	The GIA1 have an error in the audio configuration．The system should be serviced．
GIA1 CONFIG－GIA1 config error． Config service req＇d．	The GIA1 configuration settings do not match backup configuration memory．The system should be serviced．
GIA1 COOLING－GIA1 temperature too low．	The GIA1 and／or GIA2 temperature is too low to operate correctly．Allow units to warm up to operating temperature．
GIA1 C00LING－GIA1 over temperature．	The GIA1 temperature is too high．If problem persists，the system should be serviced．
GIA1 MANIFEST－GIA1 software mismatch，communication halted．	The GIA1 1 has incorrect software installed．The system should be serviced．
GIA1 SERVICE－GIA1 needs service． Return the unit for repair．	The GIA1 self－test has detected a problem in the unit．The system should be serviced．
GIA2 CONFIG－GIA2 audio config error． Config service req＇d．	The GIA2 have an error in the audio configuration．The system should be serviced．
GIA2 CONFIG－GIA2 config error． Config service req＇d．	The GIA2 configuration settings do not match backup configuration memory．The system should be serviced．

Message	Comments
GIA2 COOLING - GIA2 over temperature.	The GIA2 temperature is too high. If problem persists, the system should be serviced.
GIA2 COOLING - GIA2 temperature too low.	The GIA2 temperature is too low to operate correctly. Allow units to warm up to operating temperature.
GIA2 MANIFEST - GIA2 software mismatch, communication halted.	The GIA 2 has incorrect software installed. The system should be serviced.
GIA2 SERVICE - GIA2 needs service. Return the unit for repair.	The GIA2 self-test has detected a problem in the unit. The system should be serviced.
GMA1 AUX MANIFEST - GMA 1 AUX software mismatch, communication halted.	The digital audio controller has incorrect software installed. The system should be serviced.
GMA1 CONFIG - GMA1 config error. Config service req'd.	The audio panel configuration settings do not match backup configuration memory. The system should be serviced.
GMA1 FAIL - GMA1 is inoperative.	The audio panel self-test has detected a failure. The audio panel is unavailable. The system should be serviced.
GMA1 MANIFEST - GMA1 software mismatch, communication halted.	The audio panel has incorrect software installed. The system should be serviced.
GMA1 SERVICE - GMA1 needs service. Return unit for repair.	The audio panel self-test has detected a problem in the unit. Certain audio functions may still be available, and the audio panel may still be usable. The system should be serviced when possible.
GMU1 MANIFEST - GMU1 software mismatch, communication halted.	The GMU 44 has incorrect software installed. The system should be serviced.
GPS NAV LOST - Loss of GPS navigation. Insufficient satellites.	Loss of GPS navigation due to insufficient satellites.
GPS NAV LOST - Loss of GPS navigation. Position error.	Loss of GPS navigation due to position error.
GPS NAV LOST - Loss of GPS navigation. GPS fail.	Loss of GPS navigation due to GPS failure.
GPS1 SERVICE - GPS1 needs service. Return unit for repair.	A failure has been detected in the GPS1 and/or GPS2 receiver. The receiver may
GPS2 SERVICE - GPS2 needs service. Return unit for repair.	still be available. The system should be serviced.
GRS1 MANIFEST - GRS1 software mismatch, communication halted.	The AHRS has incorrect software installed. The system should be serviced.
GTS CONFIG - GTS config error. Config service req'd.	GTS 800 configuration settings do not match those of the GDU configuration. The system should be serviced.
GTS MANIFEST - GTS software mismatch, communication halted.	The GTS has incorrect software installed. The system should be serviced.
GTX1 MANIFEST - GTX1 software mismatch, communication halted.	The transponder has incorrect software installed. The system should be serviced.
HDG FAULT - AHRS1 magnetometer fault has occurred.	A fault has occurred in the \#1 GMU 44. Heading is flagged as invalid. The AHRS uses GPS for backup mode operation. The system should be serviced.

Message	Comments		
HW MISMATCH - GIA hardware mismatch. GIA1 communication halted.	A GIA mismatch has been detected, where only one is SBAS capable.		
HW MISMATCH - GIA hardware mismatch. GIA2 communication halted.	The aircraft is inside the airspace.		
INSIDE ARSPC - Inside airspace.	Data link avionics were not configured correctly and therefore will not be able to communicate with the ground network.		
INVALID ADM - Invalid ADM: ATN			
communication halted.		\quad	This occurs when the pilot attempts to activate a stored flight plan that contains
:---			
locked waypoint. Remove locked waypoint from flight plan. Update flight plan			
with current waypoint.			

Message	Comments
MFD1 DB ERR - MFD1 navigation database error exists.	The MFD detected a failure in the navigation database. Attempt to reload the navigation database. If problem persists, the system should be serviced.
MFD1 DB ERR - MFD1 obstacle database error exists.	The MFD detected a failure in the obstacle database. Ensure that the data card is properly inserted. Replace data card. If problem persists, the system should be serviced.
MFD1 DB ERR - MFD1 obstacle database missing.	The obstacle database is present on another LRU, but is missing on the specified LRU.
MFD1 DB ERR - MFD1 Safe Taxi database error exists.	The MFD detected a failure in the Safe Taxi database. Ensure that the data card is properly inserted. Replace data card. If problem persists, the system should be serviced.
MFD1 DB ERR - MFD1 terrain database error exists.	The MFD detected a failure in the terrain database. Ensure that the terrain card is properly inserted in display. Replace terrain card. If problem persists, the system should be serviced.
MFD1 DB ERR - MFD1 terrain database missing.	The terrain database is present on another LRU, but is missing on the specified LRU.
MFD1 SERVICE - MFD1 needs service. Return unit for repair.	The MFD self-test has detected a problem. The system should be serviced.
MFD1 KEYSTK - MFD1 [key name] is stuck.	A key is stuck on the MFD bezel. Attempt to free the stuck key by pressing it several times. The system should be serviced if the problem persists.
MFD1 VOLTAGE - MFD1 has low voltage. Reducing power usage	The MFD voltage is low. The system should be serviced.
NAV1 MANIFEST - NAV1 software mismatch, communication halted.	NAV1 software mismatch. The system should be serviced.
NAV1 RMT XFR - NAV1 remote transfer key is stuck.	The remote NAV1 transfer switch is stuck in the enabled (or "pressed") state. Press the transfer switch again to cycle its operation. If the problem persists, the system should be serviced.
NAV1 SERVICE - NAV1 needs service. Return unit for repair.	A failure has been detected in the NAV1 receiver. The receiver may still be available. The system should be serviced.
NAV2 MANIFEST - NAV2 software mismatch, communication halted.	NAV2 software mismatch. The system should be serviced.
NAV2 RMT XFR - NAV2 remote transfer key is stuck.	The remote NAV2 transfer switch is stuck in the enabled (or "pressed") state. Press the transfer switch again to cycle its operation. If the problem persists, the system should be serviced.
NAV2 SERVICE - NAV2 needs service. Return unit for repair.	A failure has been detected in the NAV2 receiver. The receiver may still be available. The system should be serviced.
NON-MAGNETIC UNITS - Non-magnetic NAV ANGLE display units are active.	Navigation angle is not set to MAGNETIC at power-up.
NON WGS84 WPT - Do not use GPS for navigation to [xxxx]	The position of the selected waypoint [xxxx] is not calculated based on the WGS84 map reference datum and may be positioned in error as displayed. Do not use GPS to navigate to the selected non-WGS84 waypoint..
PFD1 BACKLIGHT CALIBRATION - PFD1 calibration lost. Return for repair.	The PFD1 backlight calibration cannot be found or is invalid. The system should be serviced.

Message	Comments
PFD1 CONFIG - PFD1 config error. Config service req'd.	The PFD configuration settings do not match backup configuration memory. The system should be serviced.
PFD1 COOLING - PFD1 has poor cooling. Reducing power usage.	The PFD is overheating and is reducing power consumption by dimming the display. If problem persists, the system should be serviced.
PFD1 DB ERR - PFD1 basemap database error exists.	The PFD detected a failure in the basemap database.
PFD1 DB ERR - PFD1 multiple database errors exists.	The PFD detected a failure in more than one database. If problem persists, the system should be serviced.
PFD1 DB ERR - PFD1 navigation database error exists.	The PFD detected a failure in the navigation database. Attempt to reload the navigation database. If problem persists, the system should be serviced.
PFD1 DB ERR - PFD1 obstacle database missing.	The obstacle database is present on another LRU, but is missing on the specified LRU.
PFD1 DB ERR - PFD1 Safe Taxi database error exists.	The PFD detected a failure in the Safe Taxi database. Ensure that the data card is properly inserted. Replace data card. If problem persists, the system should be serviced.
PFD1 DB ERR - PFD1 terrain database error exists.	The PFD detected a failure in the terrain database. Ensure that the terrain card is properly inserted in display. Replace terrain card. If problem persists, the system should be serviced.
PFD1 DB ERR - PFD1 terrain database missing.	The terrain database is present on another LRU, but is missing on the specified LRU.
PFD1 KEYSTK - PFD1 [key name] is stuck.	A key is stuck on the PFD bezel. Attempt to free the stuck key by pressing it several times. The system should be serviced if the problem persists.
[PFD1 or MFD1] CARD 1 REM - Card 1 was removed. Reinsert card.	The SD card was removed from the top card slot of the specified PFD or MFD. The SD card needs to be reinserted.
[PFD1 or MFD1] CARD 2 REM - Card 2 was removed. Reinsert card.	The SD card was removed from the bottom card slot of the specified PFD or MFD. The SD card needs to be reinserted.
[PFD1 or MFD1] CARD 1 ERR - Card 1 is invalid.	The SD card in the top card slot of the specified PFD or MFD contains invalid data.
[PFD1 or MFD1] CARD 2 ERR - Card 2 is invalid.	The SD card in the bottom card slot of the specified PFD or MFD contains invalid data.
PFD1 VOLTAGE - PFD1 has low voltage. Reducing power usage	The PFD1 voltage is low. The system should be serviced.
PFD1 KEYSTK - PFD2 [key name] is stuck.	A key is stuck on the PFD bezel. Attempt to free the stuck key by pressing it several times. The system should be serviced if the problem persists.
PFD1 SERVICE - PFD1 needs service. Return unit for repair.	The PFD self-test has detected a problem. The system should be serviced.
PFD1 TERRAIN DSP - PFD1 Terrain awareness display unavailable.	One of the terrain or obstacle databases required for TAWS in PFD1 is missing or invalid.
PFD1 VOLTAGE - PFD2 has low voltage. Reducing power usage	The PFD2 voltage is low. The system should be serviced.
PILOT RADIOS MUTED - Pilot radios are muted.	The pilot radios are set on mute.

Message	Comments
PTK FAIL - Parallel track unavailable: invalid leg type.	Invalid leg type for parallel offset.
PTK FAIL - Parallel track unavailable: past IAF.	IAF waypoint for parallel offset has been passed.
PTK FAIL - Parallel track unavailable: bad geometry.	Bad parallel track geometry.
SCHEDULER [\#] - <message>.	Message criteria entered by the user.
SLCT FREQ - Select appropriate frequency for approach.	The system notifies the pilot to load the approach frequency for the appropriate NAV receiver. Select the correct frequency for the approach.
SLCT MAG - Select MAGNETIC NAV ANGLE display units.	The system notifies the pilot to set the Nav Angle units on the Avionics Settings Screen to Magnetic.
SLCT NAV - Select NAV on CDI for approach.	The system notifies the pilot to set the CDI to the correct NAV receiver. Set the CDI to the correct NAV receiver.
SLCT NON-MAG - Select alternate NAV ANGLE display units.	The system notifies the pilot to set the Nav Angle units on the Avionics Settings Screen to True.
STEEP TURN - Steep turn ahead.	A steep turn is 15 seconds ahead. Prepare to turn.
STRMSCP FAIL - Stormscope has failed.	Stormscope has failed. The system should be serviced.
SURFACEWATCH DISABLED - Too far north/south.	The SurfaceWatch system has been disabled.
SURFACEWATCH FAIL - Invalid audio configuration.	The SurfaceWatch system has failed due to an invalid audio configuration.
SURFACEWATCH FAIL - Invalid configurable alerts.	The SurfaceWatch system has failed due to invalid configurable alerts.
SURFACEWATCH FAIL - One or more inputs invalid.	The SurfaceWatch system has failed due to one or more invalid inputs.
SURFACEWATCH INHIBITED - Surfacewatch inhibited.	The SurfaceWatch system has been inhibited.
SVT DISABLED - Out of available terrain region.	Synthetic Vision is disabled because the aircraft is not within the boundaries of the installed terrain database.
SVT DISABLED - Terrain DB resolution too low.	Synthetic Vision is disabled because a terrain database of sufficient resolution (4.9 arc-second or better) is not currently installed.
SW MISMATCH - GDU software version mismatch. Xtalk is off.	The MFD and PFD have different software versions installed. The system should be serviced.
TERRAIN AUD CFG - Trn Awareness audio config error. Service req'd.	TAWS is disabled because the audio configuration is invalid. The system should be serviced.
TERRAIN DISABLED - Terrain Awareness DB resolution too low.	TAWS is disabled because a terrain database of sufficient resolution (4.9 arcsecond or better) is not currently installed.
TIMER EXPIRD - Timer has expired.	The system notifies the pilot that the timer has expired.
TRAFFIC FAIL - Traffic device has failed.	The system is no longer receiving data from the traffic system. The traffic device should be serviced.

Message	Comments
TRN AUD FAIL－Trn Awareness audio source unavailable	Terrain Awareness audio is unavailable．The system should be serviced．
UNABLE V WPT－Can＇t reach current vertical waypoint．	The current vertical waypoint can not be reached within the maximum flight path angle and vertical speed constraints．The system automatically transitions to the next vertical waypoint．
VNV－Unavailable．Excessive crosstrack error．	The current crosstrack exceeds the limit，causing vertical deviation to go invalid．
VNV－Unavailable．Excessive track angle error．	The current track angle error exceeds the limit，causing the vertical deviation to go invalid．
VNV－Unavailable．Parallel course selected．	A parallel course has been selected，causing the vertical deviation to go invalid．
VNV－Unavailable．Unsupported leg type in flight plan．	The lateral flight plan contains a procedure turn，vector，or other unsupported leg type prior to the active vertical waypoint．This prevents vertical guidance to the active vertical waypoint．
WPT ARRIVAL－Arriving at waypoint －［xxxx］ XPDR1 ADS－B 1090 －Datalinik：ADS－B 1090 receiver has failed．	Arriving at waypoint［xxxx］，where［xxxx］is the waypoint name． A failure has been detected in the 1090 receiver．
XPDR1 ADS－B FAIL－Transponder： XPDR1 is unable to transmit ADS－B messages．	ADS－B is inoperative．The transponder may not be receiving a valid GPS position． Other transponder functions may be available．Service when possible．
XPDR1 ADS－B NO POS－Transponder： ADS－B is not transmitting position．	The transponder is not able to receive position information．
XPDR1 ADS－B TRFC－Transponder： ADS－B traffic has failed	The Transponder is incapable of processing traffic information．
XPDR1 ADS－B UAT－Datalink：ADS－B in UAT receiver has failed．	A failure has been detected in the UAT receiver．
XPDR1 CONFIG－XPDR1 config error． Config service req＇d．	The transponder configuration settings do not match those of backup configuration memory．The system should be serviced．
XPDR1 CSA FAIL－Traffic：ADS－B In traffic alerting has failed．	ADS－B Conflict Situational Awareness（CSA）is unavailable．
XPDR1 FAIL－XPDR1 is inoperative．	There is no communication with the \＃1 or \＃2 transponder．
XPDR1 FAULT－Datalink：ADSB－B in has failed．	The transponder is unable to receive ADS－B information．
XPDR1 FIS－B WX－Datalink：FIS－B Weather has failed．	The transponder is unable to receive FIS－B weather information．
XPDR1 OVER TEMP－Transponder： Transponder over temp．	The system has detected an over temperature condition in XPDR1．The transmitter operates at reduced power．If the problem persists，the system should be serviced．
XPDR1 PRES ALT－Transponder：ADS－B no pressure altitude．	Unable to provide pressure altitude information．

Message	Comments
XPDR1 SRVC - XPDR1 needs service. Return unit for repair.	The \#1 transponder should be serviced when possible.
XPDR1 UNDER TEMP - Transponder: Transponder under temp.	The system has detected an under temperature condition in XPDR1. The transmitter operates at reduced power. If the problem persists, the system should be serviced.
XTALK ERROR - A flight display crosstalk error has occurred.	The MFD and PFD are not communicating with each other. The system should be serviced.

DATABASE MANAGEMENT

Database information is obtained from third party sources．Inaccuracies in the data may be discovered from time to time．Garmin communicates this information by issuing a Database Alert．These notifications are available on http：／／fly．garmin．com．

Garmin requests the flight crew report any observed discrepancies related to database information．These discrepancies could come in the form of an incorrect procedure；incorrectly identified terrain，obstacles and fixes； or any other displayed item used for navigation or communication in the air or on the ground．Go to http：／／fly． garmin．com and select Aviation Data Error Report．

CAUTION：Never disconnect power to the system when loading a database．Power interruption during the database loading process could result in maintenance being required to reboot the system．

The system uses Secure Digital（SD）cards to load and store various types of data．For basic flight operations， SD cards are required for database storage as well as database updates．Not all SD cards are compatible with the system．

NOTE：When loading database updates，the＇DB Mismatch＇message will be displayed until database synchronization is complete，followed by turning system power off，then on．Synchronization can be monitored on the Aux－Databases Page．

NOTE：Loading a database in the system prior to its effective date will result in the expiration date on the power－up screen and the effective date on the Aux－Databases Page being displayed in amber．

LOADING UPDATED DATABASES

CAUTION：Never disconnect power to the system when loading a database．Power interruption during the database loading process could result in maintenance being required to reboot the system．

NOTE：When loading database updates，the＇DB Mismatch＇system messages will be displayed until database synchronization is complete，followed by turning system power off，then on．Synchronization can be monitored on the Aux－Database Page．

All databases are updated through a single SD card in the bottom slot of the MFD．When the card is inserted， the databases on the card will be copied to standby and synchronized across all powered，configured units． When in standby，databases are not immediately available for use，but stored to be activated at a later time．
Databases may be loaded through Garmin Pilot and Flight Stream 510．When loading databases through Garmin Pilot and the Flight Stream 510，the Flight Stream 510 must be enabled on the system and the multimedia card inserted in the bottom SD slot of the MFD．

The cycles and dates for both standby and active databases are displayed on the "Aux - Databases" page on the MFD. Any active databases with expiration dates in the past will be highlighted with amber text. When an expired active database has a standby database that is ready to become effective, a cyan double-sided arrow will be displayed between the database cycles. When this arrow is visible, it indicates that the standby and active databases in that row will be switched on the next power cycle, activating the current standby database. Databases can also be manually selected (or deselected) by highlighting a list item and pressing the ENT key, provided a valid, verified standby database is present.
In some cases it may be necessary to obtain an unlock code from Garmin in order to make the database product functional. It may also be necessary to have the system configured by a Garmin authorized service facility in order to use some database features.

The basemap database contains data for the topography and land features, such as rivers, lakes, and towns. It is updated only periodically, with no set schedule. There is no expiration date.
The terrain database contains the terrain mapping data. These databases are updated periodically and have no expiration date.

The obstacle database contains data for obstacles, such as towers, that pose a potential hazard to aircraft. Obstacles 200 feet and higher are included in the obstacle database. It is very important to note that not all obstacles are necessarily charted and therefore may not be contained in the obstacle database. This database is updated on a 56-day cycle.

> NOTE: The data contained in the terrain and obstacle databases comes from government agencies. Garmin accurately processes and cross-validates the data, but cannot guarantee the accuracy and completeness of the data.

The AOPA or AC-U-KWIK Airport Directory provides data on airports and heliports throughout the U.S. or worldwide, respectively. The AOPA Directory offers detailed information for over 5,300 U. S. airports, along with the names and phone numbers of thousands of FBOs. These databases are updated every 56 days. The AC-U-KWIK Directory offers detailed information for more than 8,000 airports with runways longer than 3,000 feet worldwide.

The SafeTaxi database contains detailed airport diagrams for selected airports. These diagrams aid in following ground control instructions by accurately displaying the aircraft position on the map in relation to taxiways, ramps, runways, terminals, and services. This database is updated on a 56-day cycle.

The FliteCharts database contains procedure charts for the United States only. This database is updated on a 28 -day cycle. If not updated within 180 days of the expiration date, FliteCharts will no longer function.
The ChartView database is updated on a 14-day cycle. If the ChartView database is not updated within 70 days of the expiration date, ChartView will no longer function. The ChartView database must be purchased directly from Jeppesen, but can be updated at www.jeppesen.com or www.flygarmin.com.

UPDATING DATABASES

The Garmin database updates can be obtained by following the instructions detailed in the＇Aviation Databases＇ section of the Garmin website（fly．garmin．com）．Once the updated files have been downloaded from the website， a PC equipped with an appropriate SD card reader is used to unpack and program the new databases onto an existing Supplemental Data Card．Equipment required to perform the update is as follows：
－Windows－compatible PC computer
－SD Card Reader：SanDisk SDDR－93，SanDisk SDDR－99，Verbatim \＃96504，or equivalent
－Updated database obtained from the Garmin website
－Supplemental SD Cards
In some cases it may be necessary to obtain an unlock code from Garmin in order to make the database product functional．It may also be necessary to have the system configured by a Garmin authorized service facility in order to use some database features．

In order to load databases through Garmin Pilot and the Flight Stream 510，the Flight Stream 510 must be enabled on the system and inserted in the bottom SD slot of the MFD．A mobile device with Garmin Pilot must be paired with the Flight Stream 510 over Bluetooth（refer to the Additional Features section）．When there is at least one paired device available to connect，the Flight Stream 510 will automatically connect to the system＇s preferred mobile device．The preferred device can be selected on the Aux－Databases page from a menu list of paired devices．
Once a connection to the paired mobile device is made，Garmin Pilot makes available databases that can be transferred to the Flight Stream 510．If any of these databases is more recent than the respective standby database on the system，（or if there is no standby database on the system）those databases will be automatically selected to load．The database updates may be initiated from the Aux－Databases page，or from other pages on the MFD．

Updating Databases：

1）With the system OFF，remove an SD Card from the bottom SD card slot of the MFD．
2）Download and install the databases on an SD card．
3）Put the SD Card in the bottom SD card slot of the MFD．
4）Turn the system ON ．
5）Press the ENT Key or the right most softkey on MFD display to acknowledge the startup screen．
6）Turn the large FMS Knob to select the Aux page group on the MFD．
7）Turn the small FMS Knob to select the Database page group on the MFD．
8）Monitor the Sync Status on the Database page．Wait for all databases to complete syncing，indicated by＇Sync Complete＇being displayed．A cyan double arrow will appear between the Standby and Active columns to show which Standby databases will be transferred to Active at the next power cycle．

Figure B-1 Database Page before Activation of Standby Databases
9) Verify the correct database cycle information is shown in the Standby Database column.

NOTE: The Restart Softkey is enabled only when the aircraft is on the ground.
10) Press the Restart Softkey. A 10 second restart countdown will appear.
11) Press the Restart Button in the display window to continue with the restart of the system, or remove power from the system if the Restart Softkey is diminished.

Figure B-2 Database Restart
12) Remove the SD card from the bottom slot of the MFD.
13) After restarting the system, turn the large FMS Knob and select the Aux page group on the MFD.
14) Turn the small FMS Knob and select the Databases page.
15) Verify that the standby databases transferred and are now in the active database column.

Figure B-3 Aux - Database Page - Updated Databases
16) To view database information for an individual display, press and then turn the FMS Knob to select the database, and then press the Details Softkey. Press the ENT Key or the FMS Knob to exit.

Figure B-4 Database Page Details
17) To manually activate any databases that did not transfer to the active column:
a) Press the FMS Knob. The first database title on the screen will be selected.
b) Turn the small FMS Knob as necessary to select the database title.
c) Press the ENT Key. A cyan double-sided arrow will appear indicating that the standby database will become active.
d) Remove and reapply power to the system.
e) Verify that the standby databases transferred and are now in the active database column.
18) Remove power from the system.

UPDATING DATABASES USING FLIGHT STREAM 510

Updating Databases from any MFD page (except the Aux - Databases page):

1) Insert the Flight Stream Mutimedia Card in the bottom slot of the MFD.
2) Press the Update softkey when the Database Update screen appears.

Figure B-5 Database Update Available
3) The Flight Stream 510 will enter WI-FI mode. The following screen will appear.

Figure B-6 Starting Database Transfer
4) Put the mobile device in WI-FI mode (refer to the Additional Features section).
5) Connect the mobile device to the Flight Stream 510 WI-FI (refer to the Additional Features section). The 'WI-FI Not Connected' screen will close when the WI-FI connection is established.
6) When the transfer is complete, the following screen will appear.

Figure B-7 Database Transfer Complete
7) Press the Close softkey.
8) When an existing database is expired and a new one is ready to become active, a 'Database Expired' window will appear. Continue to the next step to restart the system.

GARMIN．

Figure B－8 Database Expired
NOTE：The Restart Softkey is enabled only when the aircraft is on the ground．
9）Select the Restart softkey to restart the system and load the updated database（s），or remove power from the system if the Restart Softkey is diminished．

10）After restarting the system，turn the large FMS Knob and select the Aux page group on the MFD．
11）Turn the small FMS Knob and select the Databases page．
12）Verify that the standby databases transferred and are now in the active database column．

Figure B－9 Database Page with Updated Databases

13）To view database information for an individual display，press and then turn the FMS Knob to select the database， and then press the Details Softkey．Press the ENT Key or the FMS Knob to exit．

Figure B-10 Database Page Details
14) To manually activate any databases that did not transfer to the active column:
a) Press the FMS Knob. The first database title on the screen will be selected.
b) Turn the small FMS Knob as necessary to select the database title.
c) Press the ENT Key. A cyan double-sided arrow will appear indicating that the standby database will become active.
d) Remove and reapply power to the system.
e) Verify that the standby databases transferred and are now in the active database column.
15) Remove power from the system.

Updating Databases from the Aux - Databases page:

1) With the system OFF, insert the Flight Stream Mutimedia Card in the bottom slot of the MFD.
2) Turn the large FMS Knob to select the Aux page group on the MFD.
3) Turn the small FMS Knob to select the Database page group on the MFD.
4) Press the Device Softkey.
5) The Aux - Databases page will show the databases connected to the mobile device in place of the active databases on the system. Databases selected to load will be indicated by a cyan arrow.
6) Press the Update softkey. The Flight Stream 510 will enter WI-FI mode.
7) Put the mobile device in WI-FI mode (refer to the Additional Features section).
8) Connect the mobile device to the Flight Stream $510 \mathrm{WI}-\mathrm{FI}$ (refer to the Additional Features section).
9) The Database Update status will appear in the Status window at the top of the page.

NOTE: The Restart Softkey is enabled only when the aircraft is on the ground.
10) Select the Restart softkey to restart the system and load the updated database(s), or remove power from the system if the Restart Softkey is diminished .
11) After restarting the system, turn the large FMS Knob and select the Aux page group on the MFD.
12) Turn the small FMS Knob and select the Databases page.
13) Verify that the standby databases transferred and are now in the active database column.

Figure B－11 Database Page with Updated Databases

14）To view database information for an individual display，press and then turn the FMS Knob to select the database， and then press the Details Softkey．Press the ENT Key or the FMS Knob to exit．

Figure B－12 Database Page Details
15）To manually activate any databases that did not transfer to the active column：
a）Press the FMS Knob．The first database title on the screen will be selected．
b）Turn the small FMS Knob as necessary to select the database title．
c）Press the ENT Key．A cyan double－sided arrow will appear indicating that the standby database will become active．
d）Remove and reapply power to the system．
e）Verify that the standby databases transferred and are now in the active database column．
16）Remove power from the system．

MAGNETIC FIELD VARIATION DATABASE UPDATE

A copy of the current magnetic field variation database (MV DB) is included with the navigation database. At startup, the system compares this version of the MV DB with that presently being used by the AHRS. If the system determines the MV DB needs to be updated, a prompt is displayed on the Navigation Map Page.

GRS1 MV DB Update Available: Update from 2010 to 2015? OK or CANCEL

Figure B-13 Magnetic Field Variation Database Update Prompt

Loading the magnetic field variation database update:

With 'OK' highlighted, as seen in Figure B-13, press the ENT Key on the MFD. A progress monitor is displayed as shown in Figure B-14. When the upload is complete, the system is ready for use.

Figure B-14 Uploading Database

GARMIN AVIATION GLOSSARY

ACARS	Airborne Communications Addressing and Reporting System	APT	Airport，Aerodrome
		APTSIGNS	Airport Signs
ACC	Accuracy	ARINC	Aeronautical Radio Incorporated
ACT，ACTV	Active，Activate，Altitude Compensated Tilt	ARSPC	Airspace
ADC	Air Data Computer	ARTCC	Air Route Traffic Control Center
ADF	Automatic Direction Finder	ARV	Arrival
ADI	Attitude Direction Indicator	AS	Airspeed
ADIZ	Air Defense Identification Zone	ASB	Aviation Support Branch
ADS－B	Automatic Dependent Surveillance－ Broadcast	ASOS	Automated Surface Observing System
		AT	Auto Throttle
ADS－R	Automatic Dependent Surveillance－ Rebroadcast	ATC	Air Traffic Control
		ATCRBS	ATC Radar Beacon System
AF	Arc to Fix Leg	ATIS	Automatic Terminal Information Service
AFCS	Automatic Flight Control System	ATK	Along Track
AFM	Airplane Flight Manual	AUTOSEQ	Automatic Sequence
AFMS	Airplane Flight Manual Supplement	AUX	Auxiliary
AFRM	Airframe	AVG	Average
AGL	Above Ground Level	AVLC	Aviation VHF Link Control
AHRS	Attitude and Heading Reference System	AWOS	Automated Weather Observing System
AIM	Aeronautical Information Manual		
AIRB	Airborne	B	Both Runways
AIRMET	Airman＇s Meteorological Information	B ALT	Barometric Altitude
AIRREP	Air Reports	BARO	Barometer，Barometric
ALRT	Alert	BATT	Battery
ALT	Altitude	BC	Backcourse
ALT，ALTN	Alternator	Bearing	The compass direction from the present
ALTS	Selected Altitude Capture Mode		position to a destination waypoint．
ALTV	VNAV Altitude Capture Mode	BFO	Beat Frequency Oscillator
AMPS	Amperes	BKSP	Backspace
ANNUNC／ANN	Annunciation／Annunciator	Bluetooth	Wireless standard for data exchange over short distances
ANT	Antenna	BOC	Bottom of Climb
AOA	Angle of Attack，ACARS Over AVLC	BOD	Bottom of Descent
AOC	Aeronautical Operational Control	BOD	
AOG	Aircraft On Ground	BRG	see also Bearing
AOPA	Aircraft Owners and Pilots Association		
AP	Autopilot	${ }^{\circ} \mathrm{C}$	Degrees Celsius
AP DISC	Autopilot Disconnect	C	Center Runway
APPR，APR	Approach	CA	Course to Altitude Leg

	CAL	Calibrated	CRSR	Cursor
	CALC	Calculator	CSA	Conflict Situational Awareness
	Calibrated Airspeed	Indicated airspeed corrected for installation and instrument errors．	CSC	Current Speed Control
			CTA	Control Area
哉范	CAS	Crew Alerting System	CTR	Center
	CD	Course to DME Distance Leg	CTRL	Control
	CDI	Course Deviation Indicator	Cumulative，	The total of all legs in a flight plan．
	CDU	Control Display Unit	CUM	
饮	CF	Course to Fix Leg	CVDR	Cockpit Voice Data Recorder
	CG	Center of Gravity	CVR	Cockpit Voice Recorder
	CH，CHNL	Channel	CVRG	Coverage
	CHT	Cylinder Head Temperature	CWS	Control Wheel Steering
	CHKLIST	Checklist	CYL	Cylinder
	CI	Course to Intercept Leg		
	CLD	Cloud	D ALT	Density Altitude
	CLR	Clear	D－ATIS	Digital Automatic Terminal Info Service
	CM	Centimeter	DB，DBASE	Database
	CMC	Central Maintenance Computer	dBZ	Decibels＇Z＇（Radar Return）
	CN	Canada	DCL	Departure Clearance
	CNS	Communication，Navigation，\＆ Surveillance	DCLTR，DECLTR	Declutter
			DEC FUEL	Decrease Fuel
	CO	Carbon Monoxide	DEG	Degree
	COM	Communication Radio	DEIC，DEICE	De－icing
	CONFIG	Configuration	DEP	Departure
Y	COOL	Coolant	Desired Track	The desired course between the active
	COPLT	Copilot		＂from＂and＂to＂waypoints．
	Course	The line between two points to be followed by the aircraft．	DES，DEST	Destination
			DEV	Deviation
	Course to Steer	The recommended direction to steer in order to reduce course error or stay on course．Provides the most efficient heading to get back to the desired course and proceed along the flight plan．	DF	Direct to Fix Leg
			DFLT	Default
			DG	Directional Gyro
			DGRD	Degrade
	CPDLC	Controller Pilot Datalink Communications	DH	Decision Height
	CPL	Couple	Dilution of Precision	A measure of GPS satellite geometry quality on a scale of one to ten（lower numbers equal better geometry，where higher numbers equal poorer geometry）
	CR	Course to Radial Leg		
	CRG	Cockpit Reference Guide		
	CRNT	Current	DIR	
$\underline{\text { l }}$	Crosstrack Error	The distance the aircraft is off a desired course in either direction，left or right．	DIS	Distance
	CRS	see also Course，Course to Steer		

Distance	The 'great circle' distance from the present position to a destination waypoint.	Enroute Safe Altitude (ESA)	Uses Grid MORAs to determine a safe altitude within ten miles left or right of the desired course on an active flight plan or direct-to.
DL LTNG	Datalink Lightning		
DLS	Data Link System	ENT	Enter
DME	Distance Measuring Equipment	EPE	see also Estimated Position Error
DN	Down	EPU	Estimated Position Uncertainty
DOP	see also Dilution of Precision	ERR	Error
DP	Departure Procedure	ES	Extended Squitter
DPRT	Departure	ESA	see also Enroute Safe Altitude
DR	Dead Reckoning	ESP	Electronic Stability and Protection
DSBL	Disabled		A measure of horizontal GPS position
DTG	Distance To Go, Remaining distance to last active FPL waypoint	Position Error (EPE)	error derived by satellite geometry conditions and other factors.
DTK	see also Desired Track	Time of Arrival	should reach the destination waypoint,
DQR	Data Quality Requirements	(ETA)	based upon current speed and track.
E	Empty, East	Estimated Time Enroute (ETE)	The estimated time it takes to reach the destination waypoint from the present position, based upon current
EAS	Engine and Airframe Systems		groundspeed.
ECU	Engine Control Unit	ETA	see also Estimated Time of Arrival
EDM	Emergency Descent Mode	ETE	see also Estimated Time Enroute
EFC	Expected Further Clearance	EVS	Enhanced Vision System
Efficiency	A measure of fuel consumption, expressed in distance per unit of fuel.	EXPIRD	Expired
EGNOS	European Geostationary Navigation Overlay Service	${ }^{\circ} \mathrm{F}$	Degrees Fahrenheit
EGT	Exhaust Gas Temperature	FA	Course From Fix to Altitude Leg
EICAS	Engine Indication and Crew Alerting System	FAA FADEC	Federal Aviation Administration Full Authority Digital Engine Control
EIS	Engine Indication System	FAF	Final Approach Fix
ELEV	Elevation, Elevator	FAIL	Failure
ELT	Emergency Locator Transmitter	FANS	Future Air Navigation System
EMER, EMERG,	Emergency	FBO	Fixed Base Operator
EMERGCY		FC	Course From Fix to Distance Leg
EMI	Electromagnetic Interference	FCC	Federal Communication Commission
END, ENDUR	Endurance	FCST	Forecast
Endurance	Flight endurance, or total possible flight time based on available fuel on board.	FD	Flight Director, Course From Fix to DME Distance Leg
ENG	Engine	FDE	Fault Detection and Exclusion
ENGD	Engaged	FF, FFLOW	see also Fuel Flow
ENR	Enroute; ETE to Final Destination	FIS-B	Flight Information Services-Broadcast
		FISDL	Flight Information Service Data Link

FL	Flight Level
FLC	Flight Level Change
FLT	Flight Timer
FLTA	Forward Looking Terrain Avoidance
FM	Course From Fix to Manual Termination Leg
FMS	Flight Management System
FOB	see also Fuel On Board
FOD	see also Fuel Over Destination
FPA	Flight Path Angle
FPL	Flight Plan
FPM	Feet Per Minute, Flight Path Marker
FREQ	Frequency
FRMT	Format
FRZ	Freezing
FSM	Flight System Messages
FSS	Flight Service Station
FT	foot/feet
Fuel Flow	The fuel flow rate, expressed in units of fuel per hour.
Fuel On Board	The total amount of usable fuel on board the aircraft.
Fuel Over Destination	The estimated fuel remaining when the aircraft reaches the destination waypoint, based upon current fuel flow.
FWD	Forward
G/S	Glideslope
GA	Go-Around
GAL, GL	Gallon(s)
GBOX	Gearbox
GBT	Ground Based Transceiver
GCU	Garmin Control Unit
GCS	Ground Clutter Suppression
GDC	Garmin Air Data Computer
GDL	Garmin Satellite Data Link
GDR	Garmin Data Radio
GDU	Garmin Display Unit
GEA	Garmin Engine/Airframe Unit
GEO	Geographic
GFC	Garmin Flight Control

GIA	Garmin Integrated Avionics Unit
GLONASS	Global Orbiting Navigation Satellite Landing System
GLS	Global Navigation Satellite Landing System
GMA	Garmin Audio Panel System
GMC	Garmin Mode Controller
GMT	Greenwich Mean Time
GMU	Garmin Magnetometer Unit
GND	Ground
GPH	Gallons per Hour
GPN	Garmin Part Number
GPS	Global Positioning System
GPWS	Ground Proximity Warning System
Grid MORA (Minimum Off-Route Altitude)	One degree latitude by one degree longitude in size and clears the highest elevation reference point in the grid by: a) 1,000 feet where the highest elevation is $<5001 \mathrm{MSL}$ or b) 2,000 feet where the highest elevation is $>5000 \mathrm{MSL}$
Groundspeed	The velocity that the aircraft is travelling relative to a ground position.
Ground Track	See Track
GRS	Garmin Reference System
GS	Ground Speed, Glideslope
GSA	Garmin Servo Adapter
GSD	Garmin Data Concentrator
GSL	Geodetic Sea Level
GSR	Garmin Satellite Radio
GSU	Garmin Sensor Unit
GTC	Garmin Touchscreen Controller
GTS	Garmin Traffic System
GTX	Garmin Transponder
GWX	Garmin Weather Radar
HA	Hold Terminating at Altitude Leg
HDG	see also Heading
HDOP	Horizontal Dilution of Precision
Heading	The direction an aircraft is pointed, based upon indications from a magnetic compass or a properly set directional gyro.

HF	High Frequency，Hold Terminating at Fix Leg	Indicated	Information provided by properly calibrated and set instrumentation on the
HFOM	see also Horizontal Figure of Merit		aircraft panel．
Hg	Mercury	INFO	Information
HI	High	IN Hg	Inches of Mercury
HI SENS	High Sensitivity	INS	Inertial Navigation System
HM	Hold with Manual Termination Leg	INT	Intersection（s）
HNS	Hybrid Navigation System	INTEG	Integrity（RAIM unavailable）
Horizontal	A	IrDA，IRDA	Infrared Data Association
Figure of Merit	aircraft＇s horizontal position．	ISA	International Standard Atmosphere；ISA Relative Temperature
hPa	Hectopascal	ITT	Inter－Turbine Temperature，Interstage
HPL	Horizontal Protection Level		Turbine Temperature
HR	Hour		
HRZN HDG	Horizon Heading	KEYSTK	Key Stuck
HSDB	High－Speed Data Bus	KG	Kilogram
HSI	Horizontal Situation Indicator	kHz	Kilohertz
HT	Heat	KM	Kilometer
HUL	Horizontal Uncertainty Level	KT	Knot
Hz	Hertz（cycles per second）		
		L	Left，Left Runway
I	Inner Marker	LAT	Latitude
IAF	Initial Approach Fix	LBL	Label
IAS	Indicated Air Speed	LB	Pound
IAT	Indicated Air Temperature	LCD	Liquid Crystal Display
IAU	Integrated Avionics Unit	LCL	Local
ICAO	International Civil Aviation Organization	LDA	Landing Distance Available
ICS	Intercom System	LDG	ETA at Final Destination
ID	Identification／Morse Code Identifier	LED	Light Emitting Diode
IDENT，IDNT	Identification	Left Over Fuel	The amount of fuel remaining on board
IEEE	Institute of Electrical \＆Electronics Engineers	On Boar	after the completion of one or more legs of a flight plan or direct－to．
IF	Initial Fix	Left Over Fuel	The amount of flight time remaining，
IFR	Instrument Flight Rules	Reserve	based on the amount of fuel on board
IG	Imperial Gallon		after the completion of one or more legs of a flight plan or direct－to，and a known
ILS	Instrument Landing System		
IMC	Instrument Meteorological Conditions	Leg	The portion of a flight plan between two
IN	Inch		waypoints．
INACTV	Inactive	LGND	Legend
INC FUEL	Increase Fuel	LIFR	Low Instrument Flight Rules
IND	Indicator，Indicated	LMM	Location Middle Marker
		LNAV	Lateral Navigation

L0	Low
LOA	Letter of Authorization
LOC	Localizer
LOI	Loss of Integrity (GPS)
LOM	Location Outer Marker
LON	Longitude
LP	Localizer Performance
LPV	Localizer Performance with Vertical Guidance
LRU	Line Replaceable Unit
LT	Left
LTNG	Lightning
LVL	Level
M	Meter, Middle Marker, Mach
$\mathrm{M}_{\text {M0 }}\left(\mathrm{V}_{\mathrm{m} 0}\right)$	Maximum Speed
Mach Number	Mach number is the ratio of the true airspeed to the speed of sound.
MAG	Magnetic
MAG VAR	Magnetic Variation
MAHP	Missed Approach Hold Point
MAN IN	Manifold Pressure (inches Hg)
MAN SQ	Manual Squelch
MANSEQ	Manual Sequence
MAP	Missed Approach Point
MASQ	Master Avionics Squelch
MAX	Maximum
MAXSPD	Maximum Speed (overspeed)
MB	Marker Beacon
MDA	Barometric Minimum Descent Altitude
MEPT	Manual Electric Pitch Trim
MET	Manual Electric Trim
METAR	Aviation Routine Weather Report
MFD	Multi Function Display
MFW	Multi Function Window
MGRS	Military Grid Reference System
MHz	Megahertz
MIC	Microphone
MIN	Minimum

mum Safe	Uses Grid MORAs to determine a safe
Altitude (MSA)	altitude within ten miles of the aircraft present position.
MKR	Marker Beacon
MOA	Military Operations Area
MON	Monitor
MOV	Movement
MORA	Minimum Off-Route Altitude
MPEL	Maximum Permissible Exposure Level
MPM	Meters per Minute
MSA	see also Minimum Safe Altitude
MSAS	Multi-functional Satellite Augmentation System
MSG	Message
MSL	Mean Sea Level
MT, M	Meter
mV	Millivolt(s)
MVFR	Marginal Visual Flight Rules
N	North
NAV	Navigation
NAVAID	Navigation Aid
NDB	Non-Directional Beacon
NEXRAD	Next Generation Radar
NM	Nautical Mile(s)
NoPT	No Procedure Turn Required (procedure shall not be executed without ATC clearance)
NOTAM	Notice To Airman
NRST	Nearest
0	Outer Marker
OAT	Outside Air Temperature
OBS	Omni Bearing Selector
OFST	Offset
0001	Out of the gate, Off the ground, On the ground, and In the gate
OXY	Oxygen
P ALT	Pressure Altitude
PA	Passenger Address, Proximity Advisory
PASS	Passenger(s)

PC	Personal Computer	REV	Reverse, Revision, Revise
PDC	Pre-Departure Clearance	RF	Radio Frequency, Constant Radius Turn to
PFD	Primary Flight Display		Fix Leg
PG	Pilot's Guide	RMI	Radio Magnetic Indicator
PI	Procedure Turn to Course Intercept Leg	RMT	Remote
PIREP	Pilot Report	RNAV	Area Navigation
PIT, PTCH	Pitch	RNG	Range
POA	Plain Old ACARS	RNP	Required Navigation Performance
POH	Pilot's Operating Handbook	RNWY, RWY	Runway
POHS	Pilot's Operating Handbook Supplement	ROL	Roll
POS, POSN	Position	ROM	Read Only Memory
PPH	Pounds per Hour	RPM	Revolutions Per Minute
PPM	Parts per Million	RST FUEL	Reset Fuel
P. POS	Present Position	RSV	Reserve (fuel reserve entered by pilot)
PRES, PRESS	Pressure	RT	Right
PROC	Procedure(s), Procedure Turn	RVRSNRY	Reversionary
PROP	Propeller	RVSM	Reduced Vertical Separation Minimums
PROX	Proximity	RX	Receive
PSI	Pounds per Square Inch		
PT	Procedure Turn	S	South
PTK	Parallel Track	SA	Selective Availability
PTT	Push-to-Talk	SAR	Search and Rescue
PWR	Power	SAT	Static Air Temperature
		SBAS	Satellite-Based Augmentation System
QFE	Field Elevation Pressure	SCIT	Storm Cell Identification and Tracking
QNH	Sea Level Pressure	SD	Secure Digital
QTY	Quantity	SEC	Second(s)
		SEL, SLCT	Select
R	Right, Right Runway	SELCAL	Selective Calling
RA	Resolution Advisory, Radio Altimeter	SENS	Sense
RAD	Radial	SFC	Surface
RAD ALT	Radio Altimeter	SIAP	Standard Instrument Approach Procedures
RAIM	Receiver Autonomous Integrity Monitoring	SID	Standard Instrument Departure
RAM	Random Access Memory	SIG/AIR	SIGMET/AIRMET
RAT	Ram Air Temperature	SIGMET	Significant Meteorological Information
RCVR	Receiver	SIM	Simulator
REF	Reference	SLD	Supercooled Large Droplet
REM	Remaining (fuel remaining), Reminder	SLP/SKD	Slip/Skid
REQ	Required	SMBL	Symbol
RES	Reserve (fuel reserve entered by pilot)	SMS	Short Message System

SNGL	Single
SPC	Space
SPD	Speed
SPI	Special Position Identification
SPKR	Speaker
SQ	Squelch
SRVC, SVC	Service
SSID	Wireless Service Set Identifier
STAB	Stabilization
STAL	Stall
STAR	Standard Terminal Arrival Route
STATS	Statistics
STBY	Standby
STD	Standard
STRMSCP	Stormscope
SUA	Special Use Airspace
SURF	Surface
SUSP	Suspend
SVT	Synthetic Vision Technology
SW	Software
SYNC	Synchronize
SYN TERR	Synthetic Terrain
SYN VIS	Synthetic Vision
SYS	System
T	True
TA	Traffic Advisory
TFR	Tactical Air Navigation System
TACAN	Terminal Aerodrome Forecast Between Two Fixes Leg
TAF	True Airspeed, Traffic Advisory System
TAS	Total Air Temperature
TAT	Terrain Awareness and Warning System
TAWS	Terminal Control Area
TCA	Traffic Alert Collision Avoidance System
TCAS	Telephone
TEL	Temperature
TEMP	Trminal

TGT	Target
T HDG	True Heading
TIS	Traffic Information Service
TIS-B	Traffic Information Service-Broadcast
TIT	Turbine Inlet Temperature
TKE	see also Track Angle Error
TMA	Terminal Maneuvering Area
TMR/REF	Timer/Reference
TOC	Top of Climb
TOD	Top of Descent
TOGA, TO/GA	Take-Off, Go-Around
TOLD	Takeoff and Landing Data
TOPO	Topographic
TORA	Takeoff Run Available
TOT	Total
TPA	Traffic Pattern Altitude
Track	Direction of aircraft movement relative to a ground position; also 'Ground Track'.
Track Angle Error	The angle difference between the desired track and the current track.
TRK	see also Track
TRSA	Terminal Radar Service Area
TRUNC	Truncated
TTL	Total
TURB	Turbulence
TURN	Procedure Turn
TWIP	Terminal Weather Information for Pilots
TX	Transmit
UAT	Universal Access Transceiver
UHF	Ultra-High Frequency
UNAVAIL	Unavailable
US	United States
USR	User
UTC	Coordinated Universal Time
UTM/UPS	Universal Transverse Mercator/ Universal Polar Stereographic Grid
V	Volts
V, Vspeed	Velocity (airspeed)

V_{1}	Takeoff Decision Speed
V_{2}	Takeoff Safety Speed
$\mathrm{V}_{\text {A }}$	Maneuvering Speed
$\mathrm{V}_{\text {APP }}, \mathrm{V}_{\mathrm{AC}}$	Approach Climb Speed
V_{FE}	Maximum Flap Extended Speed
$\mathrm{V}_{\text {LE }}$	Maximum Landing Gear Extended Speed
$\mathrm{V}_{\text {LNox }}$	Approach Speed（Flaps at x° ）
$\mathrm{V}_{\text {Lo }}$	Maximum Landing Gear Operating Speed
$\mathrm{V}_{\text {Mc }}$	Minimum Control Speed
$\mathrm{V}_{\text {м0 }}\left(\mathrm{M}_{\text {м0 }}\right)$	Maximum Operating Speed
$\mathrm{V}_{\text {NE }}$	Never－Exceed Speed
$V_{\text {R }}$	Takeoff Rotate Speed
$\mathrm{V}_{\text {REF }}$	Landing Approach Speed，Reference Landing Speed
$\mathrm{V}_{\text {SB }}$	Maximum Speedbrake Speed
$V_{\text {SR }}$	Stall Speed
$V_{\text {T }}$	Takeoff Flap Retraction Speed
$V_{\text {TIRE }}$	Maximum Tire Speed
V_{x}	Best Angle of Climb Speed
V_{Y}	Best Rate of Climb Speed
$V_{\text {YSE }}$	Best Single－Engine Rate of Climb Speed
V DEV	Vertical Deviation
VA	Heading Vector to Altitude Leg
VAC	Volts Alternating Current
VAPP	VOR Approach
VAR	Variation
VD	Heading Vector to DME Distance Leg
VDC	Volts Direct Current
VDL	VHF Datalink
VERT	Vertical
Vertical Figure of Merit	A measure of the uncertainty in the aircraft＇s vertical position．
Vertical Speed Required	The vertical speed necessary to descend／ climb from a current position and altitude to a defined target position and altitude， based upon current groundspeed．
VFOM	see also Vertical Figure of Merit
VFR	Visual Flight Rules
VHF	Very High Frequency
VI	Heading Vector to Intercept Leg
VLOC	VOR／Localizer Receiver

VM	Heading Vector to Manual Termination Leg
VMC	Visual Meteorological Conditions
VNAV，VNV	Vertical Navigation
VOL	Volume
VOR	VHF Omnidirectional Range
VORTAC	VHF Omnidirectional Range Station and Tactical Air Navigation
VPATH，VPTH	Vertical Path
VPL	Vertical Protection Level
VPROF	VNAV Profile，Vertical Profile
VR	Heading Vector to Radial Leg
VRP	Visual Reporting Point
VS	Vertical Speed
VSD	Vertical Situation Display
VSI	Vertical Speed Indicator
VSR，VS REQ	see also Vertical Speed Required
VTF	Vector to Final
W	Watt（s），West
WAAS	Wide Area Augmentation System
WARN	Warning
WATCH	Weather Attenuated Color Highlight
WGS－84	World Geodetic System－1984
WI－FI，WIFI	Wireless Local Area Network based on IEEE 802.11
WOG	Weight on Gear
WOW	Weight on Wheels
WPT	Waypoint（s）
WT	Weight
WW	World Wide
WX	Weather
XFER，XFR	Transfer
XM LTNG	SiriusXM Lightning
XPDR	Transponder
XTALK	Cross－Talk
XTK	Cross－Track，Crosstrack Error
YD	Yaw Damper

Blank Page

FREQUENTLY ASKED QUESTIONS

If a particular aspect of system operational capability is not addressed by these commonly asked questions or in the index，contact Garmin（see the copyright page or back cover for contact information）or a Garmin－authorized dealer．Garmin is dedicated to supporting its products and customers．

What is SBAS？

The Satellite Based Augmentation System（SBAS）uses a system of ground stations to correct any GPS signal errors．These ground stations correct for errors caused by ionospheric disturbances，timing，and satellite orbit errors．It also provides vital integrity information regarding the health of each GPS satellite．The signal correction is then broadcast through geostationary satellites．This correction information can then be received by any SBAS－enabled GPS receiver．
SBAS is designed to provide the additional accuracy，availability，and integrity necessary to enable users to rely on GPS for all phases of flight．
There are several SBAS systems serving different parts of the world．The Wide Area Augmentation System （WAAS）is currently available in the United States，including Alaska and Hawaii．The European Geostationary Navigation Overlay Service（EGNOS）offers coverage of Europe，parts of the middle east and northern Africa． The Multi－functional Satellite Augmentation System（MSAS）covers mainly Japan and parts of northern Australia．

How does SBAS affect approach operations？

Both LNAV／VNAV and LPV approaches use the accuracy of SBAS to include vertical（glide path）guidance capability．The additional accuracy and vertical guidance capability allows improved instrument approaches to an expanded number of airports throughout the U．S．
The implementation of LPV approaches further improves precision approach capabilities．LPV approaches are designed to make full use of the improved GPS signal from the SBAS．This approach combines the LNAV／ VNAV vertical accuracy with lateral guidance similar to the typical Instrument Landing System（ILS）．LPV approaches allow lower approach minimums．

What is RAIM and how does it affect approach operations？

RAIM is an acronym for Receiver Autonomous Integrity Monitoring．RAIM is a GPS receiver function that performs the following functions：
－Monitors and verifies integrity and geometry of tracked GPS satellites
－Notifies the pilot when satellite conditions do not provide the necessary coverage to support a certain phase of flight
－Predicts satellite coverage of a destination area to determine whether the number of available satellites is sufficient to satisfy requirements

NOTE：If RAIM is not predicted to be available for the final approach course，the approach does not become active，as indicated by the＂RAIM not available from FAF to MAP＂message and the LOI annunciation flagging on the HSI．

For RAIM to work correctly, the GPS receiver must track at least five satellites. A minimum of six satellites is required to allow RAIM to eliminate a single corrupt satellite from the navigation solution.

RAIM ensures that satellite geometry allows for a navigation solution calculation within a specified protection limit (2.0 nm for oceanic and en route, 1.0 nm for terminal, and 0.3 nm for non-precision approaches). The system monitors RAIM and issues an alert message when RAIM is not available (see Appendix A). Without RAIM, GPS position accuracy cannot be monitored. If RAIM is not available when crossing the FAF, the pilot must fly the missed approach procedure.

What is GSL altitude?

GSL (Geodetic Sea Level) altitude is the height above Mean Sea Level (MSL), as calculated geometrically, generally using a global positioning system (GPS) as the primary data source. The calculated result may or may not include a barometric component, but the primary source is geometric.

Why are there not any approaches available for a flight plan?

Approaches are available for the final destination airport in a flight plan or as a direct-to (keep in mind that some VOR/VORTAC identifiers are similar to airport identifiers). If a destination airport does not have a published approach, the system indicates "NONE" for the available procedures.

What happens when an approach is selected? Can a flight plan with an approach, a departure, or an ARRIVAL BE STORED?

When an approach, departure, or arrival is loaded into the active flight plan, a set of approach, departure, or arrival waypoints is inserted into the flight plan, along with a header line showing the title of the selected instrument procedure. The original en route portion of the flight plan remains active, unless the instrument procedure is activated. This may be done either when the procedure is loaded or at a later time.

Flight plans can also be stored with an approach, a departure, or an arrival. Note that the active flight plan is erased when the system is turned off. Also, the active flight plan is overwritten when another flight plan is activated. When storing flight plans with an approach, a departure, or an arrival, the system uses the waypoint information from the current database to define the waypoints. If the database is changed or updated, the system automatically updates the information, provided the procedure has not been modified. Should an approach, departure, or arrival procedure no longer be available, the flight plan becomes locked until the procedure is deleted from the flight plan.

Can "slant Golf" ("/G") be fled using the G1000?

"/G" may be filed for a flight plan. The system meets the requirements of TSO-C145a Class 3 and ETSO C145 Class 3 installations. GPS approaches are not to be flown with an expired database. See the approved Pilot's Operating Handbook (POH) as well as the Aeronautical Information Manual (AIM) for more information.

What does the OBS Softkey do?

The OBS Softkey is used to select manual sequencing of waypoints. Activating OBS mode sets the current active-to waypoint as the primary navigation reference and prevents the system from sequencing to the next waypoint in a flight plan. When OBS mode is cancelled, automatic waypoint sequencing is continued, and the system automatically activates the next waypoint in the flight plan once the aircraft has crossed the present active waypoint.

Normal（OBS not activated）	OBS
－Automatic sequencing of waypoints	• Manual sequencing－＇holds＇on selected waypoint
－Manual course change on HSI not possible	－Manually select course to waypoint from HSI
－Always navigates＇TO＇the active waypoint	－Indicates＇TO＇or＇FROM＇waypoint
－Must be in this mode for final approach course	－Cannot be set for final approach course or published holding patterns

When OBS mode is active，the system allows the pilot to set a desired course to／from a waypoint using the CRS／BARO Knob and HSI（much like a VOR）．

The most common application for using the OBS Softkey is the missed approach．The system suspends automatic waypoint sequencing（indicated by a＇SUSP＇annunciation placed on the HSI）when the missed approach point（MAP）is crossed．This prevents the system from automatically sequencing to the missed approach holding point（MAHP）．During this time，the OBS Softkey designation changes to SUSP．Pressing the SUSP Softkey reactivates automatic waypoint sequencing．The OBS Softkey then resumes its normal functionality．

Why might the system not automatically sequence to the next waypoint？

The system only sequences flight plan waypoints when automatic sequencing is enabled（i．e．，no＇OBS＇or ＇SUSP＇annunciation on the HSI）．For automatic sequencing to occur，the aircraft must also cross the bisector of the turn being navigated．The bisector is a line passing through the waypoint common to two flight plan legs at an equal angle from each leg．

How can a waypoint be skipped in an approach，a departure，or an arrival？

The system allows the pilot to manually select any approach，departure，or arrival leg as the active leg of the flight plan．This procedure is performed on the MFD from the Active Flight Plan Page by highlighting the desired waypoint and pressing the ACT Leg Softkey then the ENT Key to approve the selection．The GPS then provides navigation along the selected flight plan leg．

When does turn anticipation begin？

The system smooths adjacent leg transitions based on a normal 15° bank angle（with the ability to roll up to 30° ）and provides three pilot cues for turn anticipation：
－A waypoint alert（＇Next DTK \＃\＃\＃in \＃seconds＇or＇Next HDG \＃\＃\＃＇in \＃seconds＇）appears on the PFD 10 seconds before the turn point and flashes as it counts down to zero．
－A flashing turn advisory（＇Turn［right／left］to \＃\＃\＃in \＃seconds＇）appears on the PFD 10 seconds before the turn and flashes as it counts down to zero．＇Turn［right／left］to \＃\＃\＃＇now＇or＇Next［DTK／HDG］to \＃\＃\＃${ }^{\circ}$ now＇ is displayed when the pilot is to begin the turn and the HSI（GPS mode）automatically sequences to the next DTK or HDG value．
－The To／From indicator on the HSI flips momentarily to indicate that the midpoint of the turn has been crossed．

When does the CDI scale change?

Once a departure is activated, the Course Deviation Indicator (CDI) full scale deflection is set to 0.3 nm . The CDI scale changes to 1.0 nm (terminal mode) then ramps up to 2.0 nm (enroute mode) at 30 nm from the departure airport. When 31 nm from the destination, the CDI scale smoothly transition from 2.0 nm back to 1.0 nm (terminal mode). At 2.0 nm before the FAF during an active approach, the CDI scale transitions down further based on the type of approach activated (LNAV, LNAV/VNAV, LPV). When a missed approach is activated, the CDI is set to 0.3 nm . See the Flight Instruments Section for more details on CDI scaling.

Why does the HSI not respond like a VOR when OBS mode is active?

Unlike a VOR, the CDI scale used on GPS equipment is based on the crosstrack distance to the desired course, not on the angular relationship to the destination. Therefore, the CDI deflection on the GPS is constant regardless of the distance to the destination and does not become less sensitive when further away from the destination.

What is the correct missed approach procedure? How is the missed approach holding point selected?

To comply with TSO specifications, the system does not automatically sequence past the MAP. The first waypoint in the missed approach procedure becomes the active waypoint when the SUSP Softkey is selected after crossing the MAP. All published missed approach procedures must be followed, as indicated on the approach plate.

To execute the missed approach procedure prior to the MAP (not recommended), select the Active Flight Plan Page and use the ACT Leg Softkey to activate the missed approach portion of the procedure.

After a missed approach, how can the same approach be re-selected? How can a new approach be ACTIVATED?

Abstract

NOTE: Do not attempt to reactivate the current approach prior to crossing the missed approach point (MAP). If an attempt to do so is made, an alert message "Are you sure you want to discontinue the current approach?" appears. The system directs the pilot back to the transition waypoint and does not take into consideration any missed approach procedures, if the current approach is reactivated.

After flying the missed approach procedure, the pilot may reactivate the same approach for another attempt by pressing the PROC Key. Once the clearance is given for another attempt, activate the approach by highlighting 'Activate Approach' using the large FMS Knob and pressing the ENT Key. The system provides navigation along the desired course to the waypoint and rejoins the approach in sequence from that point.
To activate a new approach for the same airport, select the new procedure by pressing the PROC Key. Choose 'Select Approach', select the desired approach from the list shown, and press the ENT Key. Select the desired transition, then activate the approach using the ENT Key.

To activate a new approach to a different airport, press the Direct-to Key and select the desired airport using the FMS Knobs. Press the ENT Key to accept the selected airport, then follow the steps in the preceding paragraph to select an approach for the new airport.

MAP SYMBOLS

AVIATION SYMBOLS

Item	Symbol
Unknown Airport	（？）
Non－towered，Non－serviced Airport	（
Towered，Non－serviced Airport	（0）
Non－towered，Serviced Airport	Pr
Towered，Serviced Airport	S
Restricted（Private）Airport	（R）
Heliport	（H）
Intersection	\triangle
LOM（compass locator at outer marker）	㚜害
NDB（non－directional radio beacon）	昭鞇
VOR	宫
VOR／DME	國
VOR／LLS	＋
VORTAC	\％
VRP	9
TACAN	＊

LAND SYMBOLS

Item	Symbol
User Waypoint	\square
Interstate Highway	
State Highway	

US Highway	
National Highway	
Large City（＞200，000）	
Medium City（＞50，000）	
Small City（＞5，000）	
State or Province Border	- －ST／PRU BORDER－－
International Border	
Road	
Railroad	
Latitude／Longitude	
River／Lake	
Latitude／Longitude（LAT／LON）	

AIRSPACE SYMBOLS

Item	Symbol
Class B Airspace Altitude Label （ceiling／floor）	$\frac{80}{30}$
Class C Airspace Altitude Label （ceiling／floor）	$\frac{\frac{53}{3 F C}}{3 F 2}$
Class D Airspace Altitude Label （ceiling）	［36］
ICAO Control Area Class B Airspace	
Mode C Tower Area	
Warning Area Prohibited Area Alert Area Restricted Area Caution Area Training Area Danger Area Unknown Area	
Class C Terminal Radar Service Area Mode C Area	
Military Operations Area（MOA）	

INDEX
A
Activate a Flight Plan 189
Active frequency 88，93， 94
AC－U－KWIK 365， 430
ADF audio 94
AFCS Status Box 336
AHRS 418，419，421， 422
AIRB 320
Airport
Information 145
Airport Directory 365， 430
Airspace Alerts 162， 232
Airspeed indicator 46， 48
Airspeed Reference 342－343
Airways
Collapsing／Expanding 199
Alerts
Arrival 37
Audio voice 37
Levels 416
Along Track Offset 194
Altimeter 46， 51
Altitude
Constraints 206
Altitude alerting 70
Altitude Hold － 6
Altitude Hold Mode 340
Altitude Reference 339，340， 352
Annunciations
System 11
Test tone 13， 418
Annunciator lights 104
AOPA 365， 430
Approach 450
Activating 221
Loading 186，219， 221
Removing 222
Approach channel 187， 219
Approach Mode 353
Approach Mode（GPS，VAPP，LOC） 348
APR softkey 221， 231
Arrival procedure 169，170，184，216， 217
Attitude \＆Heading Reference System（AHRS） 14
Attitude indicator 46， 50
Audio alerting system 418
Audio Panel 10
Audio panel controls
SPKR 104
Audio panel fail－safe operation 110
Automatic Dependent Surveillance－Rebroadcast（ADS－R） 318
Automatic Flight Control System（AFCS） 331－364
Alerts and annunciations 363－364
Controls 332－333
Status Annunciations 363
Status Box 336
Automatic squelch 88
Autopilot 331，360－362
Autopilot Disconnect 333， 362
Auto－tuning 97
Auto－tuning，COM 89
Auto－tuning，NAV 95
Auto Zoom 116
AUX－system status page 396
Aviation Symbols 125，126， 130
B
Backcourse Mode 357
Backlighting 43
Barometric altimeter setting 46， 52
Bearing／distance，measuring 120
Bearing Information 47， 59
Bearing Pointer 59
Bearing Source 59
Bluetooth $175,365,410$
C
Calibrated Airspeed 228
CAS
Annunciations 417
CAUTION 416
Chart Not Available 383
Chart options 387， 394
CHART SETUP box 389， 395
ChartView 365， 382
Checklists 412－413
Clearance Recorder 107
Closest Point 199
COM channel spacing 92
COM Frequency Box 88，93
Command Bars 337
Communication（COM）Frequency Box 46
COM Tuning Failure 110
Conflict Situational Awareness（CSA） 319
Controls -4
Control Wheel Steering（CWS） 333， 361
Copy a Flight Plan 189
Correlation 318
Course Deviation Indicator（CDI） 60－64， 218
Changing scale 452
Crew Alerting System（CAS）
Inhibits 417
Messages 416－417
Cylinder Head Temperature（CHT） 78

D

Database(s) - 8
Data Link Receiver 414
Data logging 409
Date and time 32
Day/Night views 389, 395
Day view 390
DB Mismatch 429
Dead Reckoning 73
Decision Height 71
Declutter, Display 74
Delete Flight Plans 190
Deleting
An entire airway 191, 192
An entire procedure 191, 192
An individual waypoint 191, 192
Flight Plan Items 191
Density Altitude 230
DepartureProcedure183, 214, 215
Select- $214,216,219,222,224$
Time 228
Digital audio entertainment -2
Dilution of Precision (DOP) 17
Direct-to--------137, 164, 165, 166, 167, 168, 204, 205
Display backup 10, 87
DME audio 94
DME Information Window 60
DME tuning 98
E
Electronic Checklists 412, 413
Emergency Checklist 413
Emergency frequency 110
Endurance, calculated (ENDUR) 80
Engine manifold pressure 77
Entertainment inputs 107
Estimated Position Error (EPE) 17
Exhaust Gas Temperature (EGT) 78
F
Fail-safe operation 110
Failure
Input 15
FD - 6
Field of View (SVT) 133
Flight director
Pitch modes338-344
Flight director (FD) 331, 335-336
Switching 334
Flight ID 103
Entering Flight ID 103
Flight Instruments 45, 45-60
Flight level change - 6
Flight Level Change Mode 342
Flight plan
Storing 450
Flight Plan, Active
Creating 172
Leg Type 169
Flight plan Import/Export Messages 178
Flight Stream 365
Flight Stream 510 434
FliteCharts 365, 391
Functions 392
FPA 205
Frequency
Nearest 160
Frequency spacing 92
Frequently asked questions 449
Fuel
Calculations 80
Efficiency 230
Endurance 230
Remaining 230
Required 230
Statistics 230
Fuel Flow Indicator 77
Fuel on Board 230
G
Garmin Pilot 410
Geodetic Sea Level (GSL) 286
GFC 700 331
Glidepath Mode (GP) 354, 355
Glideslope Mode 356
Global Positioning System (GPS)
Navigation 164-234
Receiver information 18-20
GMA 1347 - 8
Groundspeed 40
H
Heading 46
Heading Bug 46
Heading Select - 6
HI SENS 98
Horizontal Situation Indicator (HSI)46, 56-58, 218, 451,452
HSI double green arrow 94
HSI magenta arrow 94
HSI single green arrow 94
HW Mismatch 423
I
IDENT function 100
ID indicator 93
IFR／VFR Charts 134
Chart settings 136
Importing a Flight Plan 174
Import／Export Messages 178
Transfer From Wireless Connection： 175
Indicated Altitude 228
Inset Map 47
Intercom 104
Intercom system（ICS） 107
Intersection
Information 146－147
Inverting a flight plan 189
IO｜ 293

L

Land Symbols 124
LO SENS 98
Low Altitude Annunciation 71
M
Magnetometer 15
Map Panning 118
Map symbols 453
Marker Beacon 97
Marker Beacon Annunciations 70
MASQ processing 83
Measurement units，changing displayed 36
Menus 26
Messages
Reminder 41
Minimum Descent Altitude 71
Missed Approach 169， 222
MKR／MUTE 97
Mnimum Runway Length 145
Mode S 99
Mode selection softkeys 99， 100
Morse code identifie 93
Motion Vectors 324
N
National Weather Service（NWS） 271
NAV1 audio 94
NAV2 audio 94
Navigation
Database 206
Map 167
Navigation mode selection 94
Navigation（NAV）Frequency Box 46
Navigation Source 60－61
Navigation Status Box 46
Nav radio selection 94
Nearest
Airport 142，143，144，145， 221
Airport Minimum Runway Length 145
Airports Page 143，144， 145
Airport Surface Matching 145
VOR 151
VRP 152， 153
Nearest airports，frequency tuning 90
NextGen 317
Night view 390
No Available Charts 392
Non－path descent 352
Normal display operation -9
0
OBS Mode 65
Odometer 40
Omni Bearing Selector（OBS） 450－451
Other Statistics 228， 230
Outside Air Temperature 46
Overview -1
P
Page groups 27－30
Pairing 410
Parallel Track 195
Pending flight plan 175，176， 177
Pitch hold － 6
Pitch Hold Mode 338
Pitch Modes，Flight Director 338－344
Power ON settings 104
Power－up Page 412
R
Receiver Autonomous Integrity Monitoring（RAIM）18－19218， 449
Reminder messages 41
Reversionary mode 110
ROC 293
Roll Hold Mode 344
RS－232 -2
RS－485 -1
RX indicator 89
S
SafeTaxi 365，379
SBAS 423， 449
Scheduler -41-42, 365-366Secure Digital (SD) card ----------------------- 7, 412, 429Selected Altitude ---------- 338, 339, 341, 342, 349, 352Selected Altitude Capture Mode338, 339, 340, 341, 349,359
Selected Altitude Intercept Arc 133
Selected Course 47, 347, 355, 358
Selected Heading 47,345
Sequencing waypoints
Automatic 451
SIGMET 262
SiriusXM Radio Volume 401
SiriusXM Weather
AIREPs 276
AIRMETs 262
Cell Movement 261
Cloud Tops 259
County Warnings 271
Cyclones \& Hurricanes 272
Echo Tops 258
Freezing Level 268
Icing 273
Lightning 260
PIREPs- 276
SIGMETs 262
Surface Analysis 266
Turbulence- 275
Winds Aloft 269
Slip/Skid Indicator 46, 51
Softkeys $22,23,24,25,46$
EIS 24, 78
MFD 24
PFD 21
Speaker 104
Split COM operation 106
Standby frequency 88, 89, 93, 94
Standby frequency field 88, 93
Stereo headsets 104
Stuck microphone 110
Sunrise / Sunset 229
SURF 320
Surface Analysis 266
SUSP 66
SVT 426
Symbols, map 453
Synthetic vision (SVS) 365
Synthetic Vision Technology (SVT) 366
System
Annunciations 415
Message advisories 418
System Alerting 70
System Softkey 80
System Status Page 13
System Time 46
T
Takeoff Mode 359
TAS 419
TAS Traffic
Non-Threat Traffic 306
PA 306
Proximity Advisory 306
Terminal Aerodrome Forecast (TAF) 264
Terminal procedures charts 395
Terrain 420
Terrain Proximity 286
Timer 38
Departure 38, 40
Flight 38, 39
Generic, PFD 38
TOPO Data $122,123,130$
TOPO Scale 123
Track Indicator 56
Traffic Information Service-Broadcast (TIS-B) 318
Transponder- 23
Transponder code entry 102
Transponder data box 83
Transponder standby mode 100
Transponder Status Box 46
Trip Planning 228, 229, 230
Trip statistics 40
Trip Statistics 229, 230
True Airspeed (TAS) 46, 48, 230
Turn anticipation -451
Turn Rate Indicator 46, 58
TX indicator 89
U
Unable to display chart 383, 392
User-Defined Holding Pattern 203
V
Vectors to Final 221
Vertical deviation 351
Vertical Navigation flight control 349-353
Vertical Navigation (VNAV) 168, 206
Direct-to 205
Guidance 206
Vertical Path Tracking Mode 349-350
Vertical Situation Display (VSD) 209, 210, 211
Vertical speed -6
Vertical Speed Indicator (VSI) 46, 54
Vertical Speed Mode 341
Vertical Speed Reference 341
VFR code 102
VNAV Target Altitude 349－352
VNAV Target Altitude Capture Mode 352
VNV guidance
Disabling 205
Enabling 204
VNV Indications 69
Voice alerts，TIS Traffic 301
VOL annunciation 106
Volume 401
VOR selection 94
VRP 125，152， 153
VS TGT 205
W
WAAS 449
Waypoint
Automatic sequencing 451
Skipped 451
Waypoint Selection Submenu 165， 180
Weather（real－time） － 2
Wind 132
Wind Information，PFD 67
X
XM radio 398， 399
XM radio active channel 400
XM radio entertainment 108
XM radio presets 401
XM radio service class 399
Y
Yaw Damper -6
Z
Zoom
Auto－－116

[^0]: * Default setting
 ** Contact a Garmin-authorized service center to change this setting
 *** Not configurable

